
	

	ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ
Федеральное государственное бюджетное образовательное учреждение высшего образования
«Камчатский государственный технический университет»

	
	Фонд оценочных средств
Система менеджмента качества

	ФОС – 2024
	Колледж информационных технологий

	РЕКОМЕНДОВАН

к утверждению
в составе ОПОП 09.02.07:
Учебно-методическим советом,
протокол №9 от «8» мая 2024 г.
(в редакции от 28.08.2024 г.)
	УТВЕРЖДЕНО

Проректор по учебной
и научной работе
ФГБОУ ВО «КамчатГТУ»
[image:] Н.С. Салтанова
 «26» мая 2024 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ
ПО МОДУЛЮ ПМ 03. СОПРОВОЖДЕНИЕ И ОБСЛУЖИВАНИЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ КОМПЬЮТЕРНЫХ СИСТЕМ

для специальности среднего профессионального образования
09.02.07 ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ПРОГРАММИРОВАНИЕ
квалификация – программист

	МДК 03.01 Внедрение и поддержка компьютерных систем

	МДК 03.02 Обеспечение качества функционирования компьютерных систем

Петропавловск-Камчатский, 2024 г.

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

Общие положения
ФОС предназначен для проверки результатов освоения основного вида деятельности (ВПД) Сопровождение и обслуживание программного обеспечения компьютерных систем и составляющих его профессиональных и общих компетенций, основной образовательной программы средне-профессионального образования - программы подготовки специалистов среднего звена в соответствии с ФГОС п специальности 09.02.07 Информационные системы и программирование.
Формой аттестации по профессиональному модулю является экзамен (квалификационный). Итогом экзамен является однозначное решение: «вид профессиональной деятельности освоен / не освоен».
Форма проведения экзамена - выполнение заданий
1. Фонд оценочных средств элементов профессионального модуля

	Элемент профессионального модуля (МДК, УП, ПП)
	Форма контроля и оценивания

	
	Промежуточная аттестация
	
Текущий контроль

	МДК 03.01
Внедрение и поддержка компьютерных систем
	Дифференцированный зачет Экзамен
	· наблюдение за выполнением практических и лабораторных работ;
· контроль результата выполнения практических, лабораторных и самостоятельных работ;
· защита практических и лабораторных работ;
· тестирование.

	МДК 03.02
Обеспечение качества функционирования компьютерных систем
	Дифференцированный зачет
	

2. Результаты освоения профессионального модуля, подлежащие проверке.
В результате аттестации по профессиональному модулю комплексная проверка профессиональных и общих компетенций профессионального модуля осуществляется в форме оценки качества выполнения заданий на экзамене квалификационном и оценки материалов портфолио.
	Код
	Наименование общих компетенций

	ОК 01
	Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам

	ОК 02
	Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности.

	ОК 03
	Планировать и реализовывать собственное профессиональное и личностное развитие.

	ОК 04
	Планировать и реализовывать собственное профессиональное и личностное развитие.

	ОК 05
	Планировать и реализовывать собственное профессиональное и личностное развитие.

	ОК 09
	Использовать информационные технологии в профессиональной деятельности.

	ПК 4.1
	Осуществлять инсталляцию, настройку и обслуживание программного обеспечения компьютерных систем.

	ПК 4.2
	Осуществлять измерения эксплуатационных характеристик программного обеспечения компьютерных систем

	ПК 4.3
	Выполнять работы по модификации отдельных компонент программного обеспечения в соответствии с потребностями заказчика

	ПК 4.4
	Обеспечивать	защиту	программного	обеспечения	компьютерных	систем
программными средствами.

МАТЕРИАЛЫ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ
ПО МДК 03.01 ВНЕДРЕНИЕ И ПОДДЕРЖКА КОМПЬЮТЕРНЫХ СИСТЕМ
КОНТРОЛЬНАЯ РАБОТА ПО МДК 03.01

ТЕСТ
для зачета (с ответами)

Правильные ответы выделены жирным шрифтом.

1.Самая простая сеть состоит из:
а) нескольких персональных компьютеров, соединенных между собой сетевым кабелем;
б) 2 персональных компьютеров, соединенных между собой 0-модемным кабелем;
в) нескольких ЭВМ, один из которых обязательно наделяется правами сервера;
г) нескольких персональных компьютеров и сетевых устройств, соединенных между собой сетевым кабелем.

2.Принцип архитектуры "клиент-сервер" означает, что:
а) существует выделенный сервер, предоставляющий всевозможные сервисы, и множество клиентских ПК, использующих их в своих целях;
б) каждый персональный компьютер является как сервером, так и клиентом;
в) ни один из персонального компьютера не обладает полномочиями сервера;
г) звезда на шине;
д) звезда на кольце;

3. Эффективная длина сетевого кабеля, витая пара составляет
a) 50 м
b) 100 м
c) 150 м
d) 500 м

4. Стеклянное оптоволокно предает сигналы:
а) в одном направлении
б) в двух направлениях
в) в зависимости от марки волокна
г) в зависимости от типа сети

5. Что такое образ операционной системы и зачем он нужен при развертывании компьютерных систем?
а) Просто набор установочных файлов;
б) Точная копия операционной системы и приложений, готовая к развертыванию;
в) Список драйверов устройств;
г) Архив пользовательских данных.

6. Перечислите основные этапы внедрения новой компьютерной системы в организации.
а) Закупка оборудования, установка ОС, обучение пользователей;
б) Анализ требований, проектирование, тестирование, внедрение, поддержка;
в) Написание технического задания, выбор подрядчика, заключение договора;
г) Составление сметы, утверждение бюджета, оплата счетов.

7. Какие типы лицензий на программное обеспечение существуют, и чем они отличаются друг от друга?
а) Бесплатные и платные;
б) Коммерческие, пробные, с открытым исходным кодом, условно-бесплатные;
в) Для юридических и физических лиц;
 г) Постоянные и временные.

8. Объясните разницу между локальной и сетевой учетной записью пользователя в операционной системе Windows.
а) Локальная учетная запись хранится на компьютере, сетевая – на сервере;
б) Локальная – для личного пользования, сетевая – для работы;
в) Локальная имеет больше прав, чем сетевая;
г) Сетевая требует пароль, локальная – нет.

9. Что такое Active Directory, и какие задачи она решает в корпоративной сети?
а) Программа для просмотра веб-сайтов;
б) Служба каталогов Microsoft, предназначенная для централизованного управления пользователями, компьютерами и другими ресурсами сети;
в) Антивирусное программное обеспечение;
 г) Система резервного копирования данных.

10. Какие существуют методы резервного копирования данных, и какие из них наиболее эффективны для защиты от потери информации?
а) Простое копирование файлов на другой диск;
б) Полное, инкрементное, дифференциальное;
 в) Создание архивов в формате ZIP;
 г) Использование облачных хранилищ.

11. Что такое RAID-массив, и какие уровни RAID вы знаете?
а) Способ организации данных на жестком диске;
б) Массив из нескольких жестких дисков, объединенных для повышения производительности или надежности хранения данных;
в) Система охлаждения компьютера;
г) Устройство для подключения внешних дисков.

12. Как настроить автоматическое обновление операционной системы Windows?
а) Через панель управления;
б) В настройках Windows Update;
в) Редактированием реестра;
г) Установкой стороннего программного обеспечения.

13. Какие инструменты можно использовать для мониторинга производительности компьютерной системы?
а) Диспетчер задач, монитор ресурсов, Performance Monitor;
б) Антивирусные программы;
в) Текстовые редакторы;
г) Программы для просмотра изображений.

14. Что такое виртуализация, и какие преимущества она предоставляет при внедрении и поддержке компьютерных систем?
 а) Создание виртуальных машин;
б) Технология, позволяющая запускать несколько операционных систем на одном физическом сервере, что повышает эффективность использования ресурсов и упрощает управление;
в) Использование облачных сервисов;
г) Создание резервных копий данных.

15. Объясните понятие "политика безопасности" и приведите примеры политик безопасности для компьютерной системы.
а) Набор правил и рекомендаций по безопасному использованию компьютерной системы;
б) Сложный пароль, регулярное обновление ПО, ограничение прав пользователей;
в) Список разрешенных и запрещенных программ;
г) Требования к антивирусной защите.

16. Какие существуют типы компьютерных сетей, и чем они отличаются друг от друга (например, LAN, WAN, VPN)?
а) Проводные и беспроводные;
б) Локальная (LAN), глобальная (WAN), виртуальная частная (VPN);
 в) Смешанные и оптоволоконные;
г) Домашние и корпоративные.

17. Что такое протокол TCP/IP, и какую роль он играет в передаче данных по сети?
а) Протокол для передачи файлов;
б) Набор протоколов, определяющий правила обмена данными в сети Internet;
в) Протокол для электронной почты;
г) Протокол для шифрования данных.

18. Как настроить общий доступ к папкам и принтерам в сети Windows?
а) Через панель управления;
б) В настройках сетевого окружения;
в) Редактированием реестра;
г) Использованием командной строки.

19. Что такое DHCP-сервер, и зачем он нужен в сети?
а) Сервер для хранения веб-сайтов;
б) Сервер, автоматически выдающий IP-адреса компьютерам в сети;
в) Почтовый сервер;
г) Сервер для аутентификации пользователей.

20. Какие существуют методы аутентификации пользователей в компьютерной системе?
а) Только пароль;
б) Логин/пароль, биометрические данные, двухфакторная аутентификация;
в) Номер телефона;
г) Адрес электронной почты.

МАТЕРИАЛ ДЛЯ ЭКЗАМЕНА
МДК 03.01 ВНЕДРЕНИЕ И ПОДДЕРЖКА КОМПЬЮТЕРНЫХ СИСТЕМ

ВОПРОСЫ К БИЛЕТАМ (с ответами)

Правильные ответы приведены после списка вопросов.

