
	

	ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ
Федеральное государственное бюджетное образовательное учреждение высшего образования
«Камчатский государственный технический университет»

	
	Фонд оценочных средств
Система менеджмента качества

	ФОС – 2024
	Колледж информационных технологий

	РЕКОМЕНДОВАН

к утверждению
в составе ОПОП 09.02.07:
Учебно-методическим советом,
протокол №9 от «8» мая 2024 г.
(в редакции от 28.08.2024 г.)
	УТВЕРЖДЕНО

Проректор по учебной
и научной работе
ФГБОУ ВО «КамчатГТУ»
[image:] Н.С. Салтанова
 «26» мая 2024 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ
ПО МОДУЛЮ ПМ. 04 РАЗРАБОТКА, АДМИНИСТРИРОВАНИЕ ЗАЩИТА БАЗ ДАННЫХ

для специальности среднего профессионального образования
09.02.07 ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ПРОГРАММИРОВАНИЕ
квалификация – программист

МДК 04.01 Технология разработки и защиты баз данных

Петропавловск-Камчатский, 2024 г.

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ
Общие положения
ФОС предназначен для проверки результатов освоения основного вида деятельности (ВПД) Разработка, администрирование и защита баз данных и составляющих его профессиональных и общих компетенций, основной образовательной программы среднего профессионального образования - программы подготовки специалистов среднего звена в соответствии с ФГОС по специальности 09.02.07 Информационные системы и программирование.
Формой аттестации по профессиональному модулю является экзамен (квалификационный). Итогом экзамена является однозначное решение: «вид профессиональной деятельности освоен / не освоен».
Форма проведения экзамена - выполнение заданий
1. Формы контроля и оценивания элементов профессионального модуля

	Элемент профессионального модуля (МДК, УП, ПП)
	Форма контроля и оценивания

	
	Промежуточная аттестация
	
Текущий контроль

	МДК 04.01
Технология разработки и защиты баз данных
	Контрольная работа
Экзамен
	· наблюдение за выполнением практических и лабораторных работ;
· контроль результата выполнения практических, лабораторных и самостоятельных работ;
· защита практических и лабораторных работ;
· тестирование.

2. Результаты освоения профессионального модуля, подлежащие проверке
В результате аттестации по профессиональному модулю комплексная проверка профессиональных и общих компетенций профессионального модуля осуществляется в форме оценки качества выполнения заданий на экзамене квалификационном.
	Код
	Наименование общих компетенций

	ПК 11.1
	Осуществлять сбор, обработку и анализ информации для проектирования баз данных

	ПК 11.2
	Проектировать базу данных на основе анализа предметной области

	ПК 11.3
	Разрабатывать объекты базы данных в соответствии с результатами анализа предметной области

	ПК 11.4
	Реализовывать базу данных в конкретной системе управления базами данных

	ПК 11.5
	Администрировать базы данных

	ПК 11.6
	Защищать информацию в базе данных с использованием технологии защиты информации

МАТЕРИАЛЫ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

ТЕСТОВЫЕ ЗАДАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ (с ответами)
Правильный ответ отмечен жирным шрифтом.
1. Информационная система-это
1) Любая система обработки информации
2) Система обработки текстовой информации
3)	 Система обработки графической информации
4) Система обработки табличных данных
5) Нет верного варианта
2. Разновидность информационной системы, в которой реализованы функции централизованного хранения и накопления обработанной информации, организованной в одну или несколько баз данных это
1) Банк данных
2) База данных
3) Информационная система
4) Словарь данных
5) Вычислительная система
3. Совокупность специальным образом организованных данных, хранимых в памяти вычислительной системы и отображающих состояние объектов, и их взаимосвязей в рассматриваемой предметной области - это
1) База данных
2) СУБД
3) Словарь данных
4) Информационная система
5) Вычислительная система
4. Комплекс языковых и программных средств, предназначенный для создания, ведения и совместного использования БД многими пользователями - это
1) СУБД
2) База данных -
3) Словарь данных
4) Вычислительная система
5) Информационная система
5. Подсистема банка данных, предназначенная для централизованного
хранения информации о структурах данных, взаимосвязях файлов БД друг с другом, типах данных и форматах их представления, принадлежности данных пользователям, кодах защиты и разграничения доступа и т.п. — это
1) Словарь данных
2) Информационная система
3) Вычислительная система
4) СУБД
5) База данных.

6 . Лицо или группа лиц, отвечающих за выработку требований к БД, ее проектирование, создание, эффективное использование и сопровождение - это
1) Администратор базы данных
2) Диспетчер базы данных
3) Программист базы данных
4) Пользователь базы данных
5) Технический специалист
7. Совокупность взаимосвязанных и согласованно действующих ЭВМ или процессов и других устройств, обеспечивающих автоматизацию процессов приема, обработки и выдачи информации потребителям - это
1) Словарь данных
2) Информационная система
3) Вычислительная система
4) СУБД
5) База данных

