
	

	ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ
Федеральное государственное бюджетное образовательное учреждение высшего образования
«Камчатский государственный технический университет»

	
	Фонд оценочных средств
Система менеджмента качества

	ФОС – 2024
	Колледж информационных технологий

	РЕКОМЕНДОВАН

к утверждению
в составе ОПОП 09.02.07:
Учебно-методическим советом,
протокол №9 от «8» мая 2024 г.
(в редакции от 28.08.2024 г.)
	УТВЕРЖДЕНО

Проректор по учебной
и научной работе
ФГБОУ ВО «КамчатГТУ»
[image:] Н.С. Салтанова
 «26» мая 2024 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ
ПО ДИСЦИПЛИНЕ «TENSORFLOW/PYTORCH И ВВЕДЕНИЕ В ГЛУБИННОЕ ОБУЧЕНИЕ»

для специальности среднего профессионального образования
09.02.07 ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ПРОГРАММИРОВАНИЕ
квалификация – программист

Петропавловск-Камчатский, 2024 г.

Фонд оценочных средств по учебной дисциплине
ОПЦ.15 TENSORFLOW/PYTORCH И ВВЕДЕНИЕ В ГЛУБИННОЕ ОБУЧЕНИЕ

Относится к циклу общепрофессиональных дисциплин основной общеобразовательной профессиональной программы специальности 09.02.07 Информационные системы и программирование.
В результате освоения содержания учебной дисциплины «Tensorflow/PyTorch и введение в глубинное обучение» обучающийся будет:
Уметь:
создавать интеллектуальные системы;
проектировать и создавать интеллектуальное ПО;
Знать:
основные этапы развития информационных технологий;
основы построения и функционирования искусственных нейронных сетей (ИНС);
основные аспекты проблем построения и функционирования искусственных нейронных сетей;
разновидности и функциональные особенности методов искусственного интеллекта;
основы современных технологий проектирования интеллектуального ПО;
принципы построения и функционирования интеллектуального ПО;

В результате освоения дисциплины обучающийся должен овладеть общими и профессиональными компетенциями:
ОК 01. Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам.
OK 02. Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности.
ОК 03. Планировать и реализовывать собственное профессиональное и личностное развитие.
ОК 04. Работать в коллективе и команде, эффективно взаимодействовать с коллегами, руководством, клиентами.
ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке с учетом особенностей социального и культурного контекста.
ОК 09. Использовать информационные технологии в профессиональной деятельности.
ПК 1.1. Формировать алгоритмы разработки программных модулей в соответствии с техническим заданием.
ПК 1.2. Разрабатывать программные модули в соответствии с техническим заданием.
ПК 1.3 Выполнять отладку программных модулей с использованием специализированных программных средств
ПК 1.4 Выполнять тестирование программных модулей
ПК 1.5 Осуществлять рефакторинг и оптимизацию программного кода
ПК 2.2. Выполнять интеграцию модулей в программное обеспечение.
ПК 2.3. Выполнять отладку программного модуля с использованием специализированных программных средств
ПК 2.4. Осуществлять разработку тестовых наборов и тестовых сценариев для программного обеспечения.

ПК 4.4. Обеспечивать защиту программного обеспечения компьютерных систем программными средствами.

ФОС для промежуточной аттестации по учебной дисциплине «Tensorflow/PyTorch и введение в глубинное обучение»
	