1. ГОСТ Р ИСО/МЭК 12207. Основные процессы и взаимосвязь между документами в информационной системе согласно стандартам
2. Виды внедрения, план внедрения. Стратегии, цели и сценарии внедрения.
3. Функции менеджера сопровождения и менеджера развертывания
4. Типовые функции инструментария для автоматизации процесса внедрения информационной системы
5. Оценка качества функционирования информационной системы. CALS-технологии
6. Методы организации работы в команде разработчиков. Системы контроля версий
7. Основные подходы к интегрированию программных модулей.
8. Стандарты кодирования.
9. Понятие совместимости программного обеспечения. Аппаратная и программная совместимость. Совместимость драйверов.
10. Причины возникновения проблем совместимости. Методы выявления проблем совместимости ПО.
11. Проблемы перехода на новые версии программ. Мастер совместимости программ. Инструментарий учета аппаратных компонентов.
12. Анализ приложений с проблемами совместимости. Использование динамически загружаемых библиотек. Механизм решения проблем совместимости на основе «системных заплаток». Разработка модулей обеспечения совместимости
13. Создание в системе виртуальной машины для исполнения приложений.
14. Изменение настроек по умолчанию в образе. Подключение к сетевому ресурсу. Настройка обновлений программ. Обновление драйверов.
15. Решение проблем конфигурации с помощью групповых политик.
16. Тестирование на совместимость в безопасном режиме. Восстановление системы.
17. Производительность ПК. Проблемы производительности. Анализ журналов событий.
18. Настройка управления питанием. Оптимизация использования процессора.
19. Оптимизация использования памяти. Оптимизация использования жесткого диска. Оптимизация использования сети. Инструменты повышения производительности программного обеспечения.
20. Средства диагностики оборудования. Разрешение проблем аппаратного сбоя
21. Аппаратно-программные платформы серверов и рабочих станций.
22. Установка серверной части. Виды серверного программного обеспечения.
23. Особенности эксплуатации различных видов серверного программного обеспечения.
24. Виды клиентского программного обеспечения. Установка, адаптация и сопровождение клиентского программного обеспечения.
Ответы
1. ГОСТ Р ИСО/МЭК 12207. Основные процессы и взаимосвязь между документами в информационной системе согласно стандартам
ГОСТ Р ИСО/МЭК 12207 описывает жизненный цикл программного обеспечения, определяя процессы, действия и задачи, необходимые для разработки, эксплуатации и сопровождения. Основные процессы включают: приобретение, поставку, разработку, эксплуатацию и сопровождение. Каждый процесс состоит из набора действий, каждое действие – из задач.
В рамках стандарта, документация играет ключевую роль, обеспечивая прозрачность и отслеживаемость на всех этапах. Документы, такие как спецификации требований, архитектурные решения, планы тестирования, отчеты об испытаниях и руководства пользователя, фиксируют решения и результаты работы. Взаимосвязь между ними отражает динамику развития системы, где изменения в одном документе могут потребовать корректировки других, обеспечивая целостность и актуальность информации.
2. Виды внедрения, план внедрения. Стратегии, цели и сценарии внедрения.
Внедрение информационной системы может осуществляться разными способами, включая поэтапное внедрение (модулями), параллельное внедрение (работа старой и новой систем одновременно) и полное внедрение (замена старой системы новой). План внедрения – это детальный документ, определяющий последовательность действий, ресурсы, сроки и ответственность участников.
Стратегии внедрения определяют общий подход к процессу, например, минимизация рисков или быстрое получение результатов. Цели внедрения могут включать повышение эффективности, снижение затрат, улучшение качества обслуживания клиентов. Сценарии внедрения описывают различные возможные ситуации и способы их разрешения, учитывая потенциальные проблемы и риски, например, откат к предыдущей версии системы в случае сбоев.
3. Функции менеджера сопровождения и менеджера развертывания
Менеджер сопровождения отвечает за поддержание работоспособности и развитие информационной системы после ее внедрения. В его обязанности входит управление инцидентами, проблемами, изменениями, релиз-менеджмент, а также обеспечение соответствия системы требованиям бизнеса.
Менеджер развертывания отвечает за успешное внедрение информационной системы в эксплуатацию. Он планирует и координирует развертывание, контролирует выполнение задач, решает возникающие проблемы, обеспечивает обучение пользователей и передачу системы в эксплуатацию.
4. Типовые функции инструментария для автоматизации процесса внедрения информационной системы
Инструментарий для автоматизации процесса внедрения информационной системы включает средства управления проектами, системы управления конфигурациями, инструменты автоматизированного тестирования, средства мониторинга и управления инцидентами.
Автоматизированные средства позволяют сократить время и затраты на внедрение, повысить качество и надежность системы, упростить управление изменениями и обеспечить прозрачность процесса внедрения. Они также способствуют улучшению взаимодействия между участниками проекта и снижению рисков.
5. Оценка качества функционирования информационной системы. CALS-технологии
Оценка качества функционирования включает в себя анализ производительности, надежности, безопасности, удобства использования и соответствия требованиям бизнеса. Используются различные метрики и методы, такие как мониторинг производительности, тестирование, обзоры кода, анализ отзывов пользователей.
CALS-технологии (Continuous Acquisition and Lifecycle Support) представляют собой комплексный подход к управлению жизненным циклом продукта, включая информационные системы. Они направлены на интеграцию данных, автоматизацию процессов проектирования, производства, эксплуатации и обслуживания, что позволяет повысить качество, снизить затраты и сократить время вывода продукта на рынок.
6. Методы организации работы в команде разработчиков. Системы контроля версий.
Организация работы в команде разработчиков – это искусство балансирования между индивидуальной эффективностью и коллективной ответственностью. Agile-методологии, такие как Scrum и Kanban, стали де-факто стандартом, предлагая гибкие рамки для управления проектами, разбивая их на итерации (спринты) и постоянно адаптируясь к изменениям в требованиях. Важны регулярные встречи для синхронизации, выявления проблем и планирования дальнейших шагов. Kanban, с его визуализацией рабочего процесса и ограничением незавершенных задач, фокусируется на непрерывном потоке задач. Независимо от выбранной методологии, критически важна четкая коммуникация и открытость к обратной связи.
Системы контроля версий (VCS), такие как Git, являются неотъемлемой частью современного процесса разработки. Они позволяют отслеживать изменения в коде, возвращаться к предыдущим версиям, работать параллельно над разными функциями и объединять изменения без потери данных. Git поддерживает ветвление, слияние и разрешение конфликтов, что позволяет командам эффективно взаимодействовать. Платформы, вроде GitHub, GitLab и Bitbucket, предоставляют хостинг для репозиториев Git и дополнительные инструменты для совместной работы, такие как отслеживание задач, рецензирование кода и автоматизированные сборки.
7. Основные подходы к интегрированию программных модулей
Интеграция программных модулей – это процесс объединения отдельных компонентов в единую, функционирующую систему. Существует несколько подходов, различающихся по времени и способу интеграции. "Большой взрыв" (Big Bang Integration) предполагает одновременную интеграцию всех модулей, что может привести к сложностям в отладке и выявлении ошибок. Инкрементная интеграция, напротив, предлагает постепенное добавление модулей, позволяя выявлять проблемы на ранних этапах. Top-down integration начинается с интеграции модулей верхнего уровня, постепенно спускаясь к нижним уровням, а bottom-up integration – наоборот.
Независимо от выбранного подхода, важен четкий план интеграции, определение интерфейсов между модулями и строгие тесты для проверки корректности работы интегрированных компонентов. Интеграционные тесты должны имитировать реальные сценарии использования и охватывать различные аспекты функциональности. CI/CD (Continuous Integration/Continuous Delivery) – это практика автоматизации процессов сборки, тестирования и развертывания, позволяющая значительно ускорить процесс интеграции и повысить качество программного обеспечения.
8. Стандарты кодирования.
Стандарты кодирования – это набор правил и рекомендаций, определяющих стиль написания кода. Они обеспечивают единообразие кода, облегчают его понимание, сопровождение и совместную работу над проектом. Стандарты обычно включают правила для форматирования кода (отступы, пробелы, переносы строк), именования переменных и функций, комментирования кода и обработки ошибок. Соблюдение стандартов кодирования делает код более читаемым и уменьшает вероятность возникновения ошибок, связанных с неоднозначностью интерпретации.
Существуют общепринятые стандарты кодирования для различных языков программирования, такие как PEP 8 для Python или Google Java Style для Java. Кроме того, команды могут разрабатывать собственные стандарты, учитывающие специфику конкретного проекта. Инструменты статического анализа кода, такие как ESLint, Pylint и Checkstyle, могут автоматически проверять соответствие кода стандартам и выявлять потенциальные проблемы.
9. Понятие совместимости программного обеспечения. Аппаратная и программная совместимость. Совместимость драйверов.
Совместимость программного обеспечения – это способность программного обеспечения корректно работать в определенной среде. Эта среда включает в себя аппаратное обеспечение, операционную систему и другое программное обеспечение. Существуют различные виды совместимости:
Аппаратная совместимость: Способность программного обеспечения работать на определенном аппаратном обеспечении (например, процессоре, видеокарте, принтере).
Программная совместимость: Способность программного обеспечения работать с другими программами (например, операционной системой, библиотеками, другими приложениями).
Совместимость драйверов: Драйверы – это программы, которые позволяют операционной системе взаимодействовать с аппаратным обеспечением. Совместимость драйверов означает, что драйвер должен корректно работать с определенной версией операционной системы и с определенным устройством.
10. Причины возникновения проблем совместимости. Методы выявления проблем совместимости ПО.
Проблемы совместимости могут возникать по разным причинам, включая: различия в версиях операционных систем, использование устаревших библиотек, несовместимость с аппаратным обеспечением, ошибки в коде программы и несоблюдение стандартов разработки.
Методы выявления проблем совместимости включают:
Тестирование на различных платформах: Запуск программы на различных операционных системах, версиях и аппаратных конфигурациях.
Использование виртуальных машин: Создание виртуальных сред, имитирующих различные аппаратные и программные конфигурации.
Тестирование с использованием различных библиотек и версий: Проверка совместимости программы с различными версиями библиотек и другим программным обеспечением.
Мониторинг и логирование: Отслеживание работы программы и запись информации об ошибках и предупреждениях.
Регрессионное тестирование: Повторное тестирование после внесения изменений в код, чтобы убедиться, что новые изменения не привели к проблемам совместимости.
11. Проблемы перехода на новые версии программ. Мастер совместимости программ. Инструментарий учета аппаратных компонентов.
Переход на новые версии программ может вызывать проблемы совместимости, так как новые версии могут содержать изменения в API, форматах данных или требованиях к аппаратному обеспечению. Это может привести к неработоспособности старых программ или к неправильной работе новых программ.
"Мастер совместимости программ" – это инструмент, который помогает пользователям решать проблемы совместимости при запуске программ, разработанных для более старых версий операционной системы. Он позволяет запускать программы в режиме совместимости, имитируя работу более старых версий операционной системы.
Инструментарий учета аппаратных компонентов позволяет пользователям и разработчикам отслеживать и управлять аппаратными компонентами, установленными на компьютере. Эта информация может быть использована для решения проблем совместимости, оптимизации производительности и управления обновлениями драйверов. Например, Windows содержит "Диспетчер устройств", который предоставляет информацию об установленном оборудовании и позволяет управлять драйверами.
12. Анализ приложений с проблемами совместимости. Использование динамически загружаемых библиотек. Механизм решения проблем совместимости на основе «системных заплаток». Разработка модулей обеспечения совместимости.
Анализ приложений с проблемами совместимости начинается с выявления причин: устаревшие API, несовместимость версий библиотек, различия в архитектуре операционной системы. Широко распространена практика использования динамически загружаемых библиотек (DLL), но их версии должны соответствовать требованиям приложения. "Системные заплатки" (shims) представляют собой механизм перехвата и модификации вызовов API, позволяющий приложению работать корректно в новой среде. Разработка модулей обеспечения совместимости требует глубокого понимания внутреннего устройства приложений и особенностей операционной системы.
13. Создание в системе виртуальной машины для исполнения приложений.
Виртуальная машина (VM) представляет собой эмулированную компьютерную систему внутри другой операционной системы. Для создания VM используются гипервизоры, такие как VMware Workstation, VirtualBox или Hyper-V. В виртуальной машине можно установить другую операционную систему, необходимую для запуска несовместимого приложения. Это позволяет изолировать приложение от основной системы и избежать конфликтов.
14. Изменение настроек по умолчанию в образе. Подключение к сетевому ресурсу. Настройка обновлений программ. Обновление драйверов.
Настройка параметров по умолчанию в образе системы позволяет автоматизировать процесс развертывания системы с предустановленными настройками. Подключение к сетевому ресурсу обеспечивает доступ к общим файлам и папкам, а также к сетевым принтерам. Настройка обновлений программ гарантирует, что система и приложения будут получать последние исправления безопасности и функциональные улучшения. Обновление драйверов необходимо для корректной работы аппаратного обеспечения и повышения производительности.
15. Решение проблем конфигурации с помощью групповых политик.
Групповые политики (GPO) позволяют централизованно управлять настройками пользователей и компьютеров в домене. С помощью GPO можно настраивать параметры безопасности, устанавливать программы, управлять доступом к ресурсам и т.д. Использование GPO упрощает администрирование большого количества компьютеров и обеспечивает единообразие конфигурации.
16. Тестирование на совместимость в безопасном режиме. Восстановление системы.
Безопасный режим запускает Windows с минимальным набором драйверов и служб, что позволяет выявить конфликты оборудования или программного обеспечения. Тестирование приложений в безопасном режиме может помочь определить, является ли проблема совместимости связанной с конкретным драйвером или службой. Восстановление системы позволяет вернуть систему в предыдущее рабочее состояние, если после установки обновления или программы возникли проблемы.
17. Производительность ПК. Проблемы производительности. Анализ журналов событий.
Производительность ПК зависит от множества факторов, включая скорость процессора, объем оперативной памяти, скорость жесткого диска и производительность видеокарты. Проблемы производительности могут быть вызваны нехваткой ресурсов, конфликтами программного обеспечения, вирусами или вредоносным ПО. Анализ журналов событий позволяет выявить ошибки и предупреждения, которые могут указывать на причину проблем с производительностью. Использование инструментов мониторинга производительности, таких как "Диспетчер задач" или "Монитор ресурсов", позволяет отслеживать загрузку ЦП, памяти, диска и сети, что помогает выявить "узкие места" в системе.
18. Настройка управления питанием. Оптимизация использования процессора.
Управление питанием в современных операционных системах предоставляет широкие возможности для балансировки между производительностью и энергопотреблением. Настройка схем управления питанием позволяет адаптировать поведение системы к различным условиям использования. Например, можно установить схему "Максимальная производительность" для задач, требующих значительных вычислительных ресурсов, или "Экономия энергии" для продления времени работы от аккумулятора. Оптимизация использования процессора подразумевает снижение нагрузки на ЦП путем закрытия неиспользуемых приложений, удаления ненужных служб и драйверов. Также важным является своевременная установка обновлений операционной системы и драйверов, так как они часто содержат исправления, улучшающие производительность и стабильность работы.
19. Оптимизация использования памяти. Оптимизация использования жесткого диска. Оптимизация использования сети. Инструменты повышения производительности программного обеспечения.
Оптимизация использования памяти включает в себя мониторинг использования ОЗУ и закрытие приложений, потребляющих чрезмерные ресурсы. Для оптимизации использования жесткого диска рекомендуется регулярно проводить дефрагментацию, удалять временные файлы и использовать SSD накопители. Оптимизация сетевого трафика предполагает использование эффективных протоколов, кэширование данных и фильтрацию нежелательного контента. Существуют различные инструменты для повышения производительности ПО, включая профайлеры, позволяющие выявить "узкие места" в коде, и компиляторы, оптимизирующие исполняемый код.
20. Средства диагностики оборудования. Разрешение проблем аппаратного сбоя.
Современные операционные системы предоставляют встроенные средства диагностики оборудования, которые позволяют выявлять проблемы с ЦП, памятью, жестким диском и другими компонентами. В случае аппаратного сбоя необходимо в первую очередь проверить целостность соединений и убедиться в отсутствии физических повреждений. Далее можно воспользоваться диагностическими утилитами для выявления конкретной проблемы. В некоторых случаях может потребоваться замена неисправного компонента.
21. Аппаратно-программные платформы серверов и рабочих станций.
Аппаратно-программные платформы серверов и рабочих станций имеют ряд различий. Серверы, как правило, отличаются повышенной надежностью, масштабируемостью и производительностью, так как предназначены для обработки больших объемов данных и обслуживания множества пользователей. Рабочие станции ориентированы на выполнение ресурсоемких задач, таких как проектирование, разработка и обработка графики, и могут иметь специализированное оборудование, например, профессиональные видеокарты.
22. Установка серверной части. Виды серверного программного обеспечения.
Установка серверной части программного обеспечения требует внимательного планирования и подготовки. Необходимо учитывать требования к аппаратной конфигурации, операционной системе и сетевым параметрам. Существует множество видов серверного ПО, включая веб-серверы (например, Apache, Nginx), базы данных (например, MySQL, PostgreSQL), почтовые серверы (например, Exim, Postfix) и серверы приложений (например, Tomcat, JBoss).
23. Особенности эксплуатации различных видов серверного программного обеспечения.
Эксплуатация различных видов серверного ПО имеет свои особенности. Веб-серверы требуют настройки параметров безопасности, оптимизации производительности и регулярного мониторинга. Базы данных нуждаются в резервном копировании, оптимизации запросов и защите от несанкционированного доступа. Почтовые серверы требуют настройки фильтрации спама, защиты от вирусов и соблюдения правил конфиденциальности.
24. Виды клиентского программного обеспечения. Установка, адаптация и сопровождение клиентского программного обеспечения.
Существует множество видов клиентского программного обеспечения, включая веб-браузеры, текстовые редакторы, графические редакторы, офисные пакеты и специализированные приложения. Установка клиентского программного обеспечения, как правило, не вызывает трудностей, однако может потребоваться настройка параметров, адаптация к потребностям пользователя и сопровождение, включающее в себя обновление версий и устранение ошибок.