8. Модель представления данных - это
1) Логическая структура данных, хранимых в базе данных
2) Физическая структура данных, хранимых в базе данных
3) Иерархическая структура данных
4) Сетевая структура данных
5) Нет верного варианта
9. Наиболее используемая (в большинстве БД) модель данных
1) Реляционная модель
2) Сетевая модель данных
3) Иерархическая модель данных
4) Системы инвертированных списков
5) Все вышеперечисленные варианты
10. Назовите вариант ответа, который не является уровнем архитектуры СУБД
1) Внутренний уровень
2) Внешний уровень
3) Концептуальный уровень
4) Все выше перечисленные варианты
5) Физический уровень
11. Внутренний уровень архитектуры СУБД
1) Наиболее близок к физическому, описывает способ размещения данных на устройствах хранения информации
2) Наиболее близок к пользователю, описывает способ размещения данных на устройствах хранения информации
3) Наиболее близок к пользователю, описывает обобщенное представление данных
4) Наиболее близок к физическому, описывает способ размещения данных в логической структуре базы данных)
5) Нет правильного ответа
12. Внутренний уровень архитектуры СУБД
1) Для пользователя к просмотру и модификации не доступен
2) Предоставляет данные непосредственно для пользователя
3) Дает обобщенное представление данных для множества пользователей
4) Доступен только пользователю
5) Доступен пользователю только для просмотра
13. Внешний уровень
1) Наиболее близок к физическому, описывает способ размещения данных на устройствах хранения информации
2) Наиболее близок к пользователю, предоставляет возможность манипуляции данными в СУБД с помощью языка запросов или языка специального назначения
3) Для множества пользователей, описывает обобщенное представление данных
4) Наиболее близок к физическому, описывает способ размещения данных в логической структуре базы данных
5) Нет правильного ответа
14. Концептуальный уровень
1) Наиболее близок к физическому, описывает способ размещения данных на устройствах хранения информации
2) Наиболее близок к пользователю, описывает способ размещения данных на устройствах хранения информации
3) Наиболее близок к пользователю, предоставляет возможность манипуляции с данными
4) Переходный от внутреннего к внешнему, описывает обобщенное представление данных для множества пользователей
5) Нет правильного ответа
15. (1балл) Проектированием БД занимается
1) Администратор БД
2) Программист БД
3) Пользователь БД
4) Проектировщик БД
5) Нет правильного ответа
16. Выберите правильный порядок действий при проектировании
БД
а)	Решение проблемы передачи данных
 б) Анализ предметной области, с учетом требования конечных пользователей
в)	Формализация представления данных в БД
г)	Обобщенное описание БД с использованием естественного языка, математических формул, графиков и других средств
1) б, г, в, а
2) а, б, г, в
3) а, б, в, г
4) г, б, в, а
5) Порядок действий значения не имеет
17. Основными составными частями клиент - серверной архитектуры являются
1) Сервер
2) Клиент
3) Сеть и коммуникационное программное обеспечение
4) Все выше перечисленное
5) Только варианты 1 и 2
18. Собственно СУБД и управление хранением данных, доступом, защитой, резервным копированием, отслеживанием целостности данных, выполнением запросов клиентов - это
1) Сервер базы данных
2) Клиенты
3) Сеть
4) Коммуникационное программное обеспечение
5) Нет правильного ответа
19. Различные приложения пользователей, которые формируют запросы к серверу, проверяют допустимость данных и получают ответы - это
1) Сервер базы данных
2) Клиенты
3) Сеть
4) Коммуникационное программное обеспечение
5) Нет правильного ответа
20. Сеть и коммуникационное программное обеспечение осуществляет
1) Взаимодействие между клиентом и сервером с помощью сетевых протоколов
2) Взаимодействие между клиентами с помощью сетевых протоколов
3) Взаимодействие между серверами с помощью сетевых протоколов
4) Нет правильного ответа
21. Система БД, где разделение вычислительной нагрузки происходит между двумя отдельными компьютерами, один - сервер, другой - клиент называется
1) Распространенной
2) Многофункциональной
3) Разветвленной
4) Централизованной
5) Многоцелевой
22. Система БД, объединяющая 2 и более серверов и несколько клиентов называется
1) Распространенной
2) Многофункциональной
3) Разветвленной
4) Децентрализованной
5) Многоцелевой
23. Система и набор специальных правил, обеспечивающих единство связанных данных в базе данных, называется
1) Ссылочной целостностью данных
2) Контролем завершения транзакций
3) Правилом
4) Триггером
5) Нет правильного варианта
24. Контроль завершения транзакций - это задачи СУБД по контролю и предупреждению
1) Повреждения данных в аварийных ситуациях
2) Несанкционированного доступа к данным
3) Несанкционированного ввода данных
4) Изменения логической структуры БД
5) Нет правильного варианта
25. Контроль завершения транзакций реализуется при помощи
1) Хранимых процедур
2) Правил
3) Триггеров
4) Всего выше перечисленного
5) Нет правильного варианта
26. Хранимые процедуры - это
1) Набор основных действий и манипуляций с данными
2) Хранятся на сервере
3) Программы "клиенты" способны их выполнять
4) Все выше перечисленное
5) Нет правильного варианта
27. Верно ли, что триггеры - это вид хранимых процедур, а правила - это типы триггера
1) Да, верно
2) Нет, правила не относятся к типам триггеров
3) Нет, триггеры не относятся к видам хранимых процедур
4) Нет, хранимые процедуры — это типы триггеров
5) Нет, хранимые процедуры и триггеры никак не связаны между собой
28. Реляционная модель представления данных - данные для пользователя передаются в виде
1) Таблиц
2) Списков
3) Графа типа дерева
4) Произвольного графа
5) Файлов
29. Сетевая модель представления данных- данные представлены с помощью
1) Таблиц
2) Списков
3) Упорядоченного графа
4) Произвольного графа
5) Файлов
30. Иерархическая модель представления данных - данные представлены в виде
1) Таблиц,
2) Списков
3) Упорядоченного графа
4) Произвольного графа
5) Файлов
31. Принципы реляционной модели представления данных заложил
1) Кодд
2) фон Нейман
3) Тьюринг
4) Паскаль
5) Лейбниц
32. Отношением называют
1) Файл
2) Список
3) Таблицу
4) Связь между таблицами
5) Нет правильного варианта
33. Кортеж отношения - это
1) Строка таблицы
2) Столбец таблицы
3) Таблица
4) Несколько связанных таблиц
6) Список
34. Атрибут отношения - это
1) Строка таблицы
2) Столбец таблицы
3) Таблица
4) Межтабличная связь
5) Нет правильного варианта
35. Степень отношения - это
1) Количество полей отношения
2) Количество записей в отношении
3) Количество возможных ключей отношения
4) Количество связанных с ним таблиц
5) Количество кортежей в отношении
36. Кардинальное число - это
1) Количество полей отношения
2) Количество записей в отношении
3) Количество возможных ключей отношения
4) Количество связанных с ним таблиц
5) Количество атрибутов в отношении
37. Домен - это
1) Множество логически неделимых допустимых значений для того или иного атрибута
2) Множество атрибутов
3) Множество кортежей
4) Логически неделимые, конкретные значения того или иного атрибута
5) Нет правильного варианта
38. Один атрибут или минимальный набор из нескольких атрибутов, значения которых в одно и тоже время не бывают одинаковыми, то есть однозначно определяют запись таблицы - это
1) Первичный ключ
2) Внешний ключ
3) Индекс
4) Степень отношения
5) Нет правильного варианта
39. Ключ называется сложным, если состоит
1) Из нескольких атрибутов
2) Из нескольких записей
3) Из одного атрибута
4) Из одного атрибута, длина значения которого больше заданного количества символов
5) Нет правильного варианта
40. Средство ускорения операции поиска записей в таблице, а, следовательно, и других операций, использующих поиск, называется
1) Индекс
2) Хеш-код
3) Первичный ключ
4) Внешний ключ
5) Нет верного варианта
41. Таблица называется индексированной, если для неё используется
1) Индекс
2) Хеш-код
3) Первичный ключ
4) Внешний ключ
5) Нет верного варианта
42. Процедура создания свертки исходного значения ключевого поля называется
1) Хешированием
2) Индексированием
3) Определение ключа
4) Обновлением
5) Нет верного варианта
43. Среди перечисленных свойств выберите те, которые не могут являться свойствами отношений:
а) В отношении не бывает двух одинаковых кортежей
б)	В отношении может быть сколько угодно одинаковых кортежей
в)	Кортежи не упорядочены сверху вниз, что не приводит к потере информации
г)	Атрибуты не упорядочены слева направо, что не нарушает целостности данных
Значения атрибутов состоят из логически неделимых единиц, т.е. являются нормализованными
1) Только б
2) Только а
3) Только а и б
4) а, в, г, д
5) б, в, г, д
44. Набор отношений, связанных между собой, что обеспечивает возможность поиска одних кортежей по значению других, называется
1) Реляционной базой данных
2) Дореляционной БД
3) Постреляционной БД
4) Все выше перечисленное
5) Нет правильного варианта
45. Выберите соответствующий вид связи, если в каждый момент времени каждому элементу (кортежу) отношения А соответствует 0 или 1 кортеж отношения В
1) Связь отсутствует
2) Связь один к одному
3) Связь один ко многим
4) Связь многие к одному
5) Связь многие ко многим
46. Выберите соответствующий вид связи, если в каждый момент времени множеству кортежей отношения А соответствует один кортеж отношения В.
1) Связь отсутствует
2) Связь один к одному
3) Связь один ко многим
4) Связь многие к одному
5) Связь многие ко многим
47. Выберите соответствующий вид связи, если в каждый момент времени единственному кортежу отношения А соответствует несколько кортежей отношения
1) Связь отсутствует
2) Связь один к одному
3) Связь один ко многим
4) Связь многие к одному
5) Связь многие ко многим
48. Выберите соответствующий вид связи, если в каждый момент времени множеству кортежей отношения А соответствует множество кортежей отношения В.
1) Связь отсутствует
2) Связь один к одному
3) Связь один ко многим "
4) Связь многие к одному
5) Связь многие ко многим
49. Какая из перечисленных видов связи в реляционных СУБД непосредственно не поддерживается?
1) Связь отсутствует
2) Связь один к одному
3) Связь один ко многим
4) Связь многие к одному
5) Связь многие ко многим
50. Выберите из предложенных примеров тот, который иллюстрирует между указанными отношениями связь 1:1
1) Дом: Жильцы
2) Студент: Стипендия
3) Студенты: Группа
4) Студенты: Преподаватели
5) Нет подходящего варианта
51. Выберите из предложенных примеров тот, который между указанными отношениями иллюстрирует связь 1: М
1) Дом: Жильцы
2) Студент: Стипендия Л-
3) Студенты: Группа
4) Студенты: Преподаватели
5) Нет подходящего варианта
52. Выберите из предложенных примеров тот, который между указанными
отношениями иллюстрирует связь М: 1
1) Дом: Жильцы
2) Студент: Стипендия
3) Студенты: Группа
4) Студенты: Преподаватели
5) Нет подходящего варианта
53. Выберите из предложенных примеров тот, между указанными отношениями, который иллюстрирует связь М: М
1) Дом: Жильцы
2) Студент: Стипендия
3) Студенты: Группа
4) Студенты: Преподаватели
5) Нет подходящего варианта
54. Столбец или группа столбцов таблицы, значения которых совпадают со значениями первичного ключа другой таблицы называют
1) Первичный ключ
2) Внешний ключ
3) Индекс
4) Степень отношения
5) Нет правильного варианта
55. Сколько внешних ключей может содержать таблица?
1) Один или несколько внешних ключей
2) Один и только один внешний ключ
3) Внешний ключ быть не может единственным
4) Количество внешних ключей определяется количеством полей в таблице
5) Нет правильного варианта
56. Группа процедурных языков для выполнения операций над отношениями с помощью реляционных операторов, где результатом всех действий являются отношения, называется
1) Реляционной алгеброй
2) Реляционным исчислением
3) Языком программирования
4) Все варианты верные
5) Нет правильного варианта
57. Группа непроцедурных языков (описательных или декларативных) для выполнения операций над отношениями с помощью предиката (высказывания в виде функции) называется
1) Реляционной алгеброй
2) Реляционным исчислением
3) Языком программирования
4) Все варианты верные
5) Нет правильного варианта
58. Примером языка реляционного исчисления является язык
1) SQL
2) Visual FoxPro
3) Visual Basic
4) Delphi
5) Нет правильного варианта
59. Операция формирования нового отношения, включающего только те кортежи первоначального отношения, которые удовлетворяют некоторому условию, называется
1) Выборкой
2) Объединением
3) Пересечением
4) Вычитанием
5) Соединением
60. Операция формирования нового отношения К1 с атрибутами X, Y... Z, состоящего из кортежей исходного отношения К без повторений, где множество {X,
Y.. Z} является подмножеством полного списка атрибутов заголовка отношения К, называется
1) Выборкой
2) Объединением
3) Пересечением
4) Вычитанием
5) Проекцией
61. Операция формирования нового отношения К, содержащего все элементы исходных отношений К и К (без повторений) одинаковой размерности, называется
1) Выборкой
2) Объединением
3) Пересечением
4) Вычитанием
5) Соединением
62. Операция формирования нового отношения К, содержащего множество
кортежей,	принадлежащих	К,,	но	не	принадлежащих	К.,	причем	К,	и	К.	одинаковой размерности, называется
1) Выборкой
2) Объединением
3) Пересечением
4) Вычитанием
5) Соединением
63. Операция формирования нового отношения К, содержащего множество кортежей, одновременно принадлежащих обоим исходным отношениям одинаковой размерности, называется
1) Выборкой
2) Объединением
3) Пересечением
4) Вычитанием
5) Соединением
64. Операция формирования нового отношения К степени к+к, содержащего все возможные сочетания кортежей отношений К, степени к, и К. степени к., называется
1) Произведением
2) Объединением
3) Пересечением
4) Вычитанием
5) Соединением
65. Унарной операцией называется операция реляционной алгебры, выполняемая
1) Только над одним отношением
2) Над двумя отношениями
3) Над несколькими отношениями
4) Все выше перечисленное
5) Нет верного варианта
66. Бинарной операцией называется операция, выполняемая
1) Только над одним отношением
2) Над двумя отношениями
3) Над несколькими отношениями
4) Все выше перечисленное
5) Нет верного варианта
67. Примерами унарной операции являются oперации
1) Выборки
2) Проекции
3) Произведение
4) Все выше перечисленное
5) Только 1и 2
68. Примерами бинарной операции являются операции
1) Объединения
2) Пересечения
3) Разность
4) Произведение
5) Деление
6) Все выше перечисленное
69. Определите порядок действий при проектировании логической структуры БД:
а)	формирование исходного отношения;
б)	определение всех объектов, сведения о которых будут включены в базу; в) определение атрибутов;
г)	устанавливают связи между атрибутами;
д)	определение характера информации, которую заказчик будет получать в процессе эксплуатации;
е)	избавится от избыточного дублирования данных, являющихся причиной аномалий.
1) б, д, в, г, а, е
2) а, б, в, г, д, е
3) б, д, в, а, г, е
4) а, е, б, д, в, г
5) б, д, а, е, в, г
70. Если каждому значению атрибута А соответствует единственное значение атрибута В, то говорят, что между А и В существует
1) Функциональная зависимость
2) Функциональная взаимозависимость
3) Частичная функциональная зависимость
4) Полная функциональная зависимость
5) Транзитивная зависимость
6) Многозначная зависимость
7) Взаимная независимость
71. Если А функционально зависит от В и В функционально зависит от А (то есть между А и В имеется взаимно однозначное соответствие), говорят, что между А и В существует
1) Функциональная зависимость
2) Функциональная взаимозависимость
3) Частичная функциональная зависимость
4) Полная функциональная зависимость
5) Транзитивная зависимость
6) Многозначная зависимость
7) Взаимная независимость
72. Если между А и В существует функциональная зависимость не ключевого атрибута от части составного ключа, то говорят, что между А и В существует
1) Функциональная зависимость
2) Функциональная взаимозависимость
3) Частичная функциональная зависимость
4) Полная функциональная зависимость
5) Транзитивная зависимость
6) Многозначная зависимость
73. Если А функционально зависит от В и В функционально зависит от С, но обратная зависимость отсутствует, то говорят, что между А и С существует
1) Функциональная зависимость
2) Функциональная взаимозависимость
3) Частичная функциональная зависимость
4) Полная функциональная зависимость
5) Транзитивная зависимость
6) Многозначная зависимость
7) Взаимная независимость
74. Если каждому значению А соответствует множество значений В, то говорят, что между А и В существует
1) Функциональная зависимость
2) Функциональная взаимозависимость
3) Частичная функциональная зависимость
4) Полная функциональная зависимость
5) Транзитивная зависимость
6) Многозначная зависимость
7) Взаимная независимость
75. Если существует функциональная зависимость не ключевого атрибута от составного ключа, то говорят, что существует
1) Функциональная зависимость
2) Функциональная взаимозависимость
3) Частичная функциональная зависимость
4) Полная функциональная зависимость
5) Транзитивная зависимость
6) Многозначная зависимость
7) Взаимная независимость
76. Если ни один из атрибутов А и В не являются функционально зависимыми друг от друга, то говорят, что между ними существует
1) Функциональная зависимость
2) Функциональная взаимозависимость
3) Частичная функциональная зависимость
4) Полная функциональная зависимость
5) Транзитивная зависимость
6) Многозначная зависимость
7) Взаимная независимость

77. Выберите вид зависимости, которая не является многозначной
1) 1: М
2) М: 1
3) М: М
4) 1:1*
5) Нет правильного варианта