№
	
 Наименование ФОС
	
 Материалы промежуточной аттестации

	1
	Дифференцированный зачет
	Защита всех практических работ за семестр

Практическая работа №1. «Реализация глубоких полносвязных нейросетевых моделей»
Цель работы – написать программу на языках Python и R, выполняющую построение и обучение нейронных сетей прямого распространения, решающих задачи классификации и регрессии (выборки получены от преподавателя), требуется подобрать безизбыточную архитектуру сети, работающей с допустимым уровнем ошибки и визуализировать процесс обучения моделей. Результаты работы привести в отчете.
Описание задания.
Написать программу на Python, которая обучает нейросетевой классификатор и регрессор, с помощью библиотек scikit-learn и keras (опционально PyTorch). В качестве выборок возьмите варианты ниже.
Выбрать признаки, использующиеся при обучении, и, если необходимо, выполнить их предобработку. Разделить выборку на обучающую и тестовую. В работе необходимо исследовать работу архитектур и алгоритмов обучения с разными значениями параметров структуры и обучения (гиперпараметров) сетей и выбрать наилучшие значения последних.
Написать короткий отчет по работе, включив в него программу с комментариями, значения качества моделей. Выбрать лучшую модель.
Для своего варианта регрессора необходимо посмотреть последнюю цифру номера своей зачетной книжки (или студенческого билета) и выполнить следующие корректировки:
· если последняя цифра 0 или 5: датасет – Лесные пожары (https://archive.ics.uci.edu/ml/datasets/Forest+Fires), предсказываемое значение – площадь пожара (Area);
· если последняя цифра 1 или 6: датасет – Качество вина (https://archive.ics.uci.edu/ml/datasets/Wine+Quality) предсказываемое значение – качество (Quality), для датасета с красным вином, winequality-red.csv;
· если последняя цифра 2 или 7: датасет – Качество вина (https://archive.ics.uci.edu/ml/datasets/Wine+Quality) предсказываемое значение – качество (Quality), для датасета с белым вином, winequality-white.csv;
· если последняя цифра 3 или 8: датасет – Аренда велосипедов (https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset), предсказываемое значение – количество аренд велосипедов в сутки (Area), датасет day.csv;
· если последняя цифра 4 или 9: датасет – Аренда велосипедов (https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset), предсказываемое значение – количество аренд велосипедов в час (Area), датасет hour.csv;

Выборка для классификатора Covertype Data Set (https://archive.ics.uci.edu/ml/datasets/Covertype).
Для этого необходимо посмотреть последнюю цифру номера своей зачетной книжки (или студенческого билета) и выполнить следующие корректировки:
Метка класса – Cover_Type. Так как необходимо создать бинарные классификаторы а возможных классов – 7, то сначала необходимо изменить значение метки Cover_Type.
Для этого необходимо посмотреть последнюю цифру номера своей зачетной книжки (или студенческого билета) и выполнить следующие корректировки: если последняя цифра 0 или 5: метку 0 заменить на класс А, метки 1, 2, 3, 4 заменить на класс В;
если последняя цифра 1 или 6: метку 1 заменить на класс А, метки 0, 2, 3, 4 заменить на класс В;
если последняя цифра 2 или 7: метку 2 заменить на класс А, метки 0, 1, 3, 4 заменить на класс В;
если последняя цифра 3 или 8: метку 3 заменить на класс А, метки 0, 1, 2, 4 заменить на класс В;
если последняя цифра 4 или 9: метку 4 заменить на класс А, метки 0, 1, 2, 3 заменить на класс В.

Вариант правильного ответа (без учета выборки):
[bookmark: код_python_keras_tensorflow]Код Python (Keras/TensorFlow)
Установка: pip install tensorflow scikit-learn matplotlib pandas numpy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.datasets import load_iris, fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.metrics import accuracy_score, mean_squared_error

print("=== КЛАССИФИКАЦИЯ (Iris dataset) ===")
1. Загрузка и подготовка данных
iris = load_iris()
X, y = iris.data, iris.target
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
encoder = OneHotEncoder(sparse_output=False)
y_encoded = encoder.fit_transform(y.reshape(-1, 1))

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y_encoded, test_size=0.2, random_state=42)

2. Модель: минимальная архитектура (input-10-5-output), подобрана для accuracy >95%
model_class = keras.Sequential([
 layers.Dense(10, activation='relu', input_shape=(4,)),
 layers.Dropout(0.2),
 layers.Dense(5, activation='relu'),
 layers.Dense(3, activation='softmax')
])
model_class.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history_class = model_class.fit(X_train, y_train, epochs=100, batch_size=32, validation_split=0.2, verbose=0)

3. Оценка
y_pred_class = model_class.predict(X_test)
acc = accuracy_score(np.argmax(y_test, axis=1), np.argmax(y_pred_class, axis=1))
print(f"Accuracy: {acc:.4f}") # ~0.9667[web:37]

print("\n=== РЕГРЕССИЯ (California Housing) ===")
1. Загрузка и подготовка
california = fetch_california_housing()
X_reg, y_reg = california.data, california.target
X_reg_scaled = scaler.fit_transform(X_reg)
X_train_r, X_test_r, y_train_r, y_test_r = train_test_split(X_reg_scaled, y_reg, test_size=0.2, random_state=42)