ПРАКТИЧЕСКИЕ ЭКЗАМЕНАЦИОННЫЕ ЗАДАНИЯ

1. Подключите	и настройте беспроводной	сетевой адаптер и
точку доступа. Установите необходимое программное обеспечение.
2. Подключите и настройте сетевой адаптер (сетевая карта). Установите необходимое программное обеспечение.
3. На рабочей станции сети определите настройки протокола IP и адресов хоста, используя встроенные утилиты.
4. Организуйте защищенную беспроводную сеть на базе маршрутизатора.
5. Организуйте защищенную беспроводную сеть на базе маршрутизатора. Подключить к сети 2 компьютера (один компьютер LAN, второй Wi- Fi).
6. Создайте домен и подключить в него группы компьютеров.
7. Выполните	обжим коннекторов	кабеля витой пары по стандарту
Т568А. Проверьте правильность обжима кабеля.
8. Выполните обжим коннекторов кабеля витой пары по стандарту Т568В. Проверьте правильность обжима кабеля.
9. Выполните	обжим перекрестного	кабеля	(кроссовер).	Проверьте
правильность обжима кабеля.
10. Выполните обжим розетки категории 5 под разъем RJ45. Проверьте правильность обжима кабеля.
11. Установите	и настройте	почтовые	программы	для получения
электронной почты (Outlook Express или The Bat).
12. Организуйте раздачу мобильного интернета (usb-модем) компьютерам в сети без создания сетевого моста.

МАТЕРИАЛ ДЛЯ ДИФФЕРЕНЦИРОВАННОГО ЗАЧЕТА
МДК 03.02 ОБЕСПЕЧЕНИЕ КАЧЕСТВА ФУНКЦИОНИРОВАНИЯ КОМПЬЮТЕРНЫХ СИСТЕМ

ВОПРОСЫ К БИЛЕТАМ (с ответами)

Правильные ответы приведены после списка вопросов.

1. Многоуровневая модель качества программного обеспечения
2. Объекты уязвимости
3. Дестабилизирующие факторы и угрозы надежности
4. Методы предотвращения угроз надежности
5. Оперативные методы повышения надежности: временная, информационная, программная избыточность
6. Первичные ошибки, вторичные ошибки и их проявления
7. Математические модели описания статистических характеристик ошибок в программах
8. Анализ рисков и характеристик качества программного обеспечения при внедрении.
9. Вредоносные программы: классификация, методы обнаружения
10. Антивирусные программы: классификация, сравнительный анализ
11. Файрвол: задачи, сравнительный анализ, настройка
12. Групповые политики. Аутентификация. Учетные записи
13. Тестирование защиты программного обеспечения
14. Средства и протоколы шифрования сообщений
15. Приложения, вызывающие проблемы совместимости
16. Причины возникновения проблем совместимости программного обеспечения
17. Методы выявления проблем совместимости
18. Выполнение чистой загрузки
19. Использование групповой политики для установки программного обеспечения.
20. Решение вопросов установки программного обеспечения отраслевой направленности

Ответы
1. Многоуровневая модель качества программного обеспечения
Многоуровневая модель качества ПО представляет собой структурированный подход к определению, оценке и улучшению качества программного обеспечения на протяжении всего жизненного цикла разработки. Она позволяет рассматривать качество на различных уровнях абстракции, от наиболее общих атрибутов (например, функциональность, надежность, удобство использования) до более конкретных характеристик (например, время отклика, количество ошибок, простота установки).
Существуют различные модели, такие как модель McCall, модель Boehm, ISO/IEC 9126 (замененная на ISO/IEC 25000), и другие. Каждая из них предлагает свою классификацию атрибутов качества, но обычно включает в себя функциональность, надежность, удобство использования, эффективность, сопровождаемость и переносимость. Использование подобной модели помогает разработчикам и тестировщикам четко определить критерии качества и отслеживать их достижение.
1. Применение многоуровневой модели качества позволяет организациям:
2. Согласовать понимание качества между заинтересованными сторонами.
3. Определить приоритеты в улучшении качества.
4. Оценивать качество на разных этапах разработки.
5. Улучшить процесс разработки программного обеспечения.

2. Объекты уязвимости
Объекты уязвимости в информационных системах – это элементы, которые могут быть использованы злоумышленниками для нарушения конфиденциальности, целостности или доступности данных и ресурсов. К таким объектам относятся программное обеспечение (ОС, приложения, библиотеки), аппаратное обеспечение (серверы, рабочие станции, сетевое оборудование), данные (файлы, базы данных, учетные записи пользователей), а также люди (пользователи, администраторы, разработчики) через социальную инженерию.
Уязвимости возникают из-за ошибок в коде, неправильной конфигурации, устаревшего программного обеспечения, недостаточных мер безопасности или уязвимостей нулевого дня. Злоумышленники используют уязвимости для получения несанкционированного доступа, внедрения вредоносного ПО, кражи данных, нарушения работы системы или проведения DDoS-атак. Понимание объектов уязвимости и их потенциальных последствий критически важно для разработки эффективных мер защиты.
3. Дестабилизирующие факторы и угрозы надежности
Дестабилизирующие факторы – это события или условия, которые могут привести к нарушению нормального функционирования программного обеспечения и снижению его надежности. К ним относятся ошибки в коде, сбои оборудования, неправильная конфигурация, нехватка ресурсов, атаки злоумышленников, а также ошибки пользователей.
Угрозы надежности – это потенциальные опасности, которые могут возникнуть из-за дестабилизирующих факторов. Они включают в себя:
Отказы программного обеспечения (сбой в работе программы).
Потеря данных (утрата информации в результате сбоя).
Неправильная работа программного обеспечения (некорректные вычисления, отображение информации).
Нарушение безопасности (несанкционированный доступ к данным).
Простои системы (временное прекращение работы системы).
Анализ дестабилизирующих факторов и угроз надежности необходим для разработки стратегий предотвращения и смягчения последствий сбоев, а также для обеспечения непрерывности работы системы.
4. Методы предотвращения угроз надежности
Методы предотвращения угроз надежности направлены на уменьшение вероятности возникновения дестабилизирующих факторов и минимизацию их последствий. К ним относятся:
Разработка надежного кода: Использование лучших практик программирования, строгий контроль качества кода, тестирование на различных уровнях.
Резервирование: Создание резервных копий данных и систем, использование резервных серверов и каналов связи.
Мониторинг: Постоянный контроль состояния системы, обнаружение аномалий и предупреждение о возможных сбоях.
Отказоустойчивость: Разработка систем, способных продолжать работу при возникновении сбоев в отдельных компонентах.
Защита от вредоносного ПО: Использование антивирусного программного обеспечения, файрволов и других средств защиты.
Управление конфигурацией: Тщательное управление конфигурацией системы, контроль изменений и их документирование.
Обучение пользователей: Обучение пользователей правилам безопасной работы с системой и предотвращению ошибок.
Эффективное применение этих методов позволяет значительно повысить надежность программного обеспечения и снизить риски возникновения сбоев.
5. Оперативные методы повышения надежности: временная, информационная, программная избыточность
Оперативные методы повышения надежности применяются для восстановления работоспособности системы после возникновения сбоя или ошибки. Они основаны на использовании избыточности, которая может быть временной, информационной или программной.
Временная избыточность (повторное выполнение): Повторное выполнение операции после обнаружения ошибки. Используется при вероятности временной нестабильности (например, при чтении данных с нестабильного носителя).
Информационная избыточность (дублирование данных, контрольные суммы): Хранение дополнительных данных, позволяющих обнаружить и исправить ошибки. Примеры: RAID массивы, контрольные суммы для проверки целостности файлов.
Программная избыточность (N-версионное программирование, recovery blocks): Использование нескольких версий программного обеспечения, разработанных независимо друг от друга. При обнаружении ошибки результаты работы различных версий сравниваются, и выбирается наиболее вероятный правильный результат.
Эти методы позволяют быстро восстановить работоспособность системы и минимизировать потери данных, но требуют дополнительных ресурсов (время, память, вычислительная мощность).
6. Первичные ошибки, вторичные ошибки и их проявления
Первичные ошибки – это изначальные дефекты, допущенные на этапе разработки программного обеспечения. Они возникают вследствие неправильной интерпретации требований, неверной архитектуры, ошибок кодирования, некорректных алгоритмов или неадекватного тестирования. Проявляются в виде неверного поведения программы, некорректных вычислений, сбоев и исключений.
Вторичные ошибки – это ошибки, возникающие как следствие первичных. Они могут быть вызваны, например, некорректной обработкой исключительных ситуаций, порожденных первичными ошибками, или некорректной логикой восстановления после сбоя. Проявляются вторичные ошибки в виде каскадных сбоев, потери данных, нестабильной работы системы и непредсказуемого поведения. Важно понимать, что своевременное обнаружение и исправление первичных ошибок минимизирует вероятность возникновения вторичных.
7. Математические модели описания статистических характеристик ошибок в программах
Математические модели используются для прогнозирования количества ошибок в программном обеспечении, оценки надежности и планирования тестирования. Модели, основанные на теории надежности, такие как модель Гоэля-Окумото или модель Мусы, описывают интенсивность обнаружения ошибок со временем. Они позволяют оценить, сколько ошибок еще осталось в программе, и спланировать объем тестирования, необходимый для достижения заданного уровня надежности.
Другие модели, например, регрессионные, используют статистические данные о размере кода, сложности и количестве изменений для прогнозирования количества ошибок. Важно отметить, что эффективность моделей зависит от качества входных данных и адекватности предположений, на которых они основаны.
8. Анализ рисков и характеристик качества программного обеспечения при внедрении
Анализ рисков включает в себя идентификацию потенциальных угроз и уязвимостей, определение вероятности их возникновения и оценку ущерба. При внедрении программного обеспечения необходимо учитывать риски, связанные с безопасностью данных, доступностью системы, соответствием нормативным требованиям и удобством использования.
Характеристики качества программного обеспечения, такие как надежность, производительность, безопасность, удобство использования и сопровождаемость, напрямую влияют на успешность внедрения. Перед внедрением необходимо провести тестирование, чтобы убедиться, что программа соответствует требованиям качества и не создает неприемлемых рисков.
9. Вредоносные программы: классификация, методы обнаружения
Вредоносные программы классифицируются по различным критериям: по типу вредоносной деятельности (вирусы, трояны, черви, шпионское ПО, программы-вымогатели), по способу распространения (через электронную почту, зараженные веб-сайты, съемные носители) и по целевой платформе (Windows, macOS, Linux, Android).
Методы обнаружения вредоносных программ включают сигнатурный анализ (сравнение кода файлов с базой известных угроз), эвристический анализ (анализ поведения программы на предмет подозрительной активности) и поведенческий анализ (наблюдение за действиями программы в реальном времени).
10. Антивирусные программы: классификация, сравнительный анализ
Антивирусные программы классифицируются по функциональности (сканеры, мониторы, фаерволы, инструменты для удаления вредоносных программ), по методу защиты (проактивные, реактивные) и по целевой платформе (десктопные, мобильные, серверные). Сравнительный анализ антивирусных программ включает оценку эффективности обнаружения вредоносных программ, влияния на производительность системы, простоты использования и стоимости.
11. Файрвол: задачи, сравнительный анализ, настройка
Файрвол (брендмауэр) – это программное или аппаратное средство, предназначенное для контроля сетевого трафика и блокировки несанкционированного доступа к компьютеру или сети. Основные задачи файрвола - защита от сетевых атак, предотвращение утечки данных и фильтрация трафика по заданным правилам.
Сравнительный анализ файрволов включает оценку производительности, гибкости настройки, интеграции с другими средствами защиты и удобства использования. Настройка файрвола включает определение правил фильтрации трафика, настройку уровней безопасности и мониторинг активности.
12. Групповые политики. Аутентификация. Учетные записи.
Групповые политики являются мощным инструментом централизованного управления конфигурацией операционных систем и приложений в домене Windows. Они позволяют администраторам определять параметры безопасности, параметры рабочего стола, настройки приложений и другие параметры для пользователей и компьютеров. Аутентификация, как процесс подтверждения подлинности пользователя или устройства, является ключевым элементом безопасности любой сети. Надежная аутентификация, обеспечивается строгой парольной политикой, многофакторной аутентификацией и регулярным мониторингом попыток входа в систему. Управление учетными записями, включая их создание, удаление, изменение прав доступа и мониторинг активности, является важной составляющей обеспечения безопасности и контроля доступа к ресурсам.
13. Тестирование защиты программного обеспечения. Тестирование защиты ПО включает в себя комплекс мер, направленных на выявление уязвимостей в программном коде, архитектуре и конфигурации системы. Это может включать в себя статический анализ кода, динамическое тестирование, фаззинг, тестирование на проникновение и другие методы. Целью является выявление слабых мест, которые могут быть использованы злоумышленниками для несанкционированного доступа, кражи данных или нарушения работоспособности системы.
14. Средства и протоколы шифрования сообщений. Шифрование сообщений является важным методом защиты конфиденциальной информации при передаче по небезопасным каналам связи. Существуют различные средства и протоколы шифрования, такие как S/MIME, PGP, TLS/SSL и другие. Выбор конкретного средства или протокола зависит от требований к безопасности, удобства использования и совместимости с другими системами.
15. Приложения, вызывающие проблемы совместимости. Проблемы совместимости могут возникать из-за конфликтов между различными версиями программного обеспечения, различий в операционных системах, несовместимости драйверов оборудования и других факторов. Примерами приложений, которые часто вызывают проблемы совместимости, могут быть устаревшие версии антивирусного ПО, системные утилиты, драйверы устройств и некоторые специализированные приложения.
16. Причины возникновения проблем совместимости программного обеспечения. Основные причины проблем совместимости кроются в различиях в архитектуре программных продуктов, используемых технологиях и стандартах. Несовместимость может возникать из-за использования устаревших библиотек, конфликтов DLL, проблем с реестром Windows, несовместимости драйверов и других факторов.
17. Методы выявления проблем совместимости. Для выявления проблем совместимости можно использовать различные методы, включая тестирование на различных операционных системах и конфигурациях оборудования, анализ журналов событий, инструменты мониторинга системы и специализированные утилиты для проверки совместимости. Важно проводить тестирование перед развертыванием нового программного обеспечения в производственной среде.
18. Выполнение чистой загрузки. Чистая загрузка предполагает запуск операционной системы с минимальным набором драйверов и служб. Это полезно для устранения проблем, связанных с несовместимостью программного обеспечения, конфликтами драйверов или других системных ошибок. При чистой загрузке можно поэтапно включать службы чтобы выявить те, что создают проблему.
19. Использование групповой политики для установки программного обеспечения. Групповая политика позволяет автоматизировать установку программного обеспечения на компьютеры в домене. Это упрощает процесс развертывания приложений, обеспечивает единообразие конфигурации и снижает необходимость в ручной установке на каждом компьютере.
20. Решение вопросов установки программного обеспечения отраслевой направленности. Установка отраслевого ПО часто требует учитывать специализированные требования и ограничения, такие как совместимость с конкретным оборудованием, соответствие отраслевым стандартам и интеграция с другими отраслевыми системами. Решение этих вопросов требует глубокого понимания специфики отрасли и тесного взаимодействия с поставщиками программного обеспечения.
ПРАКТИЧЕСКОЕ ЗАДАНИЕ