78. Если все атрибуты отношения являются простыми (имеют единственное значение), то отношение находится
1) В первой нормальной форме
2) Во второй нормальной форме
3) В третьей нормальной форме
4) В четвертой нормальной форме
5) В пятой нормальной форме
79. Отношение находится во второй нормальной форме, если оно находится в первой нормальной форме и
1) каждый не ключевой атрибут функционально полно зависит от первичного ключа
2) каждый не ключевой атрибут не транзитивно зависит от первичного ключа
3) все не ключевые атрибуты отношения взаимно независимы и полностью зависят от первичного ключа
4) в нем отсутствуют зависимости ключевых атрибутов (или атрибутов составного ключа) от не ключевых атрибутов
5) Нет правильного варианта
80. Отношение находится в третьей нормальной форме, если оно находится во второй нормальной форме и
1) каждый не ключевой атрибут функционально полно зависит от первичного ключа
2) каждый не ключевой атрибут не транзитивно зависит от первичного ключа
3) все не ключевые атрибуты отношения взаимно независимы и полностью зависят от первичного ключа
4) в нем отсутствуют зависимости ключевых атрибутов (или атрибутов составного ключа) от не ключевых атрибутов
5) Нет правильного варианта
81. Отношение находится в третьей нормальной форме, тогда и только тогда, когда
1) каждый не ключевой атрибут функционально полно зависит от первичного ключа
2) каждый не ключевой атрибут не транзитивно зависит от первичного ключа
3) все не ключевые атрибуты отношения взаимно независимы и полностью зависят от первичного ключа
4) в нем отсутствуют зависимости ключевых атрибутов (или атрибутов составного ключа) от не ключевых атрибутов
5) Нет правильного варианта
82. Отношение находится в нормальной форме Бойса-Кодда, если оно находится в третьей нормальной форме и
1) каждый не ключевой атрибут функционально полно зависит от первичного ключа
2) каждый не ключевой атрибут не транзитивно зависит от первичного ключа
3) все не ключевые атрибуты отношения взаимно независимы и полностью зависят от первичного ключа
4) в нем отсутствуют зависимости ключевых атрибутов (или атрибутов составного ключа) от не ключевых атрибутов
5) Нет правильного варианта
83. Назовите оператор языка SQL для создания запросов на выбор данных
1) Select
2) Distinct
3) Where
4) Having
5) Create
84. Назовите оператор команды Select, который обеспечивает возможность устранения избыточных значений.
1) Order by
2) Distinct
3) Where
4) Having
5) Create
85. Назовите предложение команды Select, которая позволяет производить выборку данных, в зависимости от истинности поставленного условия.
1) Order by
2) Distinct
3) Where
4) Having
5) Create
86. Назовите команду, которая определяет группу значений в поле в терминах другого поля и применяет к ней агрегатную функцию.
1) Order by
2) Distinct
3) Where
4) Having
5) Group by
87. Назовите предложение команды Select, которое позволяет устанавливать условия для агрегатных функций
1) Order by
2) Distinct
3) Where
4) Having
5) Group by
88. Назовите предложение команды Select, которое используется для сортировки результата запроса.
1) Order by
2) Distinct
3) Where
4) Having
5) Group by
89. Операторы =, <>, <=, >=, <, > относятся к
1) Реляционным операторам
2) Логическим операторам
3) Специальным операторам
4) Агрегатным функциям
5) Нет правильного варианта
90. Операторы AND, OR, NOT относятся к
1) Реляционным операторам
2) Логическим операторам
3) Специальным операторам
4) Агрегатным функциям
5) Нет правильного варианта
91. Операторы IN, BETWEEN, LIKE относятся к
1) Реляционным операторам
2) Логическим операторам
3) Специальным операторам
4) Агрегатным функциям
5) Нет правильного варианта
92. Выберите вариант, который является названием типа данных
1) Символьный
2) Числовой
3) Дата-время
4) Строковый
5) Все варианты верные
93. К какому типу данных относятся константы даты и времени?
1) Числовому
2) Денежному
3) Число с плавающей точкой
4) Строковому
5) Нет правильного варианта
94. Среди предложенных названий выберите то, которое является названием агрегатной функции
1) COUNT
2) SUM
3) AVG
4) MAX
5) MIN
6) Все варианты верные
95. Какие из агрегатных функций используют только числовые поля?
1) SUM, AVG *
2) COUNT, SUM
3) MAX, MIN
4) AVG, MAX, MIN
5) Все выше перечисленные
6) в нем отсутствуют зависимости ключевых атрибутов (или атрибутов составного ключа) от не ключевых атрибутов
7) Нет правильного варианта
96. Назовите оператор языка SQL для создания запросов на выбор данных
1) Select
2) Distinct
3) Where
4) Having
5) Create
97. Назовите оператор команды Select, который обеспечивает возможность устранения избыточных значений.
1) Order by
2) Distinct
3) Where
4) Having
5) Create
98. Назовите предложение команды Select, которая позволяет производить выборку данных, в зависимости от истинности поставленного условия.
1) Order by
2) Distinct
3) Where
4) Having
5) Create
99. Назовите команду, которая определяет группу значений в поле в терминах другого поля и применяет к ней агрегатную функцию.
1) Order by
2) Distinct
3) Where
4) Having
5) Group by
100. Назовите предложение команды Select, которое позволяет устанавливать условия для агрегатных функций
1) Order by
2) Distinct
3) Where
4) Having
5) Group by

МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ В ФОРМЕ ЭКЗАМЕНА

Инструкция
Внимательно прочитайте задание.
На выполнение экзаменационной работы отводится 40 минут.
Работа содержит задания по разработке программного обеспечения с использованием инструментальных средств. Все документы должны быть выполнены максимально точно по представленному образцу.
Результаты выполнения экзаменационного задания оформляются в виде отдельных файлов соответствующих форматов и сохраняются на ПК. Для проверки и оценки результаты выполнения экзаменационного задания предоставляются комиссии в электронном виде.
В процессе выполнения задания вы можете воспользоваться методическими пособиями, предоставленной учебной литературой и информацией сети Интернет.
Вопросы к экзамену:
1. Современные технологии разработки баз данных
2. Основные этапы проектирования баз данных
3. Инфологическое (концептуальное) моделирование предметной области.
4. Основы теории реляционных баз данных.
5. Проектирование реляционных баз данных.
6. Целостность баз данных.
7. Безопасность данных.
8. Физическая организация базы данных
9. Организация ввода данных в базу данных.
10. Табличные языки запросов.
11. Язык SQL
12. Вывод информации из баз данных
13. Разработка приложений
14. Распределенные БД
15. Объектно- ориентированные базы данных
16. Этапы проектирования баз данных. Проектирование элементов защиты.
17. Клиент- серверная архитектура: аспекты безопасности.
18. Классификация угроз информационной безопасности систем управления базами данных.
19. Угрозы нарушения целостности СУБД.
20. Угрозы нарушения конфиденциальности
21. Методы и механизмы обеспечения доступности баз данных иСУБД
22. Угрозы распределенным системам управления базами данных.
23. Оперативное администрирование базы данных
24. Политика безопасности.
25. Критерии защищенности систем управления баз данных

ПРАКТИЧЕСКИЕ ЗАДАНИЯ К ЭКЗАМЕНУ
Задание 1. С помощью языка запросов SQL (в базе данных Студенты). Выбрать из базы данных сведения о студентах, которые имеют телефон. Результирующая таблица запроса должна иметь следующую
структуру: | ФАМ | ИМЯ | ОТЧ | ТЕЛ |. Запрос сохранить с именем ТЕЛЕФОНЫ.
Условия выполнения задания:
1. Место (время) выполнения задания: Лаборатория «Технологии разработки баз данных»
2. Максимальное время выполнения задания:30 мин./час.
3. Вы можете воспользоваться: компьютерами (рабочими станциями), серверами, локальными сетями, выходами в глобальную сеть, проекторами, экранами, комплектами учебно-методической документации. Требования охраны труда: Инструктаж по технике безопасности.
Оборудование: Литература для экзаменующихся (справочная, методическая)
Средства обучения:
· раздаточный материал: комплект учебно-методической документации.
· технические средства (оборудование): листок бумаги, ручка
Требования к результатам работы: SQL запрос базы данных «Студенты»
Задание № 2
С помощью языка запросов SQL (в базе данных Студенты). Выбрать из базы данных сведения об экзаменационных оценках студентов. В результирующей таблице запроса записи рассортировать в алфавитном порядке значений поля ФАМ. Результирующая таблица запроса должна иметь следующую структуру: | НОМ_ЗАЧ | ФАМ | ИМЯ | ОТЧ | ТРУП | СЕМЕСТР | ОЦ_МА-ТЕМ | ОЦ_ИНФ | ОЦ_ЭКОН |.
Запрос сохранить с именем ОЦЕНКИ.
Условия выполнения задания:
1. Место (время) выполнения задания: Лаборатория «Технологии разработки баз данных»
2. Максимальное время выполнения задания:30 мин./час.
3. Вы можете воспользоваться: компьютерами (рабочими станциями), серверами, локальными сетями, выходами в глобальную сеть, проекторами, экранами, комплектами учебно-методической документации. Требования охраны труда: Инструктаж по технике безопасности.
Оборудование: Литература для экзаменующихся (справочная, методическая)
Средства обучения:
· раздаточный материал: комплект учебно-методической документации.
· технические средства (оборудование): листок бумаги, ручка
Требования к результатам работы: SQL запрос базы данных «Студенты»
Задание № 3
С помощью языка запросов SQL (в базе данных Студенты). Выбрать из базы данных сведения об экзаменационных оценках студентов группы ФН. Результирующая таблица запроса должна иметь следующую структуру: | ФАМ | ИМЯ | ОТЧ | ТРУП | СЕМЕСТР | ОЦ_МАТЕМ | ОЦ_ИНФ | ОЦ_ЭКОН |. Запрос сохранить с именем ОЦЕНКИ ФН.
Условия выполнения задания:
1. Место (время) выполнения задания: Лаборатория «Технологии разработки баз данных»
2. Максимальное время выполнения задания:30 мин./час.
3. Вы можете воспользоваться: компьютерами (рабочими станциями), серверами, локальными сетями, выходами в глобальную сеть, проекторами, экранами, комплектами учебно-методической документации. Требования охраны труда: Инструктаж по технике безопасности.
Оборудование: Литература для экзаменующихся (справочная, методическая)
Средства обучения:
· раздаточный материал: комплект учебно-методической документации.
· технические средства (оборудование): листок бумаги, ручка
Требования к результатам работы: SQL запрос базы данных «Студенты»
Задание № 4
С помощью языка запросов SQL (в базе данных Студенты). Выбрать из базы данных сведения о студентах, фамилии которых начинаются с буквы Р. Результирующая таблица запроса должна иметь следующую структуру: | ФАМ ИМЯ | ОТЧ | НОМ_ЗАЧ. Запрос сохранить с именем ФАМИЛИЯ Р.
Условия выполнения задания:
1. Место (время) выполнения задания: Лаборатория «Технологии разработки баз данных»
2. Максимальное время выполнения задания:30 мин./час.
3. Вы можете воспользоваться: компьютерами (рабочими станциями), серверами, локальными сетями, выходами в глобальную сеть, проекторами, экранами, комплектами учебно-методической документации. Требования охраны труда: Инструктаж по технике безопасности.
Оборудование: Литература для экзаменующихся (справочная, методическая)
Средства обучения:
· раздаточный материал: комплект учебно-методической документации.
· технические средства (оборудование): листок бумаги, ручка
Требования к результатам работы: SQL запрос базы данных «Студенты»
Задание № 5
С помощью языка запросов SQL (в базе данных Студенты). Выбрать из базы данных сведения об экзаменационных оценках студентов. В результирующей таблице запроса записи рассортировать в алфавитном порядке значений поля ФАМ. Результирующая таблица запроса должна иметь следующую структуру: | НОМ_ЗАЧ | ФАМ | ИМЯ | ОТЧ | ТРУП | СЕМЕСТР | ОЦ_МА-ТЕМ | ОЦ_ИНФ | ОЦ_ЭКОН |. Запрос сохранить с именем ОЦЕНКИ.
Условия выполнения задания:
1. Место (время) выполнения задания: Лаборатория «Технологии разработки баз данных»
2. Максимальное время выполнения задания:30 мин./час.
3. Вы можете воспользоваться: компьютерами (рабочими станциями), серверами, локальными сетями, выходами в глобальную сеть, проекторами, экранами, комплектами учебно-методической документации. Требования охраны труда: Инструктаж по технике безопасности.
Оборудование: Литература для экзаменующихся (справочная, методическая)
Средства обучения:
· раздаточный материал: комплект учебно-методической документации.
· технические средства (оборудование): листок бумаги, ручка
Требования к результатам работы: SQL запрос базы данных «Студенты»
Задание № 6
На предприятии имеются основные средства, введённые в эксплуатацию и закреплённые за материальноответственными лицами, коими являются сотрудники предприятия. База данных по учёту материальных средств на предприятии включает следующие данные:
· № подразделения. Категория подразделения (производственное, администрация, вспомогательное).
· Наименование подразделения (механический цех, сборочный цех, бухгалтерия, цех ширпотреба).
· Руководитель подразделения.
· Табельный номер материально-ответственного лица.
· ФИО материально-ответственного лица.
-Должность материально-ответственного лица.
· Инвентарный номер основного средства.
· Наименование основного средства.
· Стоимость основного средства.
· Дата ввода в эксплуатацию.
Условия выполнения задания:
1. Место (время) выполнения задания: Лаборатория «Технологии разработки баз данных»
2. Максимальное время выполнения задания:30 мин./час.
3. Вы можете воспользоваться: компьютерами (рабочими станциями), серверами, локальными сетями, выходами в глобальную сеть, проекторами, экранами, комплектами учебно-методической документации. Требования охраны труда: Инструктаж по технике безопасности.
Оборудование: Литература для экзаменующихся (справочная, методическая)
Средства обучения:
· раздаточный материал: комплект учебно-методической документации.
· технические средства (оборудование): листок бумаги, ручка
Требования к результатам работы: База данных
Задание №7
На предприятии работают некоторые сотрудники, которые участвуют в различных мероприятиях. За участие в мероприятиях сотрудники получают премию. База данных по учету участия сотрудников в мероприятиях включает следующие данные:
· Табельный номер сотрудника.
· ФИО сотрудника.
· Должность сотрудника.
· Телефон сотрудника.
· Оклад сотрудника.
· Название мероприятий.
· Дата проведения мероприятий.
· Размер премии, которую получает сотрудник за участие в том или ином мероприятии.
Условия выполнения задания:
1. Место (время) выполнения задания: Лаборатория «Технологии разработки баз данных»
2. Максимальное время выполнения задания:30 мин./час.
3. Вы можете воспользоваться: компьютерами (рабочими станциями), серверами, локальными сетями, выходами в глобальную сеть, проекторами, экранами, комплектами учебно-методической документации.
Требования охраны труда: Инструктаж по технике безопасности.
Оборудование: Литература для экзаменующихся (справочная, методическая)
Средства обучения:
· раздаточный материал: комплект учебно-методической документации.
· технические средства (оборудование): листок бумаги, ручка
Требования к результатам работы: База данных
Задание №8
На предприятии имеется несколько подразделений. В каждом из них работают некоторые сотрудники. База данных по учёту работы сотрудников включает следующие данные:
-Табельный номер сотрудника.
· ФИО сотрудника.
· Должность сотрудника.
· Название подразделения, в котором работает сотрудник.
· Оклад сотрудника.
Условия выполнения задания:
1. Место (время) выполнения задания: Лаборатория «Технологии разработки баз данных»
2. Максимальное время выполнения задания:30 мин./час.
3. Вы можете воспользоваться: компьютерами (рабочими станциями), серверами, локальными сетями, выходами в глобальную сеть, проекторами, экранами, комплектами учебно-методической документации. Требования охраны труда: Инструктаж по технике безопасности.
Оборудование: Литература для экзаменующихся (справочная, методическая)
Средства обучения:
· раздаточный материал: комплект учебно-методической документации.
· технические средства (оборудование): листок бумаги, ручка
Требования к результатам работы: База данных
Задание № 9
В библиотеке учебного заведения имеется несколько видов обслуживания: читальный зал, ночной абонемент, дневной абонемент. Выдача книг регистрируется в формуляре, где указывается:
· ФИО студента.
· Группа студента.
· Адрес студента.
-Название выданной книги.
· Автор книги.
· Цена книги.
· Год издания книги.
· Дата выдачи книги.
· Дата возврата книги.
· Признак «возвращено
Условия выполнения задания:
1. Место (время) выполнения задания: Лаборатория «Технологии разработки баз данных»
2. Максимальное время выполнения задания:30 мин./час.
3. Вы можете воспользоваться: компьютерами (рабочими станциями), серверами, локальными сетями, выходами в глобальную сеть, проекторами, экранами, комплектами учебно-методической документации. Требования охраны труда: Инструктаж по технике безопасности.
Оборудование: Литература для экзаменующихся (справочная, методическая)
Средства обучения:
· раздаточный материал: комплект учебно-методической документации.
· технические средства (оборудование): листок бумаги, ручка
Требования к результатам работы: База данных
Задание № 10
Описать структуру таблиц. Определить самостоятельно типы данных, ключевые поля для каждой из создаваемых таблиц. После создания таблиц с заданной структурой, установить постоянные связи между таблицами, которые будут поддерживаться при создании запросов, форм и отчетов. Установить параметры целостности БД. Реализовать спроектированную БД в СУБД MySQL.
Условия выполнения задания:
1. Место (время) выполнения задания: Лаборатория «Технологии разработки баз данных»
2. Максимальное время выполнения задания:30 мин./час.
3. Вы можете воспользоваться: компьютерами (рабочими станциями), серверами, локальными сетями, выходами в глобальную сеть, проекторами, экранами, комплектами учебно-методической документации. Требования охраны труда: Инструктаж по технике безопасности.
Оборудование: Литература для экзаменующихся (справочная, методическая)
Средства обучения:
· раздаточный материал: комплект учебно-методической документации.
· технические средства (оборудование): листок бумаги, ручка
[bookmark: экзаменационные_материалы]
ЭКЗАМЕНАЦИОННЫЕ МАТЕРИАЛЫ
[bookmark: для_итогового_контроля_профессион_d61a54]ДЛЯ ИТОГОВОГО КОНТРОЛЯ ПРОФЕССИОНАЛЬНОГО МОДУЛЯ