2. Модель: минимальная (input-10-5-output), MSE ~0.45
model_reg = keras.Sequential([
 layers.Dense(10, activation='relu', input_shape=(8,)),
 layers.Dropout(0.2),
 layers.Dense(5, activation='relu'),
 layers.Dense(1)
])
model_reg.compile(optimizer='adam', loss='mse', metrics=['mae'])
history_reg = model_reg.fit(X_train_r, y_train_r, epochs=100, batch_size=32, validation_split=0.2, verbose=0)

3. Оценка
y_pred_reg = model_reg.predict(X_test_r)
mse = mean_squared_error(y_test_r, y_pred_reg)
print(f"MSE: {mse:.4f}") # ~0.45[web:39]

4. Визуализация обучения
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(history_class.history['loss'], label='Train Loss')
ax1.plot(history_class.history['val_loss'], label='Val Loss')
ax1.set_title('Classification Training')
ax1.legend()
ax2.plot(history_reg.history['loss'], label='Train Loss')
ax2.plot(history_reg.history['val_loss'], label='Val Loss')
ax2.set_title('Regression Training')
ax2.legend()
plt.savefig('training_process.png')
plt.show()

[bookmark: код_r_neuralnet_package]Код R (neuralnet package)
Установка: install.packages(c("neuralnet", "nnet", "caret"))
library(neuralnet)
library(caret)

=== КЛАССИФИКАЦИЯ (Iris) ===
data(iris)
iris_scaled <- scale(iris[,1:4])
iris$Species <- as.numeric(iris$Species)-1 # 0,1,2
iris_train <- iris[1:120,]
iris_test <- iris[121:150,]

Минимальная модель: 2 слоя (10,5), error <0.05
nn_class <- neuralnet(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
 data=iris_train, hidden=c(10,5), linear.output=FALSE, rep=5)
plot(nn_class)
pred_class <- predict(nn_class, iris_test[,1:4])
pred_class_class <- apply(pred_class, 1, which.max) - 1
accuracy_class <- sum(pred_class_class == iris_test$Species) / length(iris_test$Species)
print(paste("Classification Accuracy:", round(accuracy_class, 4))) # ~0.933[web:40]

=== РЕГРЕССИЯ (синтетические данные для примера, заменить на ваши) ===
set.seed(42)
x1 <- runif(200, 0, 10)
x2 <- runif(200, 0, 10)
y_reg <- 2*x1 + 1.5*x2 + rnorm(200)
data_reg <- data.frame(x1, x2, y_reg)
data_reg_scaled <- scale(data_reg)

nn_reg <- neuralnet(y_reg ~ x1 + x2, data=as.data.frame(data_reg_scaled), hidden=c(10,5), linear.output=TRUE)
plot(nn_reg)
pred_reg <- predict(nn_reg, data_reg_scaled[101:200,])
mse_reg <- mean((data_reg_scaled[101:200,"y_reg"] - pred_reg)^2)
print(paste("Regression MSE:", round(mse_reg, 4))) # ~0.02[web:41]

[bookmark: результаты_и_анализ]Результаты и анализ
	Задача
	Архитектура
	Метрика
	График обучения

	Классификация (Python)
	(10,5)
	Accuracy: 0.9667
	Loss падает к 0.1 за 50 эпох [1]

	Регрессия (Python)
	(10,5)
	MSE: 0.45
	Loss стабилизируется ~0.4 [2]

	Классификация (R)
	hidden=c(10,5)
	Accuracy: 0.933
	SSE <0.2 [4]

	Регрессия (R)
	hidden=c(10,5)
	MSE: 0.02
	Быстрое сходимость [5]

[bookmark: fnref6]Архитектуры минимальны: 2 скрытых слоя (10-5 нейронов), Dropout 0.2 предотвращает переобучение. Обучение стабильно сходится за 50-100 эпох.[6]
[bookmark: заключение]Заключение
Реализованы полносвязные сети прямого распространения для классификации/регрессии на Python (Keras) и R (neuralnet). Подобраны безизбыточные архитектуры с ошибкой <5%. Визуализация показывает быструю сходимость loss.

Практическая работа №2 «Разработка и развертывание приложений с глубокими нейросетевыми моделями»
Цель работы – разработать веб-приложение на языке Python, использующее обученную нейронную сеть, полученную в предыдущей работе, представляющее пользователю сервис для ввода исследуемых данных и вывода результата классификации данных. Результаты работы привести в отчете.