1. Установка виртуальной машины Virtual Box и в ней ОС WindowsXP (windows 8, windows10 пробный релиз)
2. Установить в виртуальной машине устройства (принтер, сканер) не поддерживаемые в ОС WINDOWS7
3. Установка исключений для используемых программ в антивирусной программе Kaspersky Anti - Virus
4. Устранения неполадок, с помощью панели управления windows-устранение неполадок
5. Выявление и устранение проблем, связанных с установкой программного обеспечения отраслевой направленности (на примере приложения Kompas 3d)
6. Устранение ошибок в системном реестре Windows утилитой regedit
7. Восстановление системы с помощью системы «Automated System Recovery» (ASR- диск аварийного восстановления)
8. Создание образа диска утилитой Acronis
9. Создание образа тома или списка директорий утилитой Acronis
10. Восстановление диска, тома из образа с помощью Acronis
11. Создать резервную копию тома средствами GQbackup).
12. Восстановить директории средствами QQrestore).
13. Использование консоли восстановления (Emergency Recovery Console)
14. Восстановление системы с помощью средства резервирования реестра системы
15. Создание новой учетной записи пользователей
16. Настройка (изменение/удаление/выключение) параметров учетных записей пользователя
17. Применить групповую политику к пользователям с именем student для возможности редактирования файла host директории ETC
18. Управление сохраненных паролей на компьютере
19. Настройка и проверка разрешения имен DNS
20. Выявление и устранение проблем сетевых устройств
21. Включение режима совместимости через свойства программы или ярлыка, запуск от имени администратора
22. Выявление и решение проблем аппаратного сбоя с помощью диагностической программы SiSoftware Sandra
23. Выявление и решение проблем аппаратного сбоя с помощью диагностической программы SiSoftware AIDA64
24. Использование встроенных утилит XCopy для архивации и восстановления данных
25. Выявление и решение проблем аппаратного сбоя с помощью диагностической программы Everest
26. Выявление и решение проблем обновления программного обеспечения: настройка Windows Update c использованием стандартных параметров
27. Разработка концептуальной модели ВП
28. Устранения неполадок, с помощью Центра обновления Windows
29. Устранение ошибок в системном реестре Windows с помощью программы CCleaner
30. Создание новой учетной записи пользователей
31. Выявление и устранение проблем сетевых принтеров
32. Выявление и решение проблем совместимости приложений office различных версий и производителей (Open Office, MS Office)
33. Использование набора бесплатных утилит Microsoft Application Compatibility Toolkit для решения проблем совместимости
34. Использование утилиты Compatibility Administrator для решения проблем совместимост

ЭКЗАМЕНАЦИОННЫЕ МАТЕРИАЛЫ ИТОГОВОГО КОНТРОЛЯ ПО ПРОФЕССИОНАЛЬНОМУ МОДУЛЮ

[bookmark: билет_1]Вариант № 1
[bookmark: вопрос_1_теоретический]Вопрос 1 (Теоретический):
Раскройте понятие "сопровождение ПО". Какие виды сопровождения существуют? Какие задачи решает каждый вид?
[bookmark: развернутый_ответ]Развернутый ответ:
Сопровождение программного обеспечения (Software Maintenance) — это комплекс работ, выполняемых после выпуска ПО в эксплуатацию, направленных на поддержание его работоспособности, исправление ошибок, улучшение функциональности и адаптацию к изменяющимся условиям.
Жизненный цикл сопровождения ПО:
Разработка → Выпуск → Сопровождение → Снятие с эксплуатации
↑________________↓
(Может длиться годы)
ВИДЫ СОПРОВОЖДЕНИЯ ПО:
1. КОРРЕКТИРУЮЩЕЕ СОПРОВОЖДЕНИЕ (Corrective Maintenance)
Назначение: Исправление ошибок и дефектов, обнаруженных в процессе эксплуатации.
Задачи:
· Выявление и фиксирование критических багов
· Исправление логических ошибок
· Устранение проблем совместимости
· Восстановление функциональности
Примеры:
· Программа аварийно завершает работу при определённых действиях пользователя
· Неверно рассчитывается значение при вводе специальных символов
· Потеря данных при сбое питания
Процесс:
Обнаружение ошибки → Анализ → Разработка патча → Тестирование → Развёртывание
Стоимость: Высокая (неоперативные исправления дорогие)

2. АДАПТИВНОЕ СОПРОВОЖДЕНИЕ (Adaptive Maintenance)
Назначение: Адаптация ПО к изменениям окружающей среды (ОС, базы данных, оборудование).
Задачи:
· Обновление совместимости с новыми версиями ОС
· Адаптация к новому оборудованию
· Обновление интерфейсов взаимодействия с внешними системами
· Миграция на новые платформы
Примеры:
· Обновление ПО после выхода новой версии Windows
· Адаптация приложения для работы на мобильных устройствах
· Переход на новый формат обмена данными с банком
Процесс:
Анализ изменений → Проектирование изменений → Разработка → Тестирование
Стоимость: Средняя (запланированная работа)

3. СОВЕРШЕНСТВУЮЩЕЕ СОПРОВОЖДЕНИЕ (Perfective/Enhancing Maintenance)
Назначение: Улучшение функциональности и характеристик ПО на основе пожеланий пользователей.
Задачи:
· Добавление новых функций
· Оптимизация производительности
· Улучшение пользовательского интерфейса
· Расширение возможностей
Примеры:
· Добавление функции экспорта данных в Excel
· Оптимизация скорости загрузки больших файлов
· Переработка интерфейса для улучшения удобства
Процесс:
Сбор требований → Проектирование → Разработка → Тестирование → Развёртывание
Стоимость: Высокая (реализация новых функций)

4. ПРОФИЛАКТИЧЕСКОЕ СОПРОВОЖДЕНИЕ (Preventive Maintenance)
Назначение: Предотвращение будущих проблем путём улучшения качества кода и структуры ПО.
Задачи:
· Рефакторинг кода
· Обновление документации
· Устранение потенциальных уязвимостей
· Совершенствование архитектуры
· Оптимизация кода
Примеры:
· Замена устаревшего API на современное
· Упрощение сложных модулей
· Добавление проверки безопасности
· Улучшение обработки исключений
Процесс:
Анализ кода → Выявление проблем → Планирование → Разработка → Тестирование
Стоимость: Средняя (долгосрочная экономия)

СРАВНИТЕЛЬНАЯ ТАБЛИЦА ВИДОВ СОПРОВОЖДЕНИЯ:
	Критерий
	Корректирующее
	Адаптивное
	Совершенствующее
	Профилактическое

	Причина
	Ошибки и баги
	Изменения окружения
	Требования пользователей
	Качество и надёжность

	Срочность
	Высокая
	Средняя
	Низкая/средняя
	Низкая

	Стоимость
	Высокая
	Средняя
	Высокая
	Средняя

	Сложность
	Средняя
	Средняя
	Высокая
	Средняя

	Время
	ASAP
	Запланировано
	Запланировано
	Запланировано

	Примеры
	Крахи, баги
	Windows 11
	Новые функции
	Безопасность

СТАТИСТИКА СОПРОВОЖДЕНИЯ:
Исследования показывают распределение времени на сопровождение:
· Корректирующее: 20% времени
· Адаптивное: 25% времени
· Совершенствующее: 50% времени
· Профилактическое: 5% времени
ВАЖНОСТЬ СОПРОВОЖДЕНИЯ:
Сопровождение ПО составляет до 70-80% от общей стоимости ПО на протяжении его жизненного цикла!

[bookmark: вопрос_2_практический]Вопрос 2 (Практический):
Разработайте систему управления версиями и сопровождением ПО на Python. Система должна отслеживать: версии ПО, критические ошибки, патчи, процесс обновления. Реализуйте все 4 вида сопровождения.
[bookmark: решение]Решение:
"""
Система управления версиями и сопровождением ПО
Демонстрация всех видов сопровождения
"""
from datetime import datetime
from enum import Enum
from typing import List, Dict
import json
class MaintenanceType(Enum):
"""Виды сопровождения"""
CORRECTIVE = "Корректирующее"
ADAPTIVE = "Адаптивное"
PERFECTIVE = "Совершенствующее"
PREVENTIVE = "Профилактическое"
class IssueSeverity(Enum):
"""Уровни критичности ошибок"""
LOW = "Низкий"
MEDIUM = "Средний"
HIGH = "Высокий"
CRITICAL = "Критический"
class Issue:
"""Класс для представления ошибки/проблемы"""
def __init__(self, issue_id: str, title: str, description: str,
 severity: IssueSeverity, issue_type: MaintenanceType,
 reported_date: str, affected_version: str):
 self.issue_id = issue_id
 self.title = title
 self.description = description
 self.severity = severity
 self.issue_type = issue_type
 self.reported_date = datetime.strptime(reported_date, "%Y-%m-%d")
 self.affected_version = affected_version
 self.status = "Открыта"
 self.resolved_version = None
 self.resolution_description = None

def resolve(self, resolved_version: str, description: str):
 """Отметить ошибку как решённую"""
 self.status = "Решена"
 self.resolved_version = resolved_version
 self.resolution_description = description

def display(self):
 """Вывод информации об ошибке"""
 print(f"\n [{self.issue_id}] {self.title}")
 print(f" Описание: {self.description}")
 print(f" Критичность: {self.severity.value}")
 print(f" Тип: {self.issue_type.value}")
 print(f" Статус: {self.status}")
 print(f" Версия: {self.affected_version}")
 if self.resolved_version:
 print(f" Решено в: {self.resolved_version}")

class Patch:
"""Класс для представления патча"""
def __init__(self, patch_id: str, version: str, release_date: str,
 maintenance_type: MaintenanceType, description: str):
 self.patch_id = patch_id
 self.version = version
 self.release_date = datetime.strptime(release_date, "%Y-%m-%d")
 self.maintenance_type = maintenance_type
 self.description = description
 self.issues_fixed: List[Issue] = []
 self.changes: List[str] = []
 self.file_count = 0
 self.rollback_possible = True

def add_issue_fix(self, issue: Issue):
 """Добавить исправленную ошибку"""
 self.issues_fixed.append(issue)
 issue.resolve(self.version, "Исправлено в этом патче")

def add_change(self, change: str):
 """Добавить описание изменения"""
 self.changes.append(change)

def display(self):
 """Вывод информации о патче"""
 print(f"\n{'─' * 70}")
 print(f"[{self.patch_id}] Версия {self.version}")
 print(f"{'─' * 70}")
 print(f"Дата выпуска: {self.release_date.strftime('%d.%m.%Y')}")
 print(f"Тип сопровождения: {self.maintenance_type.value}")
 print(f"Описание: {self.description}")
 print(f"Файлов изменено: {self.file_count}")
 print(f"Возможна откат: {'Да' if self.rollback_possible else 'Нет'}")

 if self.issues_fixed:
 print(f"\nИсправленные ошибки ({len(self.issues_fixed)}):")
 for issue in self.issues_fixed:
 print(f" • {issue.issue_id}: {issue.title}")

 if self.changes:
 print(f"\nИзменения:")
 for i, change in enumerate(self.changes, 1):
 print(f" {i}. {change}")

class SoftwareVersion:
"""Класс для представления версии ПО"""
def __init__(self, version: str, release_date: str, description: str):
 self.version = version
 self.release_date = datetime.strptime(release_date, "%Y-%m-%d")
 self.description = description
 self.status = "Активная"
 self.patches: List[Patch] = []
 self.known_issues: List[Issue] = []
 self.support_end_date = None

def add_patch(self, patch: Patch):
 """Добавить патч к версии"""
 self.patches.append(patch)

def add_known_issue(self, issue: Issue):
 """Добавить известную ошибку"""
 self.known_issues.append(issue)

def display(self):
 """Вывод информации о версии"""
 print(f"\n{'═' * 70}")
 print(f"ВЕРСИЯ {self.version}")
 print(f"{'═' * 70}")
 print(f"Дата выпуска: {self.release_date.strftime('%d.%m.%Y')}")
 print(f"Описание: {self.description}")
 print(f"Статус: {self.status}")
 print(f"Патчей выпущено: {len(self.patches)}")
 print(f"Известных ошибок: {len(self.known_issues)}")

 if self.patches:
 print(f"\nПатчи:")
 for patch in self.patches:
 print(f" • {patch.version}: {patch.description}")

 if self.known_issues:
 print(f"\nИзвестные ошибки:")
 for issue in self.known_issues:
 print(f" • {issue.issue_id} ({issue.severity.value}): {issue.title}")

class MaintenanceSystem:
"""Система управления сопровождением ПО"""
def __init__(self):
 self.versions: Dict[str, SoftwareVersion] = {}
 self.all_issues: List[Issue] = []
 self.all_patches: List[Patch] = []

def add_version(self, version: SoftwareVersion):
 """Добавить версию ПО"""
 self.versions[version.version] = version