[bookmark: билет_1]ВАРИАНТ № 1
[bookmark: вопрос_1_теоретический]Вопрос 1 (Теоретический):
Раскройте понятие "база данных". Какие типы баз данных существуют? Опишите архитектуру и основные компоненты СУБД.
[bookmark: развернутый_ответ]Развернутый ответ:
База данных (Database) — это организованное хранилище структурированных данных, предназначенное для эффективного хранения, поиска, обновления и удаления информации. Управлением БД занимается специальное программное обеспечение — система управления базами данных (СУБД).
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ БД:
1. Персистентность — данные сохраняются на диске и не теряются при отключении
2. Структурированность — данные организованы в определённом формате
3. Целостность — гарантия корректности и непротиворечивости данных
4. Конфиденциальность — защита данных от несанкционированного доступа
5. Доступность — данные доступны авторизованным пользователям
6. Масштабируемость — возможность работать с большими объёмами данных

ТИПЫ БАЗ ДАННЫХ:
1. РЕЛЯЦИОННЫЕ БД (Relational Database)
Описание: Данные организованы в таблицы с рядами и столбцами (табличная модель).
Структура:
Таблица: Студенты
┌────┬──────────┬──────────┬───────────┐
│ ID │ Имя │ Фамилия │ Средний балл│
├────┼──────────┼──────────┼───────────┤
│ 1 │ Иван │ Иванов │ 4.5 │
│ 2 │ Мария │ Петрова │ 4.8 │
│ 3 │ Петр │ Сидоров │ 3.9 │
└────┴──────────┴──────────┴───────────┘
Преимущества:
· ✓ Простая структура
· ✓ Мощный язык запросов (SQL)
· ✓ ACID гарантии
· ✓ Хорошо масштабируется для структурированных данных
Недостатки:
· ✗ Жёсткая схема
· ✗ Может быть медленнее для больших неструктурированных данных
· ✗ Сложно масштабировать горизонтально
Примеры: PostgreSQL, MySQL, Oracle, SQL Server, MariaDB

2. НЕРЕЛЯЦИОННЫЕ БД (NoSQL)
Документо-ориентированные (Document-based):
{
"_id": 1,
"name": "Иван Иванов",
"age": 25,
"email": "ivan@example.com",
"courses": ["Python", "Java", "SQL"],
"address": {
"city": "Москва",
"street": "ул. Пушкина"
}
}
Примеры: MongoDB, CouchDB, Firebase
Преимущества:
· ✓ Гибкая схема
· ✓ Хорошо подходит для неструктурированных данных
· ✓ Горизонтальное масштабирование
· ✓ Высокая производительность чтения
Недостатки:
· ✗ Нет ACID гарантий (BASE модель)
· ✗ Избыточность данных
· ✗ Менее мощный язык запросов

Ключ-значение (Key-Value):
Структура:
KEY VALUE
user:1001 {"name": "Иван", "age": 25}
user:1002 {"name": "Мария", "age": 28}
session:abc123 {"user_id": 1001, "login_time": "14:30"}
Примеры: Redis, Memcached
Использование: Кэширование, сессии, очереди

Графовые (Graph):
Структура:
[Пользователь]
|
[Подписывается]
|
[Пользователь]
|
[Нравится]
|
[Пост]
|
[Комментарий]
Примеры: Neo4j, ArangoDB
Использование: Социальные сети, рекомендации, логистика

Временные ряды (Time-series):
Примеры: InfluxDB, Prometheus, TimescaleDB
Использование: Мониторинг, аналитика, метрики

Полнотекстовый поиск (Search Engine):
Примеры: Elasticsearch, Solr
Использование: Поиск, аналитика, логирование

СРАВНИТЕЛЬНАЯ ТАБЛИЦА ТИПОВ БД:
	Аспект
	Реляционная
	Документная
	Ключ-значение
	Графовая

	Структура
	Таблицы
	JSON/BSON
	Ключи и значения
	Узлы и рёбра

	Гибкость
	Жёсткая
	Гибкая
	Очень гибкая
	Гибкая

	ACID
	Да
	Частично
	Нет
	Частично

	Масштабирование
	Вертикальное
	Горизонтальное
	Горизонтальное
	Горизонтальное

	Язык запросов
	SQL
	JavaScript/Python
	API
	Cypher

	Производительность
	Хорошая
	Отличная для чтения
	Отличная
	Отличная для графов

АРХИТЕКТУРА СУБД:
┌───┐
│ ПРИЛОЖЕНИЕ / ПОЛЬЗОВАТЕЛЬ │
└───┘
↓
┌───┐
│ API СУБД (SQL, API запросы) │
└───┘
↓
┌───┐
│ ОПТИМИЗАТОР ЗАПРОСОВ (Query Optimizer) │
│ (Выбирает оптимальный путь выполнения) │
└───┘
↓
┌───┐
│ ПАРСЕР И КОМПИЛЯТОР ЗАПРОСОВ │
│ (Разбор синтаксиса и построение плана) │
└───┘
↓
┌───┐
│ ТРАНЗАКЦИОННЫЙ ДВИЖОК │
│ (Управление транзакциями, ACID) │
└───┘
↓
┌───┐
│ СИСТЕМА КЭШИРОВАНИЯ │
│ (Buffer Pool, Page Cache) │
└───┘
↓
┌───┐
│ ДВИЖОК ХРАНЕНИЯ (Storage Engine) │
│ (InnoDB, MyISAM, RocksDB) │
└───┘
↓
┌───┐
│ ФАЙЛОВАЯ СИСТЕМА │
│ (Индексы, журналы, основные данные) │
└───┘
↓
┌───┐
│ ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО (Диск) │
└───┘

ОСНОВНЫЕ КОМПОНЕНТЫ СУБД:
1. Язык определения данных (DDL)
· CREATE, ALTER, DROP
· Определение структуры БД
2. Язык манипуляции данными (DML)
· SELECT, INSERT, UPDATE, DELETE
· Работа с данными
3. Язык управления доступом (DCL)
· GRANT, REVOKE
· Контроль прав доступа
4. Язык управления транзакциями (TCL)
· COMMIT, ROLLBACK, SAVEPOINT
· Гарантия целостности
5. Индексы
· B-tree, Hash, Full-text индексы
· Ускорение поиска
6. Представления (Views)
· Виртуальные таблицы
· Простота и безопасность
7. Хранимые процедуры
· Код, хранящийся на сервере
· Снижение сетевого трафика

[bookmark: вопрос_2_практический]Вопрос 2 (Практический):
Разработайте на Python систему моделирования реляционной БД с классами для таблиц, строк, индексов и выполнения простых SQL операций. Продемонстрируйте CRUD операции, фильтрацию и сортировку.
[bookmark: решение]Решение:
"""
Система моделирования реляционной базы данных
Реализация основных компонентов СУБД
"""
from datetime import datetime
from typing import List, Dict, Any, Optional, Callable
from dataclasses import dataclass, field
import json
@dataclass
class Column:
"""Определение колонки таблицы"""
name: str
data_type: str # INT, VARCHAR, DATETIME, FLOAT, BOOLEAN
nullable: bool = True
primary_key: bool = False
unique: bool = False
default_value: Optional[Any] = None
def validate_value(self, value: Any) -> bool:
 """Проверить значение на соответствие типу"""
 if value is None:
 return self.nullable

 if self.data_type == "INT":
 return isinstance(value, int)
 elif self.data_type == "VARCHAR":
 return isinstance(value, str)
 elif self.data_type == "FLOAT":
 return isinstance(value, (int, float))
 elif self.data_type == "DATETIME":
 return isinstance(value, datetime)
 elif self.data_type == "BOOLEAN":
 return isinstance(value, bool)

 return True

@dataclass
class Row:
"""Строка таблицы"""
row_id: int
data: Dict[str, Any]
created_at: datetime = field(default_factory=datetime.now)
updated_at: datetime = field(default_factory=datetime.now)
def display(self):
 """Вывод строки"""
 print(f" ID: {self.row_id}")
 for key, value in self.data.items():
 print(f" {key}: {value}")

class Index:
"""Индекс для ускорения поиска"""
def __init__(self, name: str, column: str, index_type: str = "B-tree"):
 self.name = name
 self.column = column
 self.index_type = index_type
 self.entries: Dict[Any, List[int]] = {} # value -> [row_ids]

def add_entry(self, value: Any, row_id: int):
 """Добавить запись в индекс"""
 if value not in self.entries:
 self.entries[value] = []
 self.entries[value].append(row_id)

def remove_entry(self, value: Any, row_id: int):
 """Удалить запись из индекса"""
 if value in self.entries:
 self.entries[value].remove(row_id)
 if not self.entries[value]:
 del self.entries[value]

def search(self, value: Any) -> List[int]:
 """Поиск по индексу"""
 return self.entries.get(value, [])

def display(self):
 """Вывод информации об индексе"""
 print(f" Индекс: {self.name}")
 print(f" Колонка: {self.column}")
 print(f" Тип: {self.index_type}")
 print(f" Записей: {sum(len(v) for v in self.entries.values())}")

class Table:
"""Таблица базы данных"""
def __init__(self, name: str, columns: List[Column]):
 self.name = name
 self.columns = columns
 self.rows: Dict[int, Row] = {}
 self.next_row_id = 1
 self.indexes: Dict[str, Index] = {}
 self.created_at = datetime.now()
 self._create_primary_key_index()

def _create_primary_key_index(self):
 """Создать индекс по первичному ключу"""
 for col in self.columns:
 if col.primary_key:
 self.indexes[col.name] = Index(
 f"pk_{col.name}", col.name, "B-tree"
)

def _get_column_by_name(self, col_name: str) -> Optional[Column]:
 """Получить колонку по имени"""
 for col in self.columns:
 if col.name == col_name:
 return col
 return None

def insert(self, data: Dict[str, Any]) -> int:
 """Вставить новую строку"""
 # Валидация
 for col in self.columns:
 if col.name not in data:
 if col.default_value is not None:
 data[col.name] = col.default_value
 elif not col.nullable:
 raise ValueError(f"Колонка '{col.name}' не может быть NULL")
 else:
 if not col.validate_value(data[col.name]):
 raise TypeError(f"Неверный тип для '{col.name}'")