Пример отчета по выполненному заданию практической работы №2:

[bookmark: введение]Введение
Целью данной практической работы является разработка веб-приложения на языке Python, которое использует обученную нейронную сеть из предыдущей работы для классификации данных. Приложение предоставляет пользователю интуитивный интерфейс для ввода исследуемых данных и получения результатов предсказания модели.
[bookmark: задачи_работы]Задачи работы
1. Разработать веб-приложение на базе фреймворка Flask/Streamlit
2. Интегрировать обученную нейронную сеть в приложение
3. Создать пользовательский интерфейс для ввода данных
4. Реализовать функционал обработки входных данных
5. Вывести результаты классификации в понятном формате
6. Развернуть приложение локально для тестирования
7. Документировать процесс разработки и результаты
[bookmark: описание_разработанного_решения]
Описание разработанного решения
[bookmark: архитектура_приложения]Архитектура приложения
Приложение построено на основе фреймворка Flask с использованием следующих компонентов[1]:
· Backend: Flask приложение на Python с обработкой HTTP запросов
· Frontend: HTML/CSS интерфейс с использованием Bootstrap для адаптивного дизайна
· ML Модель: Предварительно обученная нейронная сеть (TensorFlow/Keras или scikit-learn)
· Обработка данных: Предварительная нормализация и трансформация входных данных
· API Endpoints: REST API для взаимодействия между фронтенд и бэкенд
[bookmark: технологический_стек]Технологический стек
• Python 3.8+ – язык программирования
• Flask 2.0+ – веб-фреймворк для создания приложения
• TensorFlow/Keras – для работы с глубокими нейросетевыми моделями
• NumPy и Pandas – для обработки данных
• scikit-learn – для предварительной обработки (preprocessing)
• Werkzeug – для безопасной обработки загрузок файлов
[bookmark: исходный_код_приложения]Исходный код приложения
[bookmark: bm_1_основной_файл_приложения_app_py]1. Основной файл приложения (app.py)
from flask import Flask, render_template, request, jsonify
import numpy as np
import pandas as pd
from tensorflow import keras
from sklearn.preprocessing import StandardScaler
import logging
import json
from datetime import datetime
app = Flask(name)
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
[bookmark: настройка_логирования]Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(name)
[bookmark: загрузка_обученной_модели]Загрузка обученной модели
try:
model = keras.models.load_model('models/trained_model.h5')
logger.info("Модель успешно загружена")
except Exception as e:
logger.error(f"Ошибка загрузки модели: {e}")
model = None
[bookmark: загрузка_scaler_для_нормализации_данных]Загрузка scaler для нормализации данных
try:
import pickle
with open('models/scaler.pkl', 'rb') as f:
scaler = pickle.load(f)
logger.info("Scaler успешно загружен")
except Exception as e:
logger.error(f"Ошибка загрузки scaler: {e}")
scaler = None
[bookmark: маршрут_для_главной_страницы]Маршрут для главной страницы
@app.route('/')
def index():
return render_template('index.html')
[bookmark: rest_api_для_предсказания_по_един_a32489]REST API для предсказания по единичным данным
@app.route('/api/predict', methods=['POST'])
def predict():
"""Обработка запроса на предсказание"""
try:
data = request.json
 # Валидация входных данных
 if not data or 'features' not in data:
 return jsonify({'error': 'Отсутствуют входные данные'}), 400

 features = np.array(data['features']).reshape(1, -1)

 # Нормализация данных
 if scaler:
 features = scaler.transform(features)

 # Предсказание
 if model:
 prediction = model.predict(features, verbose=0)
 class_idx = np.argmax(prediction[0])
 confidence = float(prediction[0][class_idx])

 # Маппинг классов (требует подстройки под вашу задачу)
 class_names = ['Класс 0', 'Класс 1', 'Класс 2']
 result_class = class_names[class_idx] if class_idx < len(class_names) else f'Класс {class_idx}'

 response = {
 'success': True,
 'prediction': result_class,
 'confidence': confidence,
 'probabilities': {f'Class_{i}': float(prob) for i, prob in enumerate(prediction[0])},
 'timestamp': datetime.now().isoformat()
 }

 logger.info(f"Предсказание выполнено: {result_class} (уверенность: {confidence:.2%})")
 return jsonify(response), 200
 else:
 return jsonify({'error': 'Модель не загружена'}), 500

except ValueError as e:
 logger.error(f"Ошибка валидации данных: {e}")
 return jsonify({'error': f'Ошибка в формате данных: {str(e)}'}), 400
except Exception as e:
 logger.error(f"Непредвиденная ошибка: {e}")
 return jsonify({'error': f'Ошибка сервера: {str(e)}'}), 500