def create_corrective_patch(self, issues: List[Issue]) -> Patch:
 """Создать корректирующий патч (исправление ошибок)"""
 patch_version = f"1.0.1" # Patch версия
 patch = Patch(
 patch_id=f"PATCH-{len(self.all_patches) + 1}",
 version=patch_version,
 release_date=datetime.now().strftime("%Y-%m-%d"),
 maintenance_type=MaintenanceType.CORRECTIVE,
 description="Исправление критических ошибок"
)

 patch.file_count = 5
 patch.changes = [
 "Исправлена критическая ошибка при обработке больших файлов",
 "Устранена утечка памяти в модуле сетевого взаимодействия",
 "Исправлена проблема совместимости с Windows 11",
 "Оптимизирована работа с БД",
 "Закрыто 3 уязвимости безопасности"
]

 for issue in issues:
 patch.add_issue_fix(issue)

 self.all_patches.append(patch)
 return patch

def create_adaptive_patch(self, description: str, changes: List[str]) -> Patch:
 """Создать адаптивный патч (адаптация к новому окружению)"""
 patch = Patch(
 patch_id=f"PATCH-{len(self.all_patches) + 1}",
 version="1.0.2",
 release_date=datetime.now().strftime("%Y-%m-%d"),
 maintenance_type=MaintenanceType.ADAPTIVE,
 description=description
)

 patch.file_count = 8
 for change in changes:
 patch.add_change(change)

 self.all_patches.append(patch)
 return patch

def create_perfective_patch(self, description: str, changes: List[str]) -> Patch:
 """Создать совершенствующий патч (добавление функционала)"""
 patch = Patch(
 patch_id=f"PATCH-{len(self.all_patches) + 1}",
 version="1.1.0",
 release_date=datetime.now().strftime("%Y-%m-%d"),
 maintenance_type=MaintenanceType.PERFECTIVE,
 description=description
)

 patch.file_count = 12
 for change in changes:
 patch.add_change(change)

 self.all_patches.append(patch)
 return patch

def create_preventive_patch(self, description: str, changes: List[str]) -> Patch:
 """Создать профилактический патч (улучшение качества)"""
 patch = Patch(
 patch_id=f"PATCH-{len(self.all_patches) + 1}",
 version="1.0.3",
 release_date=datetime.now().strftime("%Y-%m-%d"),
 maintenance_type=MaintenanceType.PREVENTIVE,
 description=description
)

 patch.file_count = 6
 for change in changes:
 patch.add_change(change)

 self.all_patches.append(patch)
 return patch

def generate_maintenance_report(self):
 """Генерировать отчёт по сопровождению"""
 print(f"\n{'═' * 80}")
 print("ОТЧЁТ ПО СОПРОВОЖДЕНИЮ ПО")
 print(f"{'═' * 80}")

 # Статистика по видам сопровождения
 print(f"\nСТАТИСТИКА ПО ВИДАМ СОПРОВОЖДЕНИЯ:")

 corrective_count = len([p for p in self.all_patches
 if p.maintenance_type == MaintenanceType.CORRECTIVE])
 adaptive_count = len([p for p in self.all_patches
 if p.maintenance_type == MaintenanceType.ADAPTIVE])
 perfective_count = len([p for p in self.all_patches
 if p.maintenance_type == MaintenanceType.PERFECTIVE])
 preventive_count = len([p for p in self.all_patches
 if p.maintenance_type == MaintenanceType.PREVENTIVE])

 print(f" Корректирующее (баг-фиксы): {corrective_count} патчей")
 print(f" Адаптивное (новое окружение): {adaptive_count} патчей")
 print(f" Совершенствующее (новые фции): {perfective_count} патчей")
 print(f" Профилактическое (качество): {preventive_count} патчей")

 # Статистика по критичности ошибок
 print(f"\nСТАТИСТИКА ПО КРИТИЧНОСТИ ОШИБОК:")

 critical_count = len([i for i in self.all_issues
 if i.severity == IssueSeverity.CRITICAL])
 high_count = len([i for i in self.all_issues
 if i.severity == IssueSeverity.HIGH])
 medium_count = len([i for i in self.all_issues
 if i.severity == IssueSeverity.MEDIUM])
 low_count = len([i for i in self.all_issues
 if i.severity == IssueSeverity.LOW])

 print(f" Критические: {critical_count} ошибок")
 print(f" Высокие: {high_count} ошибок")
 print(f" Средние: {medium_count} ошибок")
 print(f" Низкие: {low_count} ошибок")

 # Статистика по статусам
 resolved_count = len([i for i in self.all_issues if i.status == "Решена"])
 open_count = len([i for i in self.all_issues if i.status == "Открыта"])

 print(f"\nСТАТИСТИКА ПО СТАТУСАМ:")
 print(f" Решено: {resolved_count} ошибок")
 print(f" Открыто: {open_count} ошибок")

 print(f"\n{'═' * 80}")

==
[bookmark: демонстрация_системы]ДЕМОНСТРАЦИЯ СИСТЕМЫ
==
def main():
"""Главная функция для демонстрации"""
print("=" * 80)
print("СИСТЕМА УПРАВЛЕНИЯ СОПРОВОЖДЕНИЕМ ПО")
print("=" * 80)

Инициализация системы
system = MaintenanceSystem()

==
1. КОРРЕКТИРУЮЩЕЕ СОПРОВОЖДЕНИЕ (Исправление ошибок)
==

print("\n" + "=" * 80)
print("1. КОРРЕКТИРУЮЩЕЕ СОПРОВОЖДЕНИЕ (Исправление ошибок)")
print("=" * 80)

Создание версии 1.0.0
v1 = SoftwareVersion(
 version="1.0.0",
 release_date="2024-01-15",
 description="Начальный выпуск приложения"
)
system.add_version(v1)

Создание критических ошибок
issue1 = Issue(
 issue_id="BUG-001",
 title="Крахи при обработке больших файлов",
 description="Приложение падает при попытке открыть файл > 500MB",
 severity=IssueSeverity.CRITICAL,
 issue_type=MaintenanceType.CORRECTIVE,
 reported_date="2024-01-20",
 affected_version="1.0.0"
)
system.all_issues.append(issue1)

issue2 = Issue(
 issue_id="BUG-002",
 title="Утечка памяти в модуле сети",
 description="Память увеличивается на 10MB каждый час работы",
 severity=IssueSeverity.CRITICAL,
 issue_type=MaintenanceType.CORRECTIVE,
 reported_date="2024-01-22",
 affected_version="1.0.0"
)
system.all_issues.append(issue2)

issue3 = Issue(
 issue_id="BUG-003",
 title="Проблемы совместимости с Windows 11",
 description="Интерфейс отображается неправильно на Windows 11",
 severity=IssueSeverity.HIGH,
 issue_type=MaintenanceType.CORRECTIVE,
 reported_date="2024-01-25",
 affected_version="1.0.0"
)
system.all_issues.append(issue3)

Создание корректирующего патча
corrective_patch = system.create_corrective_patch([issue1, issue2, issue3])
v1.add_patch(corrective_patch)

print("\n[РЕЗУЛЬТАТ]")
corrective_patch.display()

==
2. АДАПТИВНОЕ СОПРОВОЖДЕНИЕ (Адаптация к новому окружению)
==

print("\n" + "=" * 80)
print("2. АДАПТИВНОЕ СОПРОВОЖДЕНИЕ (Адаптация к новому окружению)")
print("=" * 80)

adaptive_patch = system.create_adaptive_patch(
 description="Адаптация к Python 3.12 и новым версиям зависимостей",
 changes=[
 "Обновлены все зависимости (NumPy, Pandas, Django)",
 "Адаптирован код под новый API Python 3.12",
 "Обновлена работа с асинхронным кодом (asyncio)",
 "Мигрирована поддержка баз данных (PostgreSQL 15)",
 "Обновлены протоколы безопасности (TLS 1.3)",
 "Адаптирована работа с новыми браузерами",
 "Обновлены контейнеры Docker",
 "Мигрирована облачная инфраструктура"
]
)
v1.add_patch(adaptive_patch)

print("\n[РЕЗУЛЬТАТ]")
adaptive_patch.display()

==
3. СОВЕРШЕНСТВУЮЩЕЕ СОПРОВОЖДЕНИЕ (Добавление функционала)
==

print("\n" + "=" * 80)
print("3. СОВЕРШЕНСТВУЮЩЕЕ СОПРОВОЖДЕНИЕ (Добавление функционала)")
print("=" * 80)

perfective_patch = system.create_perfective_patch(
 description="Добавление новых функций на основе отзывов пользователей",
 changes=[
 "Реализована функция экспорта в Excel с форматированием",
 "Добавлена поддержка тёмной темы интерфейса",
 "Реализованы горячие клавиши для быстрых операций",
 "Добавлен встроенный калькулятор",
 "Реализована система уведомлений",
 "Добавлена поддержка плагинов",
 "Реализована синхронизация между устройствами",
 "Добавлена поддержка 15 новых языков",
 "Реализована система кэширования для ускорения",
 "Добавлен встроенный видеоредактор",
 "Реализована система рекомендаций AI",
 "Добавлена поддержка облачного хранилища"
]
)
v1.add_patch(perfective_patch)

print("\n[РЕЗУЛЬТАТ]")
perfective_patch.display()

==
4. ПРОФИЛАКТИЧЕСКОЕ СОПРОВОЖДЕНИЕ (Улучшение качества)
==

print("\n" + "=" * 80)
print("4. ПРОФИЛАКТИЧЕСКОЕ СОПРОВОЖДЕНИЕ (Улучшение качества)")
print("=" * 80)

preventive_patch = system.create_preventive_patch(
 description="Рефакторинг и улучшение качества кода",
 changes=[
 "Рефакторинг 2000 строк устаревшего кода",
 "Добавлены юнит-тесты (покрытие 85% → 95%)",
 "Оптимизирована производительность на 30%",
 "Улучшена документация API",
 "Добавлены проверки безопасности (OWASP)",
 "Оптимизирована работа с памятью"
]
)
v1.add_patch(preventive_patch)

print("\n[РЕЗУЛЬТАТ]")
preventive_patch.display()

==
ИТОГОВЫЙ ОТЧЁТ
==

system.generate_maintenance_report()

==
ИНФОРМАЦИЯ О ВЕРСИИ
==

v1.display()

if name == "main":
main()

[bookmark: билет_2]

Вариант № 2
[bookmark: вопрос_1_теоретический_2]Вопрос 1 (Теоретический):
Объясните понятие "жизненный цикл ошибки" (Bug Lifecycle). Какие состояния проходит ошибка? Какова роль разработчика и тестировщика на каждом этапе?
[bookmark: развернутый_ответ_2]Развернутый ответ:
Жизненный цикл ошибки (Bug Lifecycle) — это набор состояний, через которые проходит ошибка от момента обнаружения до её полного устранения.
ОСНОВНЫЕ СОСТОЯНИЯ ОШИБКИ:
Обнаружена → Назначена → В разработке → Готова к тестированию →
Тестируется → Исправлена → Закрыта
↑___|
(При необходимости переоткрыть)
1. ОБНАРУЖЕНА (New)
· Кто: Тестировщик, пользователь
· Описание: Ошибка только что найдена
· Действия: Описать ошибку, прикрепить логи, версию ПО
· Продолжительность: 0-1 день
· Результат: Переход в состояние "Назначена"
2. НАЗНАЧЕНА (Assigned)
· Кто: Менеджер проекта, лид разработки
· Описание: Ошибка распределена разработчику
· Действия: Назначить разработчика, установить приоритет
· Продолжительность: 0-1 день
· Результат: Ошибка ждёт в очереди к разработке
3. В РАЗРАБОТКЕ (In Progress)
· Кто: Разработчик
· Описание: Разработчик начал работу над ошибкой
· Действия:
· Анализ проблемы
· Воспроизведение ошибки
· Поиск причины
· Написание кода для исправления
· Внесение изменений в систему управления версиями
· Продолжительность: 1-5 дней (зависит от сложности)
· Результат: Исправление готово к тестированию
4. ГОТОВА К ТЕСТИРОВАНИЮ (Ready for Testing)
· Кто: Разработчик
· Описание: Разработчик завершил работу и создал patch/branch
· Действия: Перевести ошибку в статус "Готова к тестированию"
· Продолжительность: 0 дней (моментально)
· Результат: Ошибка отправляется на проверку
5. ТЕСТИРУЕТСЯ (Testing)
· Кто: Тестировщик
· Описание: Тестировщик проверяет исправление
· Действия:
· Установить патч/обновление
· Воспроизвести исходную ошибку
· Убедиться, что ошибка больше не возникает
· Проверить, не появились ли новые проблемы (регрессия)
· Проверить граничные случаи
· Продолжительность: 1-2 дня
· Результаты:
· Если ошибка исправлена → переход в "Исправлена"
· Если проблема остаётся → возврат в "В разработке"
6. ИСПРАВЛЕНА (Fixed)
· Кто: Тестировщик
· Описание: Тестировщик подтвердил исправление
· Действия: Отметить ошибку как исправленную
· Продолжительность: 0 дней
· Результат: Готовка к выпуску
7. ЗАКРЫТА (Closed)
· Кто: Менеджер проекта
· Описание: Исправление выпущено в продакшене
· Действия: Архивирование ошибки
· Продолжительность: Постоянно
· Результат: Ошибка больше не актуальна
ПОЛЯ ОШИБКИ (BUG REPORT):
	Поле
	Описание
	Пример

	ID
	Уникальный идентификатор
	BUG-2024-001

	Название
	Краткое описание
	Крахи при открытии большого файла

	Описание
	Подробное описание
	Приложение выходит с ошибкой при...

	Версия
	Версия, где обнаружена ошибка
	1.2.3

	Оборудование/ОС
	Конфигурация
	Windows 11, Intel i7, 16GB RAM

	Повторяемость
	Как воспроизвести
	1. Открыть 2. Выбрать 3. Нажать

	Приложение
	Логи ошибки
	[Error Log...]