 # Проверка UNIQUE
 if col.unique:
 existing = self.select(
 lambda row: row.data.get(col.name) == data[col.name]
)
 if existing:
 raise ValueError(f"Значение '{data[col.name]}' уже существует в '{col.name}'")

 # Создание строки
 row_id = self.next_row_id
 self.next_row_id += 1

 row = Row(row_id, data.copy())
 self.rows[row_id] = row

 # Добавление в индексы
 for col in self.columns:
 if col.name in self.indexes:
 value = data.get(col.name)
 self.indexes[col.name].add_entry(value, row_id)

 return row_id

def select(self, filter_func: Optional[Callable] = None) -> List[Row]:
 """Выбрать строки с фильтрацией"""
 if filter_func is None:
 return list(self.rows.values())

 return [row for row in self.rows.values() if filter_func(row)]

def update(self, row_id: int, data: Dict[str, Any]):
 """Обновить строку"""
 if row_id not in self.rows:
 raise ValueError(f"Строка с ID {row_id} не найдена")

 row = self.rows[row_id]

 # Удалить из индексов старые значения
 for col in self.columns:
 if col.name in data and col.name in self.indexes:
 old_value = row.data.get(col.name)
 self.indexes[col.name].remove_entry(old_value, row_id)

 # Обновить данные
 row.data.update(data)
 row.updated_at = datetime.now()

 # Добавить в индексы новые значения
 for col in self.columns:
 if col.name in data and col.name in self.indexes:
 new_value = data[col.name]
 self.indexes[col.name].add_entry(new_value, row_id)

def delete(self, row_id: int):
 """Удалить строку"""
 if row_id not in self.rows:
 raise ValueError(f"Строка с ID {row_id} не найдена")

 row = self.rows[row_id]

 # Удалить из индексов
 for col in self.columns:
 if col.name in self.indexes:
 value = row.data.get(col.name)
 self.indexes[col.name].remove_entry(value, row_id)

 del self.rows[row_id]

def create_index(self, col_name: str, index_type: str = "B-tree"):
 """Создать индекс"""
 col = self._get_column_by_name(col_name)
 if col is None:
 raise ValueError(f"Колонка '{col_name}' не найдена")

 index = Index(f"idx_{col_name}", col_name, index_type)

 # Добавить все существующие значения
 for row in self.rows.values():
 value = row.data.get(col_name)
 index.add_entry(value, row.row_id)

 self.indexes[col_name] = index

def order_by(self, rows: List[Row], col_name: str,
 ascending: bool = True) -> List[Row]:
 """Отсортировать строки"""
 return sorted(
 rows,
 key=lambda r: r.data.get(col_name, ""),
 reverse=not ascending
)

def display_schema(self):
 """Вывод схемы таблицы"""
 print(f"\n{'─' * 70}")
 print(f"ТАБЛИЦА: {self.name}")
 print(f"{'─' * 70}")
 print(f"Колонки:")
 for col in self.columns:
 pk_marker = " [PRIMARY KEY]" if col.primary_key else ""
 null_marker = "" if col.nullable else " [NOT NULL]"
 print(f" • {col.name}: {col.data_type}{pk_marker}{null_marker}")

 print(f"\nИндексы ({len(self.indexes)}):")
 for index in self.indexes.values():
 index.display()

 print(f"\nСтрок: {len(self.rows)}")

def display_data(self):
 """Вывод всех данных"""
 print(f"\nДанные таблицы '{self.name}' ({len(self.rows)} строк):")
 if not self.rows:
 print(" (пусто)")

 for row in self.rows.values():
 row.display()

class Database:
"""База данных"""
def __init__(self, name: str):
 self.name = name
 self.tables: Dict[str, Table] = {}
 self.created_at = datetime.now()

def create_table(self, name: str, columns: List[Column]) -> Table:
 """Создать таблицу"""
 if name in self.tables:
 raise ValueError(f"Таблица '{name}' уже существует")

 table = Table(name, columns)
 self.tables[name] = table
 return table

def get_table(self, name: str) -> Optional[Table]:
 """Получить таблицу"""
 return self.tables.get(name)

def drop_table(self, name: str):
 """Удалить таблицу"""
 if name not in self.tables:
 raise ValueError(f"Таблица '{name}' не найдена")
 del self.tables[name]

def display_info(self):
 """Вывод информации о БД"""
 print(f"\n{'═' * 70}")
 print(f"БАЗА ДАННЫХ: {self.name}")
 print(f"{'═' * 70}")
 print(f"Создана: {self.created_at.strftime('%d.%m.%Y %H:%M:%S')}")
 print(f"Таблиц: {len(self.tables)}")

 for table_name, table in self.tables.items():
 print(f" • {table_name}: {len(table.rows)} строк")

[bookmark: bm_]==
[bookmark: демонстрация]ДЕМОНСТРАЦИЯ
[bookmark: bm_2]==
def main():
"""Главная функция"""
print("=" * 80)
print("СИСТЕМА МОДЕЛИРОВАНИЯ РЕЛЯЦИОННОЙ БД")
print("=" * 80)

==
СОЗДАНИЕ БД И ТАБЛИЦ
==

print("\n[ШАГ 1] Создание базы данных")
db = Database("UniversityDB")

Таблица студентов
print("[ШАГ 2] Создание таблицы 'students'")
students_columns = [
 Column("student_id", "INT", primary_key=True),
 Column("first_name", "VARCHAR"),
 Column("last_name", "VARCHAR"),
 Column("email", "VARCHAR", unique=True),
 Column("gpa", "FLOAT"),
 Column("enrolled_date", "DATETIME"),
]

students_table = db.create_table("students", students_columns)
students_table.create_index("email")
students_table.create_index("last_name")

==
ОПЕРАЦИИ CRUD - CREATE (Вставка)
==

print("\n" + "=" * 80)
print("CRUD ОПЕРАЦИИ: CREATE (INSERT)")
print("=" * 80)

print("\nВставка студентов:")

student1_id = students_table.insert({
 "student_id": 1,
 "first_name": "Иван",
 "last_name": "Иванов",
 "email": "ivan@example.com",
 "gpa": 4.5,
 "enrolled_date": datetime(2023, 9, 1)
})
print(f"✓ Студент добавлен (ID: {student1_id})")

student2_id = students_table.insert({
 "student_id": 2,
 "first_name": "Мария",
 "last_name": "Петрова",
 "email": "maria@example.com",
 "gpa": 4.8,
 "enrolled_date": datetime(2023, 9, 1)
})
print(f"✓ Студент добавлен (ID: {student2_id})")

student3_id = students_table.insert({
 "student_id": 3,
 "first_name": "Петр",
 "last_name": "Сидоров",
 "email": "petr@example.com",
 "gpa": 3.9,
 "enrolled_date": datetime(2023, 9, 15)
})
print(f"✓ Студент добавлен (ID: {student3_id})")

student4_id = students_table.insert({
 "student_id": 4,
 "first_name": "Алексей",
 "last_name": "Иванов",
 "email": "alex@example.com",
 "gpa": 3.7,
 "enrolled_date": datetime(2024, 1, 10)
})
print(f"✓ Студент добавлен (ID: {student4_id})")

==
ОПЕРАЦИИ CRUD - READ (Чтение)
==

print("\n" + "=" * 80)
print("CRUD ОПЕРАЦИИ: READ (SELECT)")
print("=" * 80)

print("\n[1] Выбрать все студенты:")
all_students = students_table.select()
students_table.display_data()

print("\n[2] Поиск студента по email (используя индекс):")
email_filter = lambda row: row.data.get("email") == "maria@example.com"
found = students_table.select(email_filter)
if found:
 print(f"✓ Найден студент:")
 found[0].display()

print("\n[3] Поиск студентов с GPA >= 4.0:")
high_gpa = students_table.select(
 lambda row: row.data.get("gpa", 0) >= 4.0
)
print(f"✓ Найдено {len(high_gpa)} студентов:")
for row in high_gpa:
 print(f" • {row.data.get('first_name')} {row.data.get('last_name')}: {row.data.get('gpa')}")

==
ОПЕРАЦИИ CRUD - UPDATE (Обновление)
==

print("\n" + "=" * 80)
print("CRUD ОПЕРАЦИИ: UPDATE")
print("=" * 80)

print("\nОбновление GPA студента с ID 1:")
print(" Было: 4.5")
students_table.update(1, {"gpa": 4.7})
print(" Стало: 4.7")
print("✓ Обновлено")

==
ОПЕРАЦИИ CRUD - DELETE (Удаление)
==

print("\n" + "=" * 80)
print("CRUD ОПЕРАЦИИ: DELETE")
print("=" * 80)

print(f"\nУдаление студента с ID 4")
print(f" Было студентов: {len(students_table.rows)}")
students_table.delete(4)
print(f" Осталось: {len(students_table.rows)}")
print("✓ Удалено")

==
СОРТИРОВКА
==

print("\n" + "=" * 80)
print("ОПЕРАЦИИ: СОРТИРОВКА (ORDER BY)")
print("=" * 80)

all_students = students_table.select()

print("\n[1] Сортировка по фамилии (возрастание):")
sorted_by_name = students_table.order_by(all_students, "last_name", True)
for row in sorted_by_name:
 print(f" • {row.data.get('last_name')} {row.data.get('first_name')}")

print("\n[2] Сортировка по GPA (убывание):")
sorted_by_gpa = students_table.order_by(all_students, "gpa", False)
for row in sorted_by_gpa:
 print(f" • {row.data.get('first_name')}: {row.data.get('gpa')}")

==
СХЕМА БД И ИНДЕКСЫ
==

print("\n" + "=" * 80)
print("ИНФОРМАЦИЯ О СХЕМЕ И ИНДЕКСАХ")
print("=" * 80)

students_table.display_schema()
db.display_info()

if name == "main":
main()

[bookmark: билет_2]ВАРИАНТ № 2
[bookmark: вопрос_1_теоретический_2]Вопрос 1 (Теоретический):
Объясните понятие "транзакция" и ACID свойства. Какие проблемы возникают при одновременном доступе? Как их решить?
[bookmark: развернутый_ответ_2]Развернутый ответ:
Транзакция — это последовательность одной или нескольких SQL операций, которые рассматриваются как единое целое и либо полностью выполняются, либо полностью откатываются.
ПРИМЕРЫ ТРАНЗАКЦИЙ:
Пример 1: Банковский перевод
BEGIN TRANSACTION;
-- Шаг 1: Снять деньги со счета А
UPDATE accounts SET balance = balance - 1000
WHERE account_id = 'A';
-- Шаг 2: Добавить деньги на счет Б
UPDATE accounts SET balance = balance + 1000
WHERE account_id = 'B';
COMMIT;
Почему нужна транзакция?
· Если операция 1 выполнится, а операция 2 не выполнится → деньги потеряются
· Транзакция гарантирует: обе выполняются или обе откатываются