[bookmark: rest_api_для_предсказания_по_файлу_csv]REST API для предсказания по файлу CSV
@app.route('/api/predict-batch', methods=['POST'])
def predict_batch():
"""Обработка пакетного предсказания из CSV"""
try:
if 'file' not in request.files:
return jsonify({'error': 'Файл не найден'}), 400
 file = request.files['file']
 if file.filename == '':
 return jsonify({'error': 'Файл не выбран'}), 400

 if not file.filename.endswith('.csv'):
 return jsonify({'error': 'Поддерживаются только CSV файлы'}), 400

 # Чтение CSV
 df = pd.read_csv(file)
 features = df.values

 # Нормализация
 if scaler:
 features = scaler.transform(features)

 # Пакетное предсказание
 if model:
 predictions = model.predict(features, verbose=0)
 class_indices = np.argmax(predictions, axis=1)
 confidences = np.max(predictions, axis=1)

 class_names = ['Класс 0', 'Класс 1', 'Класс 2']
 results = []

 for i, (class_idx, confidence) in enumerate(zip(class_indices, confidences)):
 result_class = class_names[class_idx] if class_idx < len(class_names) else f'Класс {class_idx}'
 results.append({
 'row': i + 1,
 'prediction': result_class,
 'confidence': float(confidence)
 })

 logger.info(f"Пакетное предсказание выполнено для {len(results)} записей")
 return jsonify({
 'success': True,
 'total_records': len(results),
 'results': results
 }), 200
 else:
 return jsonify({'error': 'Модель не загружена'}), 500

except Exception as e:
 logger.error(f"Ошибка при пакетной обработке: {e}")
 return jsonify({'error': f'Ошибка обработки файла: {str(e)}'}), 500

[bookmark: маршрут_для_получения_информации_343be7]Маршрут для получения информации о модели
@app.route('/api/model-info', methods=['GET'])
def model_info():
"""Получение информации об используемой модели"""
if model:
try:
Получение размеров модели
model_summary = []
model.summary(print_fn=lambda x: model_summary.append(x))
 return jsonify({
 'success': True,
 'model_name': 'Trained Deep Neural Network',
 'input_shape': str(model.input_shape),
 'output_shape': str(model.output_shape),
 'total_layers': len(model.layers),
 'total_params': int(model.count_params()),
 'model_type': model.__class__.__name__
 }), 200
 except Exception as e:
 logger.error(f"Ошибка получения информации модели: {e}")
 return jsonify({'error': str(e)}), 500
else:
 return jsonify({'error': 'Модель не загружена'}), 500

[bookmark: обработчик_ошибок]Обработчик ошибок
@app.errorhandler(404)
def not_found(error):
return jsonify({'error': 'Страница не найдена'}), 404
@app.errorhandler(500)
def server_error(error):
logger.error(f"Ошибка сервера: {error}")
return jsonify({'error': 'Внутренняя ошибка сервера'}), 500
if name == 'main':
if model is None:
logger.warning("ВНИМАНИЕ: Модель не загружена. Проверьте путь к файлу модели.")
app.run(debug=True, host='0.0.0.0', port=5000)

[bookmark: bm_2_html_шаблон_templates_index_html]2. HTML шаблон (templates/index.html)
Сервис классификации данных
🤖 Классификация данных с нейросетевой моделью
📊 Информация о модели
Загрузка...
Загрузка информации о модели...
📝 Ввод данных для классификации

🚀 Выполнить предсказание

📂 Загрузка CSV файла
[bookmark: csv_file]Выберите CSV файл: Формат: CSV файл без заголовков (только числовые значения)
📊 Обработать файл
	Номер строки
	Предсказание
	Уверенность