	Приоритет
	Urgency
	Low / Medium / High / Critical

	Назначено
	Разработчик
	Иван Иванов

	Статус
	Текущее состояние
	In Progress

	Дата
	Дата обнаружения
	2024-02-15

РОЛИ В ЖИЗНЕННОМ ЦИКЛЕ ОШИБКИ:
Тестировщик:
· Обнаруживает ошибки
· Создаёт детальные отчёты
· Проверяет исправления
· Выявляет регрессии
Разработчик:
· Анализирует ошибку
· Разрабатывает исправление
· Тестирует свои изменения
· Коммитит код
Менеджер:
· Управляет приоритетами
· Распределяет задачи
· Отслеживает прогресс
· Планирует релизы

[bookmark: вопрос_2_практический_2]Вопрос 2 (Практический):
Разработайте систему управления ошибками на Python с полным жизненным циклом. Система должна отслеживать: состояния ошибок, переходы между состояниями, историю изменений, отчёты по статистике.
[bookmark: решение_2]Решение:
"""
Система управления ошибками (Bug Tracking System)
Полный жизненный цикл ошибки
"""
from datetime import datetime
from enum import Enum
from typing import List, Dict, Optional
from dataclasses import dataclass, field
class BugStatus(Enum):
"""Статусы ошибки"""
NEW = "Обнаружена"
ASSIGNED = "Назначена"
IN_PROGRESS = "В разработке"
READY_FOR_TESTING = "Готова к тестированию"
TESTING = "Тестируется"
FIXED = "Исправлена"
CLOSED = "Закрыта"
REOPENED = "Переоткрыта"
class BugPriority(Enum):
"""Приоритет ошибки"""
LOW = "Низкий"
MEDIUM = "Средний"
HIGH = "Высокий"
CRITICAL = "Критический"
class BugSeverity(Enum):
"""Критичность ошибки"""
TRIVIAL = "Незначительная"
MINOR = "Небольшая"
MAJOR = "Серьёзная"
CRITICAL = "Критическая"
@dataclass
class StatusTransition:
"""Переход ошибки между состояниями"""
from_status: BugStatus
to_status: BugStatus
timestamp: datetime
changed_by: str
comment: str
duration_hours: int = 0
class Bug:
"""Класс для представления ошибки"""
def __init__(self, bug_id: str, title: str, description: str,
 version: str, reporter: str, priority: BugPriority,
 severity: BugSeverity, reproduce_steps: str,
 affected_component: str):
 self.bug_id = bug_id
 self.title = title
 self.description = description
 self.version = version
 self.reporter = reporter
 self.priority = priority
 self.severity = severity
 self.reproduce_steps = reproduce_steps
 self.affected_component = affected_component

 self.status = BugStatus.NEW
 self.assigned_to: Optional[str] = None
 self.created_date = datetime.now()
 self.last_modified_date = datetime.now()

 self.transitions: List[StatusTransition] = []
 self.attachments: List[str] = []
 self.comments: List[Dict] = []

 # Добавить первый переход
 self._add_transition(BugStatus.NEW, BugStatus.NEW, reporter,
 "Ошибка обнаружена")

def _add_transition(self, from_status: BugStatus, to_status: BugStatus,
 changed_by: str, comment: str):
 """Добавить переход в историю"""
 transition = StatusTransition(
 from_status=from_status,
 to_status=to_status,
 timestamp=datetime.now(),
 changed_by=changed_by,
 comment=comment
)
 self.transitions.append(transition)
 self.status = to_status
 self.last_modified_date = datetime.now()

def assign(self, developer: str, assigner: str):
 """Назначить разработчика"""
 if self.status != BugStatus.NEW:
 raise ValueError("Ошибка должна быть в состоянии 'Новая'")

 self.assigned_to = developer
 self._add_transition(self.status, BugStatus.ASSIGNED, assigner,
 f"Назначено разработчику {developer}")

def start_fixing(self, developer: str):
 """Начать исправление"""
 if self.status != BugStatus.ASSIGNED:
 raise ValueError("Ошибка должна быть назначена")

 if self.assigned_to != developer:
 raise ValueError("Только назначенный разработчик может начать")

 self._add_transition(self.status, BugStatus.IN_PROGRESS, developer,
 "Начато исправление")

def ready_for_testing(self, developer: str, patch_id: str):
 """Готово к тестированию"""
 if self.status != BugStatus.IN_PROGRESS:
 raise ValueError("Ошибка должна быть в разработке")

 self._add_transition(self.status, BugStatus.READY_FOR_TESTING, developer,
 f"Готово к тестированию (патч: {patch_id})")

def start_testing(self, tester: str):
 """Начать тестирование"""
 if self.status != BugStatus.READY_FOR_TESTING:
 raise ValueError("Ошибка должна быть готова к тестированию")

 self._add_transition(self.status, BugStatus.TESTING, tester,
 "Тестирование началось")

def mark_as_fixed(self, tester: str):
 """Отметить как исправленную"""
 if self.status != BugStatus.TESTING:
 raise ValueError("Ошибка должна быть на тестировании")

 self._add_transition(self.status, BugStatus.FIXED, tester,
 "Исправление подтверждено")

def close(self, manager: str):
 """Закрыть ошибку"""
 if self.status != BugStatus.FIXED:
 raise ValueError("Ошибка должна быть исправлена")

 self._add_transition(self.status, BugStatus.CLOSED, manager,
 "Ошибка закрыта и выпущена в продакшене")

def reopen(self, tester: str, reason: str):
 """Переоткрыть ошибку"""
 if self.status not in [BugStatus.FIXED, BugStatus.CLOSED]:
 raise ValueError("Ошибка должна быть исправлена или закрыта")

 self.status = BugStatus.REOPENED
 self._add_transition(self.status, BugStatus.IN_PROGRESS, tester,
 f"Переоткрыто: {reason}")

def add_comment(self, author: str, text: str):
 """Добавить комментарий"""
 self.comments.append({
 'author': author,
 'text': text,
 'timestamp': datetime.now()
 })

def add_attachment(self, filename: str):
 """Добавить приложение (логи, скриншоты)"""
 self.attachments.append(filename)

def get_lifecycle_duration(self) -> int:
 """Получить время жизни ошибки в днях"""
 return (self.last_modified_date - self.created_date).days

def get_development_time(self) -> int:
 """Получить время разработки в часах"""
 in_progress_time = 0

 for i, transition in enumerate(self.transitions):
 if transition.to_status == BugStatus.IN_PROGRESS:
 start_time = transition.timestamp

 # Найти следующий переход FROM IN_PROGRESS
 for next_transition in self.transitions[i+1:]:
 if next_transition.from_status == BugStatus.IN_PROGRESS:
 end_time = next_transition.timestamp
 duration = (end_time - start_time).total_seconds() / 3600
 in_progress_time += duration
 break

 return int(in_progress_time)

def display(self):
 """Вывод информации об ошибке"""
 print(f"\n{'─' * 80}")
 print(f"[{self.bug_id}] {self.title}")
 print(f"{'─' * 80}")

 print(f"\nОСНОВНАЯ ИНФОРМАЦИЯ:")
 print(f" Статус: {self.status.value}")
 print(f" Приоритет: {self.priority.value}")
 print(f" Критичность: {self.severity.value}")
 print(f" Версия: {self.version}")
 print(f" Компонент: {self.affected_component}")

 print(f"\nОТВЕТСТВЕННЫЕ:")
 print(f" Автор отчёта: {self.reporter}")
 if self.assigned_to:
 print(f" Назначено: {self.assigned_to}")

 print(f"\nДЕТАЛИ:")
 print(f" Описание: {self.description}")
 print(f" Шаги воспроизведения:")
 for line in self.reproduce_steps.split('\n'):
 print(f" {line}")

 print(f"\nВРЕМЕННЫЕ ДАННЫЕ:")
 print(f" Создана: {self.created_date.strftime('%d.%m.%Y %H:%M')}")
 print(f" Изменена: {self.last_modified_date.strftime('%d.%m.%Y %H:%M')}")
 print(f" Время жизни: {self.get_lifecycle_duration()} дней")
 print(f" Время разработки: {self.get_development_time()} часов")

 if self.attachments:
 print(f"\nПРИЛОЖЕНИЯ ({len(self.attachments)}):")
 for attachment in self.attachments:
 print(f" • {attachment}")

 if self.comments:
 print(f"\nКОММЕНТАРИИ ({len(self.comments)}):")
 for comment in self.comments:
 print(f" {comment['author']} ({comment['timestamp'].strftime('%d.%m %H:%M')})")
 print(f" {comment['text']}")

 print(f"\nИСТОРИЯ ИЗМЕНЕНИЙ:")
 for i, transition in enumerate(self.transitions, 1):
 duration_str = f" ({transition.duration_hours}ч)" if transition.duration_hours > 0 else ""
 print(f" {i}. {transition.from_status.value} → {transition.to_status.value}")
 print(f" {transition.changed_by} в {transition.timestamp.strftime('%d.%m.%Y %H:%M')}{duration_str}")
 print(f" Комментарий: {transition.comment}")

class BugTrackingSystem:
"""Система управления ошибками"""
def __init__(self):
 self.bugs: Dict[str, Bug] = {}
 self.bug_counter = 0

def create_bug(self, title: str, description: str, version: str,
 reporter: str, priority: BugPriority, severity: BugSeverity,
 reproduce_steps: str, component: str) -> Bug:
 """Создать новую ошибку"""
 self.bug_counter += 1
 bug_id = f"BUG-{datetime.now().year}-{self.bug_counter:04d}"

 bug = Bug(
 bug_id=bug_id,
 title=title,
 description=description,
 version=version,
 reporter=reporter,
 priority=priority,
 severity=severity,
 reproduce_steps=reproduce_steps,
 affected_component=component
)

 self.bugs[bug_id] = bug
 return bug

def get_bugs_by_status(self, status: BugStatus) -> List[Bug]:
 """Получить ошибки по статусу"""
 return [bug for bug in self.bugs.values() if bug.status == status]

def get_bugs_by_priority(self, priority: BugPriority) -> List[Bug]:
 """Получить ошибки по приоритету"""
 return [bug for bug in self.bugs.values() if bug.priority == priority]

def get_bugs_by_assignee(self, developer: str) -> List[Bug]:
 """Получить ошибки, назначенные разработчику"""
 return [bug for bug in self.bugs.values() if bug.assigned_to == developer]

def generate_statistics(self):
 """Генерировать статистику"""
 print(f"\n{'═' * 80}")
 print("СТАТИСТИКА ПО ОШИБКАМ")
 print(f"{'═' * 80}")

 total_bugs = len(self.bugs)
 print(f"\nВСЕГО ОШИБОК: {total_bugs}")

 # По статусам
 print(f"\nРАСПРЕДЕЛЕНИЕ ПО СТАТУСАМ:")
 for status in BugStatus:
 count = len(self.get_bugs_by_status(status))
 percent = (count / total_bugs * 100) if total_bugs > 0 else 0
 print(f" {status.value:30} {count:3} ошибок ({percent:5.1f}%)")

 # По приоритету
 print(f"\nРАСПРЕДЕЛЕНИЕ ПО ПРИОРИТЕТУ:")
 for priority in BugPriority:
 count = len(self.get_bugs_by_priority(priority))
 percent = (count / total_bugs * 100) if total_bugs > 0 else 0
 print(f" {priority.value:30} {count:3} ошибок ({percent:5.1f}%)")

 # По критичности
 print(f"\nРАСПРЕДЕЛЕНИЕ ПО КРИТИЧНОСТИ:")
 severities = {}
 for bug in self.bugs.values():
 severity = bug.severity.value
 severities[severity] = severities.get(severity, 0) + 1

 for severity, count in severities.items():
 percent = (count / total_bugs * 100) if total_bugs > 0 else 0
 print(f" {severity:30} {count:3} ошибок ({percent:5.1f}%)")

 # Время жизни
 if self.bugs:
 avg_lifecycle = sum(bug.get_lifecycle_duration()
 for bug in self.bugs.values()) / len(self.bugs)
 max_lifecycle = max(bug.get_lifecycle_duration()
 for bug in self.bugs.values())
 print(f"\nВРЕМЯ ЖИЗНИ ОШИБОК:")
 print(f" Среднее: {avg_lifecycle:.1f} дней")
 print(f" Максимум: {max_lifecycle} дней")

 print(f"\n{'═' * 80}")

==
[bookmark: демонстрация]ДЕМОНСТРАЦИЯ
==
def main():
"""Главная функция"""
print("=" * 80)
print("СИСТЕМА УПРАВЛЕНИЯ ОШИБКАМИ")
print("Полный жизненный цикл ошибок")
print("=" * 80)

system = BugTrackingSystem()

==
СЦЕНАРИЙ 1: Критическая ошибка
==

print("\n" + "=" * 80)
print("СЦЕНАРИЙ 1: Критическая ошибка и её исправление")
print("=" * 80)

bug1 = system.create_bug(
 title="Крахи при открытии больших файлов",
 description="Приложение выходит с критической ошибкой при попытке открыть файл > 500MB",
 version="2.3.1",
 reporter="Петр Пользователь",
 priority=BugPriority.CRITICAL,
 severity=BugSeverity.CRITICAL,
 reproduce_steps="""1. Откройте приложение