ACID СВОЙСТВА:
A — ATOMICITY (Атомарность)
Определение: Транзакция либо полностью выполняется, либо полностью откатывается (no half-done transactions).
Гарантия: Нет промежуточных состояний
Пример:
Начало: счет А: 1000, счет Б: 500
После шага 1: счет А: 0 (промежуточное состояние - невидимо)
счет Б: 500 (промежуточное состояние - невидимо)
Конец: счет А: 0, счет Б: 1500 (финальное состояние)
ИЛИ при ошибке:
Начало: счет А: 1000, счет Б: 500
Откат: счет А: 1000, счет Б: 500 (вернулись к началу)

C — CONSISTENCY (Согласованность)
Определение: Транзакция переводит БД из одного согласованного состояния в другое согласованное состояние.
Гарантия: Нарушение ограничений целостности невозможно
Пример:
Ограничение: balance >= 0 (баланс не может быть отрицательным)
Попытка: UPDATE accounts SET balance = -100 WHERE id = 1
Результат: Откат транзакции (нарушение согласованности)

I — ISOLATION (Изолированность)
Определение: Одновременно выполняемые транзакции не влияют друг на друга.
Гарантия: Каждая транзакция видит только завершённые изменения других транзакций
Проблемы при отсутствии изолированности:
1. Грязное чтение (Dirty Read)
Транзакция 1: UPDATE accounts SET balance = 500 WHERE id = 1
Транзакция 2: SELECT balance FROM accounts WHERE id = 1 → видит 500
Транзакция 1: ROLLBACK
Результат: Транзакция 2 видела данные, которые не существуют!
2. Неповторяемое чтение (Non-repeatable Read)
Транзакция 1: SELECT * FROM students WHERE id = 1 → age = 20
Транзакция 2: UPDATE students SET age = 21 WHERE id = 1
Транзакция 2: COMMIT
Транзакция 1: SELECT * FROM students WHERE id = 1 → age = 21
Результат: Одна транзакция видит разные значения!
3. Фантомное чтение (Phantom Read)
Транзакция 1: SELECT COUNT(

) FROM students WHERE age > 20 → 100Транзакция 2: INSERT INTO students VALUES (..., age=25)Транзакция 2: COMMITТранзакция 1: SELECT COUNT() FROM students WHERE age > 20 → 101
Результат: Количество строк изменилось!

УРОВНИ ИЗОЛЯЦИИ:
	Уровень
	Грязное чтение
	Неповторяемое чтение
	Фантомное чтение
	Производительность

	READ UNCOMMITTED
	Да
	Да
	Да
	Очень высокая

	READ COMMITTED
	Нет
	Да
	Да
	Высокая

	REPEATABLE READ
	Нет
	Нет
	Да
	Средняя

	SERIALIZABLE
	Нет
	Нет
	Нет
	Низкая

D — DURABILITY (Долговечность)
Определение: После успешного завершения (COMMIT) транзакция, данные гарантированно сохраняются даже при сбое.
Гарантия: Данные не потеряются при крахе, отключении питания и т.д.
Механизм:
1. WAL (Write-Ahead Logging)
· Перед записью в БД, операция записывается в журнал
· При крахе, журнал читается для восстановления
2. Синхронизация с диском
· Данные пишутся на диск (не только в RAM)
· Диск более надёжен чем RAM
3. Резервные копии
· Регулярные бэкапы
· Репликация на другие серверы

БЛОКИРОВКИ (Locking) — РЕШЕНИЕ ДЛЯ ИЗОЛЯЦИИ:
1. Пессимистичные блокировки (Pessimistic Locking)
Идея: Заблокировать данные перед изменением
BEGIN TRANSACTION;
-- Получить X-lock (exclusive lock)
SELECT * FROM accounts WHERE id = 1 FOR UPDATE;
-- Теперь другие транзакции не могут читать или изменять эту строку
UPDATE accounts SET balance = 1000 WHERE id = 1;
COMMIT;
Типы блокировок:
· Shared Lock (S-lock) — блокировка на чтение
· Exclusive Lock (X-lock) — блокировка на изменение
· Intent Lock — сигнал намерения
· Deadlock — ситуация когда две транзакции ждут друг друга

2. Оптимистичные блокировки (Optimistic Locking)
Идея: Не блокировать, а проверить перед сохранением
-- Версия 1: Добавить колонку version
ALTER TABLE accounts ADD COLUMN version INT DEFAULT 1;
-- При чтении получить версию
SELECT balance, version FROM accounts WHERE id = 1;
-- При обновлении проверить версию
UPDATE accounts
SET balance = 1000, version = version + 1
WHERE id = 1 AND version = 1;
-- Если версия не совпадает, обновление не происходит

[bookmark: вопрос_2_практический_2]Вопрос 2 (Практический):
Разработайте систему управления банковскими операциями на Python с поддержкой ACID свойств, блокировок, откатом транзакций и обнаружением дедлоков. Реализуйте несколько сценариев с проблемами конкурентности.
[bookmark: решение_2]Решение:
"""
Система управления транзакциями
Реализация ACID свойств и обработка конкурентности
"""
from datetime import datetime
from typing import Dict, List, Optional, Any
from enum import Enum
from dataclasses import dataclass, field
import threading
import time
class LockType(Enum):
"""Типы блокировок"""
SHARED = "Shared (Read)"
EXCLUSIVE = "Exclusive (Write)"
class TransactionState(Enum):
"""Состояния транзакции"""
ACTIVE = "Активна"
PREPARING = "Подготовка"
COMMITTED = "Завершена"
ABORTED = "Откачена"
@dataclass
class Account:
"""Банковский счет"""
account_id: str
owner: str
balance: float
version: int = 1
created_at: datetime = field(default_factory=datetime.now)
def display(self):
 """Вывод информации"""
 print(f" Счет: {self.account_id}")
 print(f" Владелец: {self.owner}")
 print(f" Баланс: {self.balance} руб")
 print(f" Версия: {self.version}")

@dataclass
class Lock:
"""Блокировка ресурса"""
resource_id: str
transaction_id: str
lock_type: LockType
acquired_at: datetime = field(default_factory=datetime.now)
def display(self):
 """Вывод информации"""
 print(f" {self.resource_id}: {self.lock_type.value} "
 f"(tx: {self.transaction_id})")

class Transaction:
"""Транзакция"""
def __init__(self, transaction_id: str):
 self.transaction_id = transaction_id
 self.state = TransactionState.ACTIVE
 self.operations: List[Dict] = []
 self.locks: List[Lock] = []
 self.read_set: Dict[str, float] = {} # Для оптимистичного лока
 self.write_set: Dict[str, float] = {}
 self.start_time = datetime.now()
 self.end_time: Optional[datetime] = None

def add_operation(self, operation_type: str, resource_id: str,
 value: Any, lock_type: LockType):
 """Добавить операцию"""
 self.operations.append({
 'type': operation_type,
 'resource_id': resource_id,
 'value': value,
 'lock_type': lock_type,
 'timestamp': datetime.now()
 })

def acquire_lock(self, resource_id: str, lock_type: LockType):
 """Получить блокировку"""
 lock = Lock(resource_id, self.transaction_id, lock_type)
 self.locks.append(lock)

def release_locks(self):
 """Освободить все блокировки"""
 self.locks.clear()

def commit(self):
 """Завершить транзакцию"""
 self.state = TransactionState.COMMITTED
 self.end_time = datetime.now()
 self.release_locks()

def rollback(self):
 """Откатить транзакцию"""
 self.state = TransactionState.ABORTED
 self.end_time = datetime.now()
 self.release_locks()
 self.operations.clear()

def get_duration(self) -> float:
 """Получить длительность транзакции в миллисекундах"""
 end = self.end_time or datetime.now()
 return (end - self.start_time).total_seconds() * 1000

def display(self):
 """Вывод информации"""
 print(f"\n Транзакция: {self.transaction_id}")
 print(f" Статус: {self.state.value}")
 print(f" Начало: {self.start_time.strftime('%H:%M:%S.%f')[:-3]}")
 if self.end_time:
 print(f" Конец: {self.end_time.strftime('%H:%M:%S.%f')[:-3]}")
 print(f" Длительность: {self.get_duration():.1f} мс")
 print(f" Операций: {len(self.operations)}")
 print(f" Блокировок: {len(self.locks)}")

class BankingSystem:
"""Система управления банковскими операциями"""
def __init__(self):
 self.accounts: Dict[str, Account] = {}
 self.transactions: Dict[str, Transaction] = {}
 self.locks: Dict[str, Lock] = {}
 self.transaction_counter = 0
 self.lock = threading.Lock()
 self.deadlock_detected = False

def create_account(self, account_id: str, owner: str, balance: float):
 """Создать счет"""
 if account_id in self.accounts:
 raise ValueError(f"Счет {account_id} уже существует")

 self.accounts[account_id] = Account(account_id, owner, balance)

def acquire_lock(self, transaction: Transaction, resource_id: str,
 lock_type: LockType, timeout: float = 5.0) -> bool:
 """Получить блокировку с проверкой дедлока"""
 start_time = time.time()

 while time.time() - start_time < timeout:
 with self.lock:
 # Проверить существующие блокировки
 if resource_id in self.locks:
 existing_lock = self.locks[resource_id]

 # Если уже есть exclusive lock
 if existing_lock.lock_type == LockType.EXCLUSIVE:
 if existing_lock.transaction_id == transaction.transaction_id:
 return True # Уже есть наша блокировка
 # Ждём
 continue

 # Если нужна exclusive lock, но есть shared
 if lock_type == LockType.EXCLUSIVE:
 continue # Ждём

 # Получить блокировку
 self.locks[resource_id] = Lock(resource_id,
 transaction.transaction_id,
 lock_type)
 transaction.acquire_lock(resource_id, lock_type)
 return True

 time.sleep(0.1)

 self.deadlock_detected = True
 return False

def release_locks(self, transaction: Transaction):
 """Освободить блокировки"""
 with self.lock:
 for lock in transaction.locks:
 if self.locks.get(lock.resource_id) == lock:
 del self.locks[lock.resource_id]

def begin_transaction(self) -> Transaction:
 """Начать транзакцию"""
 self.transaction_counter += 1
 tx_id = f"TX-{self.transaction_counter:05d}"

 transaction = Transaction(tx_id)
 self.transactions[tx_id] = transaction
 return transaction

def read_account(self, transaction: Transaction, account_id: str) -> float:
 """Прочитать баланс (с Shared lock)"""
 if not self.acquire_lock(transaction, account_id, LockType.SHARED):
 raise RuntimeError("Не удалось получить блокировку (возможен дедлок)")

 if account_id not in self.accounts:
 raise ValueError(f"Счет {account_id} не найден")

 balance = self.accounts[account_id].balance
 transaction.add_operation("READ", account_id, balance, LockType.SHARED)
 transaction.read_set[account_id] = self.accounts[account_id].version

 return balance

def write_account(self, transaction: Transaction, account_id: str,
 new_balance: float):
 """Изменить баланс (с Exclusive lock)"""
 if not self.acquire_lock(transaction, account_id, LockType.EXCLUSIVE):
 raise RuntimeError("Не удалось получить блокировку (возможен дедлок)")

 if account_id not in self.accounts:
 raise ValueError(f"Счет {account_id} не найден")

 account = self.accounts[account_id]

 # ACID проверки
 if new_balance < 0:
 raise ValueError("Баланс не может быть отрицательным (нарушение CONSISTENCY)")

 account.balance = new_balance
 account.version += 1

 transaction.add_operation("WRITE", account_id, new_balance, LockType.EXCLUSIVE)
 transaction.write_set[account_id] = new_balance

def transfer(self, transaction: Transaction, from_account: str,
 to_account: str, amount: float):
 """Перевод денег (ATOMICITY гарантия)"""
 try:
 # Снять деньги
 from_balance = self.read_account(transaction, from_account)

 if from_balance < amount:
 raise ValueError("Недостаточно средств")

 self.write_account(transaction, from_account, from_balance - amount)

 # Добавить деньги
 to_balance = self.read_account(transaction, to_account)
 self.write_account(transaction, to_account, to_balance + amount)

 # Если всё OK, завершить
 transaction.commit()
 self.release_locks(transaction)
 return True

 except Exception as e:
 # При ошибке откатить всё (ATOMICITY)
 transaction.rollback()
 self.release_locks(transaction)
 raise e

def display_accounts(self):
 """Вывод всех счетов"""
 print(f"\n{'─' * 70}")
 print("СЧЕТА В СИСТЕМЕ")
 print(f"{'─' * 70}")
 for account in self.accounts.values():
 account.display()

def display_transactions(self):
 """Вывод всех транзакций"""
 print(f"\n{'─' * 70}")
 print("ВЫПОЛНЕННЫЕ ТРАНЗАКЦИИ")
 print(f"{'─' * 70}")
 for tx in self.transactions.values():
 tx.display()

def display_locks(self):
 """Вывод активных блокировок"""
 print(f"\n Активные блокировки ({len(self.locks)}):")
 if not self.locks:
 print(" (нет)")
 for lock in self.locks.values():
 lock.display()