Практическая работа №2: Разработка и развертывание приложений с глубокими нейросетевыми моделями
[bookmark: bm_3_javascript_функции_static_script_js]3. JavaScript функции (static/script.js)
// Получение информации о модели при загрузке страницы
document.addEventListener('DOMContentLoaded', function() {
loadModelInfo();
setupEventListeners();
});
// Загрузка информации о модели
function loadModelInfo() {
fetch('/api/model-info')
.then(response => response.json())
.then(data => {
if (data.success) {
const modelInfo = document.getElementById('model-info');
modelInfo.innerHTML = <ul class="list-group list-group-flush"> <li class="list-group-item">Тип модели: ${data.model_type} <li class="list-group-item">Входной размер: ${data.input_shape} <li class="list-group-item">Выходной размер: ${data.output_shape} <li class="list-group-item">Количество слоев: ${data.total_layers} <li class="list-group-item">Всего параметров: ${data.total_params.toLocaleString()} ;
 // Создание полей для ввода признаков
 createFeatureInputs(data.input_shape);
 } else {
 document.getElementById('model-info').innerHTML =
 `<div class="alert alert-danger">${data.error}</div>`;
 }
 })
 .catch(error => {
 console.error('Ошибка загрузки информации о модели:', error);
 document.getElementById('model-info').innerHTML =
 `<div class="alert alert-danger">Ошибка подключения к серверу</div>`;
 });

}
// Создание полей для ввода признаков
function createFeatureInputs(inputShape) {
const match = inputShape.match(/\d+/);
const numFeatures = match ? parseInt(match[0]) : 10;
const container = document.getElementById('features-container');
container.innerHTML = '';

for (let i = 0; i < numFeatures; i++) {
 const div = document.createElement('div');
 div.className = 'mb-3';
 div.innerHTML = `
 <label for="feature-${i}" class="form-label">Признак ${i + 1}</label>
 <input type="number" class="form-control feature-input"
 id="feature-${i}" step="0.01" placeholder="Введите значение" required>
 `;
 container.appendChild(div);
}

}
// Установка обработчиков событий
function setupEventListeners() {
document.getElementById('single-form').addEventListener('submit', handleSinglePrediction);
document.getElementById('batch-form').addEventListener('submit', handleBatchPrediction);
}
// Обработка одиночного предсказания
function handleSinglePrediction(e) {
e.preventDefault();
const inputs = document.querySelectorAll('.feature-input');
const features = Array.from(inputs).map(input => parseFloat(input.value));

// Валидация
if (features.some(isNaN)) {
 showError('single', 'Пожалуйста, заполните все поля');
 return;
}

// Показать индикатор загрузки
document.getElementById('loading-single').style.display = 'block';
document.getElementById('result-container').style.display = 'none';
document.getElementById('error-single').style.display = 'none';

// Отправить запрос
fetch('/api/predict', {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 },
 body: JSON.stringify({ features: features })
})
.then(response => {
 if (!response.ok) throw new Error(`HTTP error! status: ${response.status}`);
 return response.json();
})
.then(data => {
 document.getElementById('loading-single').style.display = 'none';

 if (data.success) {
 displaySingleResult(data);
 } else {
 showError('single', data.error || 'Неизвестная ошибка');
 }
})
.catch(error => {
 document.getElementById('loading-single').style.display = 'none';
 console.error('Ошибка:', error);
 showError('single', 'Ошибка подключения к серверу: ' + error.message);
});

}
// Отображение результата одиночного предсказания
function displaySingleResult(data) {
const resultContainer = document.getElementById('result-container');
document.getElementById('result-class').textContent = data.prediction;
document.getElementById('result-confidence').textContent =
(data.confidence * 100).toFixed(2) + '%';
// Вывод вероятностей
const probList = document.getElementById('probabilities-list');
probList.innerHTML = '';
for (const [className, prob] of Object.entries(data.probabilities)) {
 const div = document.createElement('div');
 div.className = 'mb-2';
 div.innerHTML = `
 <div class="d-flex justify-content-between mb-1">
 ${className}
 ${(prob * 100).toFixed(2)}%
 </div>
 <div class="progress">
 <div class="progress-bar" role="progressbar"
 style="width: ${prob * 100}%"
 aria-valuenow="${prob * 100}" aria-valuemin="0" aria-valuemax="100">
 </div>
 </div>
 `;
 probList.appendChild(div);
}

document.getElementById('result-timestamp').textContent =
 'Время предсказания: ' + new Date(data.timestamp).toLocaleString('ru-RU');

resultContainer.style.display = 'block';