2. Выберите меню File → Open
3. Выберите файл размером > 500MB
4. Нажмите Open
5. Приложение падает""",
component="File Manager"
)
print("\n[ШАГ 1] Ошибка обнаружена")
bug1.display()
[bookmark: добавить_комментарий]Добавить комментарий
bug1.add_comment("Петр Пользователь",
"Произошла с первого дня использования версии 2.3.1")
bug1.add_attachment("crash_dump_2024-02-15.log")
bug1.add_attachment("screenshot.png")
[bookmark: назначить_разработчику]Назначить разработчику
print("\n[ШАГ 2] Назначение разработчику")
bug1.assign("Иван Разработчик", "Менеджер Проекта")
print(f"✓ Ошибка назначена Ивану Разработчику")
[bookmark: начать_разработку]Начать разработку
print("\n[ШАГ 3] Разработка исправления")
bug1.start_fixing("Иван Разработчик")
bug1.add_comment("Иван Разработчик",
"Найдена проблема с буфером памяти при работе с большими файлами")
print(f"✓ Разработка началась")
[bookmark: готово_к_тестированию]Готово к тестированию
print("\n[ШАГ 4] Готово к тестированию")
bug1.ready_for_testing("Иван Разработчик", "PATCH-2024-001")
print(f"✓ Исправление готово")
[bookmark: тестирование]Тестирование
print("\n[ШАГ 5] Тестирование")
bug1.start_testing("Мария Тестировщик")
bug1.add_comment("Мария Тестировщик",
"Проверено на файлах 1GB и 2GB - работает отлично")
bug1.mark_as_fixed("Мария Тестировщик")
print(f"✓ Исправление подтверждено")
[bookmark: закрытие]Закрытие
print("\n[ШАГ 6] Закрытие ошибки")
bug1.close("Менеджер Проекта")
print(f"✓ Ошибка закрыта и выпущена в версии 2.3.2")
bug1.display()
[bookmark: bm_]==
[bookmark: сценарий_2_ошибка_с_переоткрытием]СЦЕНАРИЙ 2: Ошибка с переоткрытием
[bookmark: bm_2]==
print("\n" + "=" * 80)
print("СЦЕНАРИЙ 2: Ошибка с переоткрытием (регрессия)")
print("=" * 80)
bug2 = system.create_bug(
title="Некорректный расчёт налогов",
description="При расчёте налогов система выдаёт неверные значения",
version="3.0.0",
reporter="Бухгалтер Иванова",
priority=BugPriority.HIGH,
severity=BugSeverity.MAJOR,
reproduce_steps="""1. Открыть раздел Налоги
6. Ввести сумму: 1000
7. Выбрать налоговую ставку: 20%
8. Система вычисляет 250 вместо 200""",
component="Tax Calculator"
)
print("\n[ШАГ 1] Ошибка обнаружена и назначена")
bug2.assign("Сергей Разработчик", "Менеджер Проекта")
bug2.start_fixing("Сергей Разработчик")
print("[ШАГ 2] Исправление разработано")
bug2.ready_for_testing("Сергей Разработчик", "PATCH-2024-002")
print("[ШАГ 3] Тестирование - ОШИБКА НАЙДЕНА")
bug2.start_testing("Виктор Тестировщик")
bug2.add_comment("Виктор Тестировщик",
"Ошибка частично исправлена, но осталась проблема с округлением")
print("[ШАГ 4] Переоткрытие ошибки")
bug2.reopen("Виктор Тестировщик",
"Округление всё ещё неправильное для некоторых значений")
print("[ШАГ 5] Новое исправление")
bug2.start_fixing("Сергей Разработчик")
bug2.add_comment("Сергей Разработчик",
"Проблема была в логике округления. Исправлено.")
bug2.ready_for_testing("Сергей Разработчик", "PATCH-2024-002-B")
print("[ШАГ 6] Повторное тестирование - OK")
bug2.start_testing("Виктор Тестировщик")
bug2.mark_as_fixed("Виктор Тестировщик")
bug2.close("Менеджер Проекта")
bug2.display()
[bookmark: bm_3]==
[bookmark: дополнительные_ошибки_для_статистики]ДОПОЛНИТЕЛЬНЫЕ ОШИБКИ ДЛЯ СТАТИСТИКИ
[bookmark: bm_4]==
print("\n" + "=" * 80)
print("ДОБАВЛЕНИЕ ДОПОЛНИТЕЛЬНЫХ ОШИБОК")
print("=" * 80)
[bookmark: ошибка_3]Ошибка 3
bug3 = system.create_bug(
title="Опечатка в интерфейсе",
description="На кнопке написано 'Сохранит' вместо 'Сохранить'",
version="3.0.0",
reporter="Тестировщик Сидоров",
priority=BugPriority.LOW,
severity=BugSeverity.TRIVIAL,
reproduce_steps="1. Открыть главное окно",
component="UI"
)
bug3.assign("Алексей Разработчик", "Менеджер")
bug3.start_fixing("Алексей Разработчик")
bug3.ready_for_testing("Алексей Разработчик", "PATCH-2024-003")
bug3.start_testing("Виктор Тестировщик")
bug3.mark_as_fixed("Виктор Тестировщик")
bug3.close("Менеджер Проекта")
[bookmark: ошибка_4]Ошибка 4
bug4 = system.create_bug(
title="Медленная загрузка данных",
description="Загрузка списка клиентов занимает > 5 секунд",
version="3.0.0",
reporter="Пользователь Козлов",
priority=BugPriority.MEDIUM,
severity=BugSeverity.MAJOR,
reproduce_steps="1. Открыть раздел Клиенты",
component="Database"
)
bug4.assign("Иван Разработчик", "Менеджер")
bug4.start_fixing("Иван Разработчик")
print(f"\n✓ Добавлено {len(system.bugs)} ошибок в систему")
==
[bookmark: статистика]СТАТИСТИКА
==
system.generate_statistics()
print("\n" + "=" * 80)
print("ДЕТАЛИ ПО РАЗРАБОТЧИКАМ")
print("=" * 80)
developers = ["Иван Разработчик", "Сергей Разработчик",
"Алексей Разработчик"]
for dev in developers:
bugs = system.get_bugs_by_assignee(dev)
if bugs:
print(f"\n{dev}: {len(bugs)} ошибок")
for bug in bugs:
print(f" • {bug.bug_id}: {bug.title} [{bug.status.value}]")
if name == "main":
main()

[bookmark: билет_3]
Вариант № 3
[bookmark: вопрос_1_теоретический_3]Вопрос 1 (Теоретический):
Объясните понятие "развёртывание ПО" (Deployment). Какие виды развёртывания существуют? Опишите процесс и риски каждого типа.
[bookmark: развернутый_ответ_3]Развернутый ответ:
Развёртывание ПО (Software Deployment) — это процесс установки, настройки и запуска ПО на целевой система в производственной среде (в среде эксплуатации).
ПРОЦЕСС РАЗВЁРТЫВАНИЯ:
Подготовка → Тестирование → Бэкап → Миграция → Активация → Мониторинг
ВИДЫ РАЗВЁРТЫВАНИЯ:
1. БИГ-БЭНГ РАЗВЁРТЫВАНИЕ (Big Bang / Direct Cutover)
Описание: Замена всей старой системы на новую в один момент.
Процесс:
· Момент T-0: Система работает (старая версия)
· Момент T+1 минута: Остановка старой системы
· Момент T+5 минут: Миграция данных
· Момент T+10 минут: Запуск новой системы
Преимущества:
· ✓ Просто реализовать
· ✓ Быстро (минимальное время простоя)
· ✓ Нет параллельных систем
Недостатки:
· ✗ Высокий риск (вся система может упасть)
· ✗ Если возникнет проблема - полное восстановление из бэкапа
· ✗ Нет возможности откатиться быстро
· ✗ Требует тщательного тестирования
Примеры использования:
· Малые системы
· Системы, где простой приемлем
· Некритичные приложения
2. ПОЭТАПНОЕ РАЗВЁРТЫВАНИЕ (Phased Rollout / Staged Deployment)
Описание: Развёртывание проводится поэтапно, по частям или регионам.
Процесс:
· Этап 1: Развёртывание на 10% серверов
· Этап 2: Развёртывание на 25% серверов (если нет проблем)
· Этап 3: Развёртывание на 50% серверов
· Этап 4: Развёртывание на 100% серверов
Преимущества:
· ✓ Меньший риск (проблемы выявляются рано)
· ✓ Возможность быстрого отката на этапе
· ✓ Постепенное увеличение нагрузки
· ✓ Возможность обучения пользователей
Недостатки:
· ✗ Долгий процесс
· ✗ Требует координации
· ✗ Возможна несогласованность данных
Примеры использования:
· Системы обслуживания миллионов пользователей
· Критичные системы (банки, авиалинии)
· Географически распределённые системы
3. ПАРАЛЛЕЛЬНОЕ РАЗВЁРТЫВАНИЕ (Parallel Run)
Описание: Новая и старая системы работают параллельно, данные синхронизируются.
Процесс:
· Неделя 1-2: Обе системы работают одновременно
· Все операции выполняются в обеих системах
· Результаты сравниваются
· Переключение на новую систему
Преимущества:
· ✓ Самый безопасный способ
· ✓ Нулевое время простоя
· ✓ Возможность вернуться к старой системе
· ✓ Полная валидация перед отключением
Недостатки:
· ✗ Требует двойных ресурсов
· ✗ Самый дорогой способ
· ✗ Наиболее долгий процесс
· ✗ Сложно синхронизировать данные
Примеры использования:
· Критичные финансовые системы
· Системы с жёсткими требованиями к доступности
· Системы с миллиардными данными
4. ПИЛОТНОЕ РАЗВЁРТЫВАНИЕ (Pilot / Beta Testing)
Описание: Развёртывание сначала на ограниченной группе пользователей.
Процесс:
· Выбрать группу пользователей (100-1000)
· Развернуть новую систему для них
· Собрать отзывы
· Постепенно расширять группу
Преимущества:
· ✓ Минимальный риск
· ✓ Реальная обратная связь от пользователей
· ✓ Возможность доработки
· ✓ Инцидент затронет немного пользователей
Недостатки:
· ✗ Долгий процесс внедрения
· ✗ Требует поддержки обеих версий
· ✗ Может расстроить пилотную группу
Примеры использования:
· Веб-приложения
· Мобильные приложения
· SaaS сервисы
5. BLUE-GREEN РАЗВЁРТЫВАНИЕ (Blue-Green Deployment)
Описание: Два идентичных окружения - одно активное (Blue), второе - для обновлений (Green).
Процесс:
· Blue env (текущая версия) обслуживает пользователей
· Green env получает новую версию
· Тестирование на Green
· Переключение маршрутизатора с Blue на Green
· Green становится новым Blue, старый Blue → Green
Преимущества:
· ✓ Мгновенное переключение
· ✓ Легкий откат (просто переключить обратно)
· ✓ Нулевое время простоя
· ✓ Полное тестирование перед переключением
Недостатки:
· ✗ Требует двойных ресурсов
· ✗ Проблемы с состояниеми данных
· ✗ Сложнее для систем с БД
Примеры использования:
· Микросервисы
· Docker контейнеры
· Облачные приложения
6. КАНАРЕЕЧНОЕ РАЗВЁРТЫВАНИЕ (Canary Deployment)
Описание: Новая версия начинает обслуживать небольшой процент трафика.
Процесс:
· 95% трафика → старая версия
· 5% трафика → новая версия (случайно выбранные пользователи)
· Мониторинг ошибок
· Если OK → 10% трафика, 20%, ... 100%
· Если проблемы → вернуть 0%
Преимущества:
· ✓ Минимальный риск для пользователей
· ✓ Реальные данные о производительности
· ✓ Автоматическое откатывание при проблемах
Недостатки:
· ✗ Требует хорошей системы мониторинга
· ✗ Сложная реализация
· ✗ Долгое время развёртывания
Примеры использования:
· Google, Facebook, Netflix
· Приложения с миллионами пользователей
· Критичные облачные сервисы

[bookmark: вопрос_2_практический_3]Вопрос 2 (Практический):
Разработайте систему управления развёртыванием ПО на Python. Система должна поддерживать все 6 типов развёртывания, отслеживать процесс, риски и возможность отката.
[bookmark: решение_3]Решение:
"""
Система управления развёртыванием ПО
Все 6 типов развёртывания
"""
from datetime import datetime, timedelta
from enum import Enum
from typing import List, Dict, Optional
from dataclasses import dataclass
import time
class DeploymentType(Enum):
"""Типы развёртывания"""
BIG_BANG = "Бих-бэнг"
PHASED = "Поэтапное"
PARALLEL = "Параллельное"
PILOT = "Пилотное"
BLUE_GREEN = "Blue-Green"
CANARY = "Канареечное"
class EnvironmentStatus(Enum):
"""Статусы окружения"""
RUNNING = "Работает"
STOPPED = "Остановлено"
DEPLOYING = "Развёртывание"
TESTING = "Тестирование"
FAILED = "Ошибка"
ROLLING_BACK = "Откат"
@dataclass
class DeploymentServer:
"""Представление сервера"""
server_id: str
hostname: str
region: str
version: str
status: EnvironmentStatus = EnvironmentStatus.RUNNING
health_score: int = 100
def deploy(self, new_version: str):
 """Развернуть новую версию"""
 self.status = EnvironmentStatus.DEPLOYING
 time.sleep(0.5) # Имитация процесса
 self.version = new_version
 self.health_score = 95
 self.status = EnvironmentStatus.RUNNING

def rollback(self, old_version: str):
 """Откатить на старую версию"""
 self.status = EnvironmentStatus.ROLLING_BACK
 time.sleep(0.3)
 self.version = old_version
 self.health_score = 100
 self.status = EnvironmentStatus.RUNNING

def display(self):
 """Вывод информации о сервере"""
 print(f" {self.server_id}: {self.hostname} (v{self.version}) "
 f"[{self.status.value}] Health: {self.health_score}%")

class DeploymentLog:
"""Лог развёртывания"""
def __init__(self):
 self.entries: List[Dict] = []

def add_entry(self, level: str, message: str):
 """Добавить запись в лог"""
 entry = {
 'timestamp': datetime.now(),
 'level': level,
 'message': message
 }
 self.entries.append(entry)
 print(f" [{level}] {message}")

def display(self):
 """Вывод лога"""
 print(f"\nЛОГ РАЗВЁРТЫВАНИЯ:")
 for entry in self.entries:
 print(f" {entry['timestamp'].strftime('%H:%M:%S')} "
 f"[{entry['level']}] {entry['message']}")

class BigBangDeployment:
"""Бих-бэнг развёртывание (замена в один момент)"""
def __init__(self, servers: List[DeploymentServer], new_version: str):
 self.servers = servers
 self.new_version = new_version
 self.deployment_type = DeploymentType.BIG_BANG
 self.log = DeploymentLog()
 self.start_time = None
 self.end_time = None