[bookmark: bm_3]==
[bookmark: демонстрация_2]ДЕМОНСТРАЦИЯ
[bookmark: bm_4]==
def main():
"""Главная функция"""
print("=" * 80)
print("СИСТЕМА УПРАВЛЕНИЯ ТРАНЗАКЦИЯМИ")
print("ACID свойства и обработка конкурентности")
print("=" * 80)

system = BankingSystem()

==
СОЗДАНИЕ СЧЕТОВ
==

print("\n[ШАГ 1] Создание счетов")
system.create_account("ACC001", "Иван Петров", 10000)
system.create_account("ACC002", "Мария Сидорова", 5000)
system.create_account("ACC003", "Петр Иванов", 3000)

print("✓ Счета созданы")
system.display_accounts()

==
СЦЕНАРИЙ 1: УСПЕШНЫЙ ПЕРЕВОД (ACID ГАРАНТИИ)
==

print("\n" + "=" * 80)
print("СЦЕНАРИЙ 1: УСПЕШНЫЙ ПЕРЕВОД (ATOMICITY)")
print("=" * 80)

print("\nПеревод 1000 руб от Иванова Петровой")

tx1 = system.begin_transaction()
try:
 system.transfer(tx1, "ACC001", "ACC002", 1000)
 print("✓ Перевод успешен")
except Exception as e:
 print(f"✗ Ошибка: {e}")

system.display_accounts()

==
СЦЕНАРИЙ 2: ОТКАТ ПРИ ОШИБКЕ (ATOMICITY)
==

print("\n" + "=" * 80)
print("СЦЕНАРИЙ 2: ОТКАТ ПРИ ОШИБКЕ (ATOMICITY)")
print("=" * 80)

print("\nПопытка перевода 20000 руб (больше чем есть)")
print(f" Текущий баланс Иванова: {system.accounts['ACC001'].balance} руб")

tx2 = system.begin_transaction()
try:
 system.transfer(tx2, "ACC001", "ACC002", 20000)
 print("✓ Перевод успешен")
except ValueError as e:
 print(f"✗ Ошибка: {e}")
 print(f" Транзакция откачена (ROLLBACK)")

print(f" Баланс после отката: {system.accounts['ACC001'].balance} руб (восстановлен)")

==
СЦЕНАРИЙ 3: ПРОВЕРКА CONSISTENCY
==

print("\n" + "=" * 80)
print("СЦЕНАРИЙ 3: CONSISTENCY (Проверка согласованности)")
print("=" * 80)

Вычислить общую сумму
total_before = sum(acc.balance for acc in system.accounts.values())
print(f"\nОбщая сумма всех счетов (ДО): {total_before} руб")

print("Выполнение нескольких переводов...")
tx3 = system.begin_transaction()
try:
 system.transfer(tx3, "ACC002", "ACC003", 500)
except Exception as e:
 print(f"Ошибка: {e}")

total_after = sum(acc.balance for acc in system.accounts.values())
print(f"Общая сумма всех счетов (ПОСЛЕ): {total_after} руб")
print(f"✓ Сумма сохранена (CONSISTENCY): {total_before == total_after}")

==
СЦЕНАРИЙ 4: БЛОКИРОВКИ
==

print("\n" + "=" * 80)
print("СЦЕНАРИЙ 4: БЛОКИРОВКИ (LOCKING)")
print("=" * 80)

print("\nТранзакция получает блокировку на счет:")
tx4 = system.begin_transaction()

print(" Получение Shared lock для чтения...")
balance = system.read_account(tx4, "ACC001")
print(f" ✓ Прочитан баланс: {balance} руб")

system.display_locks()

print("\nПолучение Exclusive lock для записи...")
system.write_account(tx4, "ACC001", 12000)
print(" ✓ Баланс изменён")

system.display_locks()

tx4.commit()
system.release_locks(tx4)
print("✓ Транзакция завершена, блокировки освобождены")

==
ИТОГОВАЯ ИНФОРМАЦИЯ
==

system.display_accounts()
system.display_transactions()

print("\n" + "=" * 80)
print("SUMMARY ACID PROPERTIES")
print("=" * 80)

summary = """

ATOMICITY (Атомарность):
✓ Либо все операции выполняются, либо откатываются
✓ Промежуточные состояния невидимы для других транзакций
CONSISTENCY (Согласованность):
✓ Общая сумма денег сохраняется
✓ Ограничения целостности не нарушаются
ISOLATION (Изолированность):
✓ Блокировки предотвращают конфликты
✓ Каждая транзакция видит консистентное состояние
DURABILITY (Долговечность):
✓ После COMMIT данные безопасны
✓ При откате (ROLLBACK) вернёмся в исходное состояние
"""
print(summary)

if name == "main":
main()

[bookmark: билет_3]ВАРИАНТ № 3
[bookmark: вопрос_1_теоретический_3]Вопрос 1 (Теоретический):
Объясните понятие "нормализация баз данных". Какие нормальные формы существуют? Приведите примеры денормализации.
[bookmark: развернутый_ответ_3]Развернутый ответ:
Нормализация БД — это процесс организации данных в таблицах с целью минимизации дублирования данных и обеспечения целостности данных.
ПРОБЛЕМЫ БЕЗ НОРМАЛИЗАЦИИ:
Таблица "Студенты и Оценки" (ненормализованная):
┌─────┬──────────┬──────────┬──────────────────┬──────────────────┐
│ ID │ Имя │ Фамилия │ Курсы │ Оценки │
├─────┼──────────┼──────────┼──────────────────┼──────────────────┤
│ 1 │ Иван │ Петров │ Python, Java │ 5, 4 │
│ 2 │ Мария │ Сидорова │ Python, C++ │ 5, 4 │
│ 3 │ Петр │ Иванов │ Java, C++, SQL │ 4, 5, 5 │
└─────┴──────────┴──────────┴──────────────────┴──────────────────┘
ПРОБЛЕМЫ:
1. Аномалия обновления (Update Anomaly)
· Если изменить оценку по Python с 5 на 4 для Ивана, нужно обновить сложную строку
· Может привести к ошибкам
2. Аномалия удаления (Deletion Anomaly)
· Если удалить Петра, потеряем все данные о курсе SQL
· Хотя SQL — ценная информация
3. Аномалия добавления (Insertion Anomaly)
· Нельзя добавить новый курс без студента
· Нельзя добавить студента без оценок
4. Дублирование данных (Data Redundancy)
· Информация о курсах повторяется для каждого студента
· Занимает лишнее место

НОРМАЛЬНЫЕ ФОРМЫ:
1NF (Первая нормальная форма)
Требование: Все значения должны быть атомарными (неделимыми)
Ненормализованная таблица:
┌─────┬──────────┬────────────────────┐
│ ID │ Имя │ Курсы (список) │
├─────┼──────────┼────────────────────┤
│ 1 │ Иван │ Python, Java │
│ 2 │ Мария │ Python, C++, Java │
└─────┴──────────┴────────────────────┘
Нормализованная таблица (1NF):
┌─────┬──────────┬──────────┐
│ ID │ Имя │ Курс │
├─────┼──────────┼──────────┤
│ 1 │ Иван │ Python │
│ 1 │ Иван │ Java │
│ 2 │ Мария │ Python │
│ 2 │ Мария │ C++ │
│ 2 │ Мария │ Java │
└─────┴──────────┴──────────┘

2NF (Вторая нормальная форма)
Требование: Таблица в 1NF + все неключевые атрибуты полностью зависят от первичного ключа
Проблема в 1NF: Если первичный ключ составной (ID, Курс), то...
┌──────┬──────────┬─────────────┬──────────────┐
│ ID │ Курс │ Имя │ Инструктор │
├──────┼──────────┼─────────────┼──────────────┤
│ 1 │ Python │ Иван │ Иван Петров │
│ 1 │ Java │ Иван │ Петр Сидоров │
│ 2 │ Python │ Мария │ Иван Петров │
└──────┴──────────┴─────────────┴──────────────┘
Проблема: Инструктор зависит только от Курса (не от ID)
· Дублирование: Иван Петров повторяется
Решение (2NF):
Таблица Студенты_Курсы:
┌────┬──────────┐
│ ID │ Курс │
├────┼──────────┤
│ 1 │ Python │
│ 1 │ Java │
│ 2 │ Python │
└────┴──────────┘
Таблица Курсы:
┌──────────┬──────────────────┐
│ Курс │ Инструктор │
├──────────┼──────────────────┤
│ Python │ Иван Петров │
│ Java │ Петр Сидоров │
└──────────┴──────────────────┘

3NF (Третья нормальная форма)
Требование: Таблица в 2NF + нет транзитивных зависимостей
Примечание: Неключевой атрибут не должен зависеть от другого неключевого атрибута
Проблемная таблица:
┌────┬──────────┬────────────┬──────────────┐
│ ID │ Имя │ Факультет │ Декан │
├────┼──────────┼────────────┼──────────────┤
│ 1 │ Иван │ Математика │ Иван Сидоров │
│ 2 │ Мария │ Физика │ Петр Петров │
│ 3 │ Петр │ Математика │ Иван Сидоров │
└────┴──────────┴────────────┴──────────────┘
Проблема: Декан зависит от Факультета (транзитивная зависимость)
· Дублирование: Иван Сидоров повторяется
Решение (3NF):
Таблица Студенты:
┌────┬──────────┬────────────┐
│ ID │ Имя │ Факультет │
├────┼──────────┼────────────┤
│ 1 │ Иван │ Математика │
│ 2 │ Мария │ Физика │
│ 3 │ Петр │ Математика │
└────┴──────────┴────────────┘
Таблица Факультеты:
┌────────────┬──────────────┐
│ Факультет │ Декан │
├────────────┼──────────────┤
│ Математика │ Иван Сидоров │
│ Физика │ Петр Петров │
└────────────┴──────────────┘

ДЕНОРМАЛИЗАЦИЯ (Denormalization)
Определение: Обратный процесс — намеренное нарушение нормализации для повышения производительности
Причины:
· Слишком много JOIN операций → медленно
· Сложные аналитические запросы
· Высокий объём чтения (конечно читаем, редко пишем)
Пример:
Оптимизированная таблица (денормализованная):
┌────┬──────────┬────────────┬──────────────┬──────────────────┐
│ ID │ Имя │ Факультет │ Декан │ Кол-во_Студентов │
├────┼──────────┼────────────┼──────────────┼──────────────────┤
│ 1 │ Иван │ Математика │ Иван Сидоров │ 150 │
│ 2 │ Мария │ Физика │ Петр Петров │ 120 │
│ 3 │ Петр │ Математика │ Иван Сидоров │ 150 │
└────┴──────────┴────────────┴──────────────┴──────────────────┘
Преимущества:
· ✓ Один запрос вместо трех JOIN
· ✓ Быстрее читать данные
Недостатки:
· ✗ При изменении Декана нужно обновить все строки факультета
· ✗ Больше места на диске
· ✗ Сложнее поддерживать консистентность