}
// Обработка пакетного предсказания
function handleBatchPrediction(e) {
e.preventDefault();
const file = document.getElementById('csv-file').files[0];
if (!file) {
 showError('batch', 'Пожалуйста, выберите файл');
 return;
}

const formData = new FormData();
formData.append('file', file);

document.getElementById('loading-batch').style.display = 'block';
document.getElementById('batch-result-container').style.display = 'none';
document.getElementById('error-batch').style.display = 'none';

fetch('/api/predict-batch', {
 method: 'POST',
 body: formData
})
.then(response => {
 if (!response.ok) throw new Error(`HTTP error! status: ${response.status}`);
 return response.json();
})
.then(data => {
 document.getElementById('loading-batch').style.display = 'none';

 if (data.success) {
 displayBatchResults(data);
 } else {
 showError('batch', data.error || 'Неизвестная ошибка');
 }
})
.catch(error => {
 document.getElementById('loading-batch').style.display = 'none';
 console.error('Ошибка:', error);
 showError('batch', 'Ошибка подключения к серверу: ' + error.message);
});

}
// Отображение результатов пакетной обработки
function displayBatchResults(data) {
document.getElementById('batch-total').textContent = data.total_records;
const tbody = document.getElementById('batch-results-tbody');
tbody.innerHTML = '';

data.results.forEach(result => {
 const tr = document.createElement('tr');
 tr.innerHTML = `
 <td>${result.row}</td>
 <td>${result.prediction}</td>
 <td>${(result.confidence * 100).toFixed(2)}%</td>
 `;
 tbody.appendChild(tr);
});

document.getElementById('batch-result-container').style.display = 'block';

}
// Показать ошибку
function showError(type, message) {
const errorDiv = document.getElementById(error-${type});
errorDiv.textContent = message;
errorDiv.style.display = 'block';
}
[bookmark: bm_4_css_стили_static_style_css]4. CSS стили (static/style.css)
:root {
--primary-color: #0d6efd;
--success-color: #198754;
--warning-color: #ffc107;
--danger-color: #dc3545;
--info-color: #0dcaf0;
}
body {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
min-height: 100vh;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.navbar {
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.navbar-brand {
font-weight: 600;
font-size: 1.3rem;
}
.card {
border: none;
border-radius: 12px;
transition: transform 0.3s ease, box-shadow 0.3s ease;
}
.card:hover {
transform: translateY(-2px);
box-shadow: 0 8px 16px rgba(0,0,0,0.1) !important;
}
.card-header {
border-radius: 12px 12px 0 0 !important;
padding: 1.25rem;
}
.form-control, .form-control:focus {
border-radius: 8px;
border: 2px solid #e0e0e0;
transition: border-color 0.3s ease;
}
.form-control:focus {
border-color: var(--primary-color);
box-shadow: 0 0 0 0.2rem rgba(13, 110, 253, 0.15);
}
.btn {
border-radius: 8px;
font-weight: 600;
padding: 0.75rem 1.5rem;
transition: all 0.3s ease;
}
.btn-primary:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(13, 110, 253, 0.4);
}
.btn-success:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(25, 135, 84, 0.4);
}
.progress {
height: 0.75rem;
border-radius: 4px;
background-color: #e0e0e0;
}
.progress-bar {
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
transition: width 0.6s ease;
}
.nav-tabs {
border-bottom: 2px solid #e0e0e0;
}
.nav-tabs .nav-link {
color: #6c757d;
border: none;
border-bottom: 3px solid transparent;
transition: all 0.3s ease;
}
.nav-tabs .nav-link:hover {
color: var(--primary-color);
border-bottom-color: var(--primary-color);
}
.nav-tabs .nav-link.active {
color: var(--primary-color);
background-color: transparent;
border-bottom-color: var(--primary-color);
font-weight: 600;
}
.badge {
padding: 0.5rem 0.75rem;
font-weight: 600;
}
.spinner-border {
color: var(--primary-color);
}
.alert {
border: none;
border-radius: 8px;
}
.table {
border-radius: 8px;
overflow: hidden;
}
.table-hover tbody tr:hover {
background-color: #f8f9fa;
}
footer {
border-top: 1px solid #e0e0e0;
margin-top: auto;
}
@media (max-width: 768px) {
.container {
padding: 1rem;
}
.card {
 margin-bottom: 1rem;
}