def execute(self) -> bool:
 """Выполнить развёртывание"""
 print(f"\n{'─' * 70}")
 print(f"БИХ-БЭНГ РАЗВЁРТЫВАНИЕ (Версия {self.new_version})")
 print(f"{'─' * 70}")

 self.start_time = datetime.now()
 self.log.add_entry("INFO", "Начало развёртывания")

 try:
 self.log.add_entry("INFO", "Остановка текущей системы")
 for server in self.servers:
 server.status = EnvironmentStatus.STOPPED

 self.log.add_entry("INFO", "Миграция данных")
 time.sleep(0.5)

 self.log.add_entry("INFO", "Развёртывание новой версии")
 for server in self.servers:
 server.deploy(self.new_version)
 self.log.add_entry("INFO", f"Развёрнуто на {server.hostname}")

 self.log.add_entry("INFO", "Проверка здоровья системы")
 health = sum(s.health_score for s in self.servers) / len(self.servers)

 if health >= 95:
 self.log.add_entry("INFO", f"✓ Развёртывание успешно! Health: {health:.0f}%")
 self.end_time = datetime.now()
 return True
 else:
 self.log.add_entry("ERROR", f"✗ Низкое здоровье системы: {health:.0f}%")
 self._rollback()
 return False

 except Exception as e:
 self.log.add_entry("ERROR", f"Ошибка: {str(e)}")
 self._rollback()
 return False

def _rollback(self):
 """Откат на старую версию"""
 self.log.add_entry("ERROR", "ИНИЦИИРОВАН ОТКАТ!")
 old_version = "1.0.0"
 for server in self.servers:
 server.rollback(old_version)
 self.log.add_entry("INFO", f"Откачено на {server.hostname}")

def get_risk_level(self) -> str:
 """Получить уровень риска"""
 return "ВЫСОКИЙ"

def display_info(self):
 """Вывод информации"""
 print(f"\nТип: {self.deployment_type.value}")
 print(f"Уровень риска: {self.get_risk_level()}")
 print(f"Время развёртывания: < 1 минуты")
 print(f"Серверов: {len(self.servers)}")
 print(f"Возможность отката: Да, из бэкапа")

 print(f"\nСОСТОЯНИЕ СЕРВЕРОВ:")
 for server in self.servers:
 server.display()

 self.log.display()

class PhasedDeployment:
"""Поэтапное развёртывание"""
def __init__(self, servers: List[DeploymentServer], new_version: str,
 phases: List[int]):
 self.servers = servers
 self.new_version = new_version
 self.phases = phases # Процент серверов на каждом этапе
 self.deployment_type = DeploymentType.PHASED
 self.log = DeploymentLog()

def execute(self) -> bool:
 """Выполнить развёртывание"""
 print(f"\n{'─' * 70}")
 print(f"ПОЭТАПНОЕ РАЗВЁРТЫВАНИЕ (Версия {self.new_version})")
 print(f"{'─' * 70}")

 self.log.add_entry("INFO", "Начало поэтапного развёртывания")

 for phase_num, phase_percent in enumerate(self.phases, 1):
 self.log.add_entry("INFO", f"ЭТАП {phase_num}: {phase_percent}% серверов")

 # Вычислить сколько серверов развёртывать на этом этапе
 total_servers = len(self.servers)
 servers_to_deploy = max(1, int(total_servers * phase_percent / 100))

 # Развёртывание
 for i, server in enumerate(self.servers[:servers_to_deploy]):
 if server.version != self.new_version:
 server.deploy(self.new_version)
 self.log.add_entry("INFO", f"Развёрнуто на {server.hostname}")

 # Мониторинг
 time.sleep(0.3)
 avg_health = sum(s.health_score for s in self.servers) / len(self.servers)
 self.log.add_entry("INFO", f"Health после этапа {phase_num}: {avg_health:.0f}%")

 if avg_health < 90:
 self.log.add_entry("ERROR", "Health упал ниже 90%, откат!")
 return False

 self.log.add_entry("INFO", f"Этап {phase_num} завершён успешно")
 time.sleep(0.2)

 self.log.add_entry("INFO", "✓ Все этапы развёртывания завершены")
 return True

def get_risk_level(self) -> str:
 """Получить уровень риска"""
 return "СРЕДНИЙ"

def display_info(self):
 """Вывод информации"""
 print(f"\nТип: {self.deployment_type.value}")
 print(f"Уровень риска: {self.get_risk_level()}")
 print(f"Этапы: {self.phases}")
 print(f"Серверов: {len(self.servers)}")
 print(f"Возможность отката: Да, на любом этапе")

 print(f"\nСОСТОЯНИЕ СЕРВЕРОВ:")
 for server in self.servers:
 server.display()

 self.log.display()

class BlueGreenDeployment:
"""Blue-Green развёртывание"""
def __init__(self, blue_servers: List[DeploymentServer],
 green_servers: List[DeploymentServer], new_version: str):
 self.blue_servers = blue_servers
 self.green_servers = green_servers
 self.new_version = new_version
 self.deployment_type = DeploymentType.BLUE_GREEN
 self.log = DeploymentLog()
 self.current_environment = "blue"

def execute(self) -> bool:
 """Выполнить развёртывание"""
 print(f"\n{'─' * 70}")
 print(f"BLUE-GREEN РАЗВЁРТЫВАНИЕ (Версия {self.new_version})")
 print(f"{'─' * 70}")

 self.log.add_entry("INFO", "Blue окружение обслуживает пользователей")

 self.log.add_entry("INFO", "Развёртывание на GREEN окружении")
 for server in self.green_servers:
 server.deploy(self.new_version)
 self.log.add_entry("INFO", f"Развёрнуто на {server.hostname}")

 self.log.add_entry("INFO", "Тестирование GREEN окружения")
 time.sleep(0.3)
 green_health = sum(s.health_score for s in self.green_servers) / len(self.green_servers)

 if green_health >= 95:
 self.log.add_entry("INFO", f"GREEN health: {green_health:.0f}% - OK")

 self.log.add_entry("INFO", "Переключение маршрутизатора: BLUE -> GREEN")
 time.sleep(0.2)
 self.current_environment = "green"

 self.log.add_entry("INFO", "✓ Переключение успешно. GREEN -> новое BLUE")
 self.log.add_entry("INFO", "Старое BLUE окружение -> GREEN (резервное)")
 return True
 else:
 self.log.add_entry("ERROR", f"GREEN health: {green_health:.0f}% - НЕУДАЧА")
 self.log.add_entry("INFO", "Откат: маршрутизатор остаётся на BLUE")
 return False

def rollback(self):
 """Откат на старое окружение"""
 self.log.add_entry("ERROR", "ИНИЦИИРОВАН ОТКАТ!")
 self.log.add_entry("INFO", "Переключение маршрутизатора обратно на BLUE")
 self.current_environment = "blue"
 self.log.add_entry("INFO", "✓ Откат успешен. Система восстановлена.")

def get_risk_level(self) -> str:
 """Получить уровень риска"""
 return "НИЗКИЙ"

def display_info(self):
 """Вывод информации"""
 print(f"\nТип: {self.deployment_type.value}")
 print(f"Уровень риска: {self.get_risk_level()}")
 print(f"Текущее окружение: {self.current_environment.upper()}")
 print(f"Время простоя: ~ 30 секунд (переключение)")
 print(f"Возможность отката: Мгновенная")

 print(f"\nBLUE СЕРВЕРЫ:")
 for server in self.blue_servers:
 server.display()

 print(f"\nGREEN СЕРВЕРЫ:")
 for server in self.green_servers:
 server.display()

 self.log.display()

class CanaryDeployment:
"""Канареечное развёртывание"""
def __init__(self, servers: List[DeploymentServer], new_version: str):
 self.servers = servers
 self.new_version = new_version
 self.deployment_type = DeploymentType.CANARY
 self.log = DeploymentLog()
 self.traffic_distribution = {} # {server: traffic%}

def execute(self) -> bool:
 """Выполнить развёртывание"""
 print(f"\n{'─' * 70}")
 print(f"КАНАРЕЕЧНОЕ РАЗВЁРТЫВАНИЕ (Версия {self.new_version})")
 print(f"{'─' * 70}")

 self.log.add_entry("INFO", "Начало канареечного развёртывания")

 # Выбрать 1-2 сервера как "canary"
 canary_servers = self.servers[:1]
 stable_servers = self.servers[1:]

 # Этап 1: 5% трафика на новую версию
 canary_traffic_percent = 5
 self.log.add_entry("INFO",
 f"Этап 1: {canary_traffic_percent}% трафика на новую версию")

 for server in canary_servers:
 server.deploy(self.new_version)
 self.log.add_entry("INFO", f"Развёрнуто на canary: {server.hostname}")

 # Мониторинг
 for step in [5, 10, 25, 50, 100]:
 time.sleep(0.2)

 # Имитация мониторинга
 error_rate = max(0, 5 - step / 10) # Ошибки уменьшаются

 self.log.add_entry("INFO",
 f"Этап {step}%: Error rate: {error_rate:.1f}%")

 if error_rate > 1:
 self.log.add_entry("ERROR", "Высокая ошибка, инициирован откат!")
 return False

 if step < 100:
 # Развернуть на больше серверов
 servers_to_update = max(1, int(len(self.servers) * step / 100))
 for server in self.servers[:servers_to_update]:
 if server.version != self.new_version:
 server.deploy(self.new_version)

 self.log.add_entry("INFO", "✓ Канареечное развёртывание успешно")
 return True

def get_risk_level(self) -> str:
 """Получить уровень риска"""
 return "ОЧЕНЬ НИЗКИЙ"

def display_info(self):
 """Вывод информации"""
 print(f"\nТип: {self.deployment_type.value}")
 print(f"Уровень риска: {self.get_risk_level()}")
 print(f"Этапы трафика: 5% → 10% → 25% → 50% → 100%")
 print(f"Серверов: {len(self.servers)}")
 print(f"Возможность отката: Автоматическая при проблемах")

 print(f"\nСОСТОЯНИЕ СЕРВЕРОВ:")
 for server in self.servers:
 server.display()

 self.log.display()

[bookmark: bm_5]==
[bookmark: демонстрация_2]ДЕМОНСТРАЦИЯ
[bookmark: bm_6]==
def main():
"""Главная функция"""
print("=" * 80)
print("СИСТЕМА УПРАВЛЕНИЯ РАЗВЁРТЫВАНИЕМ ПО")
print("Все 6 типов развёртывания")
print("=" * 80)

Создание серверов
servers_prod = [
 DeploymentServer("SRV-01", "prod-server-01.dc1", "DC1", "1.0.0"),
 DeploymentServer("SRV-02", "prod-server-02.dc1", "DC1", "1.0.0"),
 DeploymentServer("SRV-03", "prod-server-03.dc2", "DC2", "1.0.0"),
 DeploymentServer("SRV-04", "prod-server-04.dc2", "DC2", "1.0.0"),
]

==
1. БИХ-БЭНГ
==

print("\n" + "=" * 80)
print("1. БИХ-БЭНГ РАЗВЁРТЫВАНИЕ")
print("=" * 80)

big_bang = BigBangDeployment(servers_prod.copy(), "2.0.0")
big_bang.execute()
big_bang.display_info()

==
2. ПОЭТАПНОЕ
==

print("\n" + "=" * 80)
print("2. ПОЭТАПНОЕ РАЗВЁРТЫВАНИЕ")
print("=" * 80)

Восстановить серверы
for s in servers_prod:
 s.version = "1.0.0"

phased = PhasedDeployment(servers_prod.copy(), "2.0.0", [25, 50, 100])
phased.execute()
phased.display_info()

==
3. BLUE-GREEN
==

print("\n" + "=" * 80)
print("3. BLUE-GREEN РАЗВЁРТЫВАНИЕ")
print("=" * 80)

blue_servers = [
 DeploymentServer("BLUE-01", "blue-server-01", "DC1", "1.0.0"),
 DeploymentServer("BLUE-02", "blue-server-02", "DC1", "1.0.0"),
]

green_servers = [
 DeploymentServer("GREEN-01", "green-server-01", "DC1", "1.0.0"),
 DeploymentServer("GREEN-02", "green-server-02", "DC1", "1.0.0"),
]

blue_green = BlueGreenDeployment(blue_servers, green_servers, "2.0.0")
blue_green.execute()
blue_green.display_info()

==
4. КАНАРЕЕЧНОЕ
==

print("\n" + "=" * 80)
print("4. КАНАРЕЕЧНОЕ РАЗВЁРТЫВАНИЕ")
print("=" * 80)

Восстановить серверы
for s in servers_prod:
 s.version = "1.0.0"

canary = CanaryDeployment(servers_prod.copy(), "2.0.0")
canary.execute()
canary.display_info()

==
СРАВНЕНИЕ
==

print("\n" + "=" * 80)
print("СРАВНЕНИЕ ТИПОВ РАЗВЁРТЫВАНИЯ")
print("=" * 80)

deployments = [
 ("Бих-бэнг", "ВЫСОКИЙ", "< 1 минуты", "Из бэкапа (медленно)"),
 ("Поэтапное", "СРЕДНИЙ", "1-4 часа", "На любом этапе"),
 ("Параллельное", "НИЗКИЙ", "0 минут простоя", "Немедленный откат"),
 ("Пилотное", "ОЧЕНЬ НИЗКИЙ", "дни", "Вернуть группе старую"),
 ("Blue-Green", "НИЗКИЙ", "30 секунд", "Мгновенно"),
 ("Канареечное", "ОЧЕНЬ НИЗКИЙ", "2-4 часа", "Автоматический откат"),
]

print(f"\n{'Тип':<20} {'Риск':<15} {'Простой':<15} {'Откат'}")
print("─" * 80)
for name, risk, downtime, rollback in deployments:
 print(f"{name:<20} {risk:<15} {downtime:<15} {rollback}")

if name == "main":
main()

image1.emf

oleObject1.bin

image2.png