[bookmark: вопрос_2_практический_3]Вопрос 2 (Практический):
Разработайте на Python систему демонстрации нормализации БД. Покажите денормализованную таблицу, преобразуйте её в 1NF, 2NF, 3NF. Сравните производительность запросов до и после нормализации.
[bookmark: решение_3]Решение:
"""
Система демонстрации нормализации БД
От ненормализованной до 3NF
"""
from typing import List, Dict, Any
from dataclasses import dataclass
import time
@dataclass
class Student:
"""Студент"""
id: int
name: str
surname: str
courses_with_grades: str # НЕНОРМАЛИЗОВАННОЕ: "Python:5, Java:4"
@dataclass
class Course:
"""Курс"""
course_id: int
name: str
instructor: str
class DenormalizedDatabase:
"""Ненормализованная база данных (ПЛОХО)"""
def __init__(self):
 self.students = [
 Student(1, "Иван", "Петров", "Python:5, Java:4"),
 Student(2, "Мария", "Сидорова", "Python:5, C++:4, Java:4"),
 Student(3, "Петр", "Иванов", "Java:4, C++:5, SQL:5"),
]

def get_student_courses(self, student_id: int) -> List[tuple]:
 """Получить курсы студента"""
 for student in self.students:
 if student.id == student_id:
 # Нужно разбирать строку - неудобно!
 courses = []
 for course_grade in student.courses_with_grades.split(", "):
 course, grade = course_grade.split(":")
 courses.append((course, int(grade)))
 return courses
 return []

def update_instructor(self, course_name: str, new_instructor: str):
 """Обновить инструктора курса"""
 # Нельзя напрямую! Нужно парсить строки
 # ОЧЕНЬ СЛОЖНО!
 pass

def display_all(self):
 """Вывод всех студентов"""
 print("Ненормализованная таблица:")
 for student in self.students:
 print(f" {student.id}: {student.name} {student.surname}")
 print(f" Курсы: {student.courses_with_grades}")

class FirstNormalForm:
"""1NF - Первая нормальная форма (ЛУЧШЕ)"""
def __init__(self):
 # Каждое значение атомарное
 self.enrollments = [
 # (student_id, name, surname, course, grade)
 (1, "Иван", "Петров", "Python", 5),
 (1, "Иван", "Петров", "Java", 4),
 (2, "Мария", "Сидорова", "Python", 5),
 (2, "Мария", "Сидорова", "C++", 4),
 (2, "Мария", "Сидорова", "Java", 4),
 (3, "Петр", "Иванов", "Java", 4),
 (3, "Петр", "Иванов", "C++", 5),
 (3, "Петр", "Иванов", "SQL", 5),
]

def get_student_courses(self, student_id: int) -> List[tuple]:
 """Получить курсы студента"""
 courses = []
 for enrollment in self.enrollments:
 if enrollment[0] == student_id:
 courses.append((enrollment[3], enrollment[4])) # (course, grade)
 return courses

def display_all(self):
 """Вывод таблицы"""
 print("1NF таблица (Атомарные значения):")
 print("┌────────┬────────────┬──────────┬────────┬───────┐")
 print("│ ID │ Имя │ Фамилия │ Курс │ Оценка│")
 print("├────────┼────────────┼──────────┼────────┼───────┤")
 for enrollment in self.enrollments:
 print(f"│ {enrollment[0]:<6} │ {enrollment[1]:<10} │ {enrollment[2]:<8} │ {enrollment[3]:<6} │ {enrollment[4]:<5} │")
 print("└────────┴────────────┴──────────┴────────┴───────┘")

class SecondNormalForm:
"""2NF - Вторая нормальная форма (ХОРОШО)"""
def __init__(self):
 # Разделить на отдельные таблицы
 self.students = [
 (1, "Иван", "Петров"),
 (2, "Мария", "Сидорова"),
 (3, "Петр", "Иванов"),
]

 self.courses = [
 (1, "Python"),
 (2, "Java"),
 (3, "C++"),
 (4, "SQL"),
]

 self.enrollments = [
 (1, 1, 5), # (student_id, course_id, grade)
 (1, 2, 4),
 (2, 1, 5),
 (2, 3, 4),
 (2, 2, 4),
 (3, 2, 4),
 (3, 3, 5),
 (3, 4, 5),
]

def get_student_courses(self, student_id: int) -> List[tuple]:
 """Получить курсы студента"""
 courses = []
 for enrollment in self.enrollments:
 if enrollment[0] == student_id:
 course_id = enrollment[1]
 grade = enrollment[2]

 # Найти название курса
 for course in self.courses:
 if course[0] == course_id:
 courses.append((course[1], grade))
 break

 return courses

def display_all(self):
 """Вывод таблиц"""
 print("2NF таблицы (Разделённые на сущности):")

 print("\nТаблица STUDENTS:")
 print("┌────┬────────────┬──────────────┐")
 print("│ ID │ Имя │ Фамилия │")
 print("├────┼────────────┼──────────────┤")
 for student in self.students:
 print(f"│ {student[0]:<2} │ {student[1]:<10} │ {student[2]:<12} │")
 print("└────┴────────────┴──────────────┘")

 print("\nТаблица COURSES:")
 print("┌─────────────┬──────────┐")
 print("│ COURSE_ID │ NAME │")
 print("├─────────────┼──────────┤")
 for course in self.courses:
 print(f"│ {course[0]:<11} │ {course[1]:<8} │")
 print("└─────────────┴──────────┘")

 print("\nТаблица ENROLLMENTS:")
 print("┌────────────┬──────────────┬───────┐")
 print("│ STUDENT_ID │ COURSE_ID │ GRADE │")
 print("├────────────┼──────────────┼───────┤")
 for enrollment in self.enrollments:
 print(f"│ {enrollment[0]:<10} │ {enrollment[1]:<12} │ {enrollment[2]:<5} │")
 print("└────────────┴──────────────┴───────┘")

class ThirdNormalForm:
"""3NF - Третья нормальная форма (ОТЛИЧНО)"""
def __init__(self):
 self.students = [
 (1, "Иван", "Петров", 1), # (id, name, surname, faculty_id)
 (2, "Мария", "Сидорова", 1),
 (3, "Петр", "Иванов", 2),
]

 self.faculties = [
 (1, "Информатика", "Иван Сидоров"),
 (2, "Физика", "Петр Петров"),
]

 self.courses = [
 (1, "Python", 1),
 (2, "Java", 1),
 (3, "C++", 1),
 (4, "SQL", 2),
]

 self.enrollments = [
 (1, 1, 5),
 (1, 2, 4),
 (2, 1, 5),
 (2, 3, 4),
 (2, 2, 4),
 (3, 2, 4),
 (3, 3, 5),
 (3, 4, 5),
]

def get_student_courses(self, student_id: int) -> List[tuple]:
 """Получить курсы студента"""
 courses = []
 for enrollment in self.enrollments:
 if enrollment[0] == student_id:
 course_id = enrollment[1]
 grade = enrollment[2]

 for course in self.courses:
 if course[0] == course_id:
 courses.append((course[1], grade))
 break

 return courses

def update_instructor(self, faculty_id: int, new_instructor: str):
 """Обновить инструктора факультета"""
 for i, faculty in enumerate(self.faculties):
 if faculty[0] == faculty_id:
 self.faculties[i] = (faculty_id, faculty[1], new_instructor)

def display_all(self):
 """Вывод таблиц"""
 print("3NF таблицы (Оптимальная нормализация):")

 print("\nТаблица STUDENTS:")
 print("┌────┬────────────┬──────────────┬───────────────┐")
 print("│ ID │ Имя │ Фамилия │ FACULTY_ID │")
 print("├────┼────────────┼──────────────┼───────────────┤")
 for student in self.students:
 print(f"│ {student[0]:<2} │ {student[1]:<10} │ {student[2]:<12} │ {student[3]:<13} │")
 print("└────┴────────────┴──────────────┴───────────────┘")

 print("\nТаблица FACULTIES:")
 print("┌───────────────┬──────────────┬──────────────────┐")
 print("│ FACULTY_ID │ NAME │ DEAN │")
 print("├───────────────┼──────────────┼──────────────────┤")
 for faculty in self.faculties:
 print(f"│ {faculty[0]:<13} │ {faculty[1]:<12} │ {faculty[2]:<16} │")
 print("└───────────────┴──────────────┴──────────────────┘")

 print("\nТаблица COURSES:")
 print("┌──────────┬──────────┬──────────────────┐")
 print("│ COURSE_ID│ NAME │ DEPARTMENT_ID │")
 print("├──────────┼──────────┼──────────────────┤")
 for course in self.courses:
 print(f"│ {course[0]:<8} │ {course[1]:<8} │ {course[2]:<16} │")
 print("└──────────┴──────────┴──────────────────┘")

 print("\nТаблица ENROLLMENTS:")
 print("┌────────────┬──────────────┬───────┐")
 print("│ STUDENT_ID │ COURSE_ID │ GRADE │")
 print("├────────────┼──────────────┼───────┤")
 for enrollment in self.enrollments:
 print(f"│ {enrollment[0]:<10} │ {enrollment[1]:<12} │ {enrollment[2]:<5} │")
 print("└────────────┴──────────────┴───────┘")

class PerformanceComparison:
"""Сравнение производительности"""
@staticmethod
def benchmark_denormalized():
 """Бенчмарк денормализованной БД"""
 db = DenormalizedDatabase()

 start = time.time()
 for _ in range(10000):
 db.get_student_courses(1)
 elapsed = time.time() - start

 return elapsed

@staticmethod
def benchmark_1nf():
 """Бенчмарк 1NF"""
 db = FirstNormalForm()

 start = time.time()
 for _ in range(10000):
 db.get_student_courses(1)
 elapsed = time.time() - start

 return elapsed

@staticmethod
def benchmark_2nf():
 """Бенчмарк 2NF"""
 db = SecondNormalForm()

 start = time.time()
 for _ in range(10000):
 db.get_student_courses(1)
 elapsed = time.time() - start

 return elapsed

@staticmethod
def benchmark_3nf():
 """Бенчмарк 3NF"""
 db = ThirdNormalForm()

 start = time.time()
 for _ in range(10000):
 db.get_student_courses(1)
 elapsed = time.time() - start

 return elapsed

def main():
"""Главная функция"""
print("=" * 80)
print("ДЕМОНСТРАЦИЯ НОРМАЛИЗАЦИИ БД")
print("=" * 80)

==
НЕНОРМАЛИЗОВАННАЯ БД
==

print("\n" + "=" * 80)
print("НЕНОРМАЛИЗОВАННАЯ БД (ПЛОХО)")
print("=" * 80)

denormalized = DenormalizedDatabase()
denormalized.display_all()

print("\nПРОБЛЕМЫ:")
print(" ✗ Сложно парсить данные")
print(" ✗ Сложно обновлять информацию")
print(" ✗ Дублирование данных")
print(" ✗ Сложно делать запросы")

==
1NF
==

print("\n" + "=" * 80)
print("1NF - ПЕРВАЯ НОРМАЛЬНАЯ ФОРМА")
print("=" * 80)

first_nf = FirstNormalForm()
first_nf.display_all()

print("\nУЛУЧШЕНИЯ:")
print(" ✓ Атомарные значения")
print(" ✓ Проще запросы")

print("\nОСТАВШИЕСЯ ПРОБЛЕМЫ:")
print(" ✗ Дублирование данных о студентах")
print(" ✗ Сложно обновлять информацию о курсах")

==
2NF
==

print("\n" + "=" * 80)
print("2NF - ВТОРАЯ НОРМАЛЬНАЯ ФОРМА")
print("=" * 80)

second_nf = SecondNormalForm()
second_nf.display_all()

print("\nУЛУЧШЕНИЯ:")
print(" ✓ Нет дублирования студентов")
print(" ✓ Отдельная таблица для курсов")

print("\nОСТАВШИЕСЯ ПРОБЛЕМЫ:")
print(" ✗ Может быть транзитивная зависимость")

==
3NF
==

print("\n" + "=" * 80)
print("3NF - ТРЕТЬЯ НОРМАЛЬНАЯ ФОРМА")
print("=" * 80)

third_nf = ThirdNormalForm()
third_nf.display_all()

print("\nУЛУЧШЕНИЯ:")
print(" ✓ Нет транзитивных зависимостей")
print(" ✓ Легко обновлять информацию")
print(" ✓ Оптимальная структура")

print("\nПРЕИМУЩЕСТВА:")
print(" ✓ Минимизирована избыточность данных")
print(" ✓ Легко поддерживать целостность")
print(" ✓ Гибкая архитектура для расширений")

==
СРАВНЕНИЕ ПРОИЗВОДИТЕЛЬНОСТИ
==

print("\n" + "=" * 80)
print("СРАВНЕНИЕ ПРОИЗВОДИТЕЛЬНОСТИ")
print("=" * 80)

print("\nБенчмарк (10000 запросов):")

print(" Ненормализованная... ", end="", flush=True)
time_denorm = PerformanceComparison.benchmark_denormalized()
print(f"{time_denorm*1000:.2f} мс")

print(" 1NF................ ", end="", flush=True)
time_1nf = PerformanceComparison.benchmark_1nf()
print(f"{time_1nf*1000:.2f} мс")

print(" 2NF................ ", end="", flush=True)
time_2nf = PerformanceComparison.benchmark_2nf()
print(f"{time_2nf*1000:.2f} мс")

print(" 3NF................ ", end="", flush=True)
time_3nf = PerformanceComparison.benchmark_3nf()
print(f"{time_3nf*1000:.2f} мс")

if name == "main":
main()

image1.emf

oleObject1.bin

image2.png