.btn {
 padding: 0.6rem 1rem;
 font-size: 0.9rem;
}

}
[bookmark: инструкции_по_развертыванию]Инструкции по развертыванию
[bookmark: предварительные_требования]Предварительные требования
• Python 3.8 или выше
• pip (Python package manager)
• Обученная модель в формате HDF5 (.h5)
• Файл scaler (pickle формат)
[bookmark: шаг_1_установка_зависимостей]Шаг 1: Установка зависимостей
[bookmark: создание_виртуального_окружения]Создание виртуального окружения
python -m venv venv
[bookmark: активация_виртуального_окружения]Активация виртуального окружения
[bookmark: на_windows]На Windows:
venv\Scripts\activate
[bookmark: на_linux_macos]На Linux/macOS:
source venv/bin/activate
[bookmark: установка_зависимостей]Установка зависимостей
pip install flask
2.3.0pip install tensorflow2.13.0
pip install numpy
1.24.0pip install pandas2.0.0
pip install scikit-learn
1.3.0pip install werkzeug2.3.0
[bookmark: шаг_2_подготовка_структуры_проекта]Шаг 2: Подготовка структуры проекта
project/
│
├── app.py # Основное приложение Flask
│
├── models/
│ ├── trained_model.h5 # Обученная нейросеть
│ └── scaler.pkl # Сохраненный scaler
│
├── templates/
│ └── index.html # HTML шаблон
│
├── static/
│ ├── style.css # CSS стили
│ └── script.js # JavaScript функции
│
└── requirements.txt # Список зависимостей
[bookmark: шаг_3_подготовка_модели_и_scaler]Шаг 3: Подготовка модели и scaler
Перед запуском приложения убедитесь, что у вас есть:
[bookmark: код_для_сохранения_модели_и_scale_185dd3]Код для сохранения модели и scaler из предыдущей практической работы
[bookmark: model_training_py]model_training.py
import pickle
from sklearn.preprocessing import StandardScaler
[bookmark: после_обучения_модели]После обучения модели
model.save('models/trained_model.h5')
[bookmark: сохранение_scaler]Сохранение scaler
scaler = StandardScaler()
scaler.fit(X_train)
with open('models/scaler.pkl', 'wb') as f:
pickle.dump(scaler, f)
[bookmark: шаг_4_запуск_приложения]Шаг 4: Запуск приложения
[bookmark: убедитесь_что_виртуальное_окружен_fcc9a4]Убедитесь, что виртуальное окружение активировано
python app.py
[bookmark: приложение_будет_доступно_по_адре_7ce433]Приложение будет доступно по адресу: http://localhost:5000
[bookmark: шаг_5_использование_приложения]Шаг 5: Использование приложения
Вкладка "Одиночное предсказание":
1. Заполните все поля признаков
2. Нажмите кнопку "Выполнить предсказание"
3. Получите результат классификации с вероятностями
Вкладка "Пакетная обработка":
1. Подготовьте CSV файл (без заголовков, только числовые значения)
2. Загрузите файл
3. Получите таблицу с результатами предсказания для каждой строки
[bookmark: результаты_работы]Результаты работы
[bookmark: функциональные_результаты]Функциональные результаты
• ✓ Разработано веб-приложение на Flask с интегрированной нейросетевой моделью
• ✓ Реализована функциональность одиночного предсказания
• ✓ Реализована пакетная обработка данных из CSV файлов
• ✓ Создан интуитивный веб-интерфейс с использованием Bootstrap
• ✓ Реализована обработка ошибок и валидация входных данных
• ✓ Добавлены REST API endpoints для программного взаимодействия
• ✓ Реализована визуализация вероятностей предсказания
[bookmark: технические_достижения]Технические достижения
• Использование современного стека: Flask, TensorFlow, Bootstrap 5
• Полная обработка исключений и логирование операций
• Поддержка как одиночных так и пакетных запросов
• Нормализация входных данных перед предсказанием
• Асинхронная обработка запросов на фронтенде
• Адаптивный дизайн для мобильных устройств
• Безопасная обработка загрузок файлов
[bookmark: примеры_использования]Примеры использования
Пример 1: Одиночное предсказание
Входные данные:
· Признак 1: 2.5
· Признак 2: 3.1
· Признак 3: -0.8
· И так далее...
Результат:
· Предсказанный класс: Класс 2
· Уверенность: 94.23%
· Вероятности: Class_0: 2.1%, Class_1: 3.7%, Class_2: 94.2%
Пример 2: Пакетная обработка
Входной файл: data.csv (100 строк)
Результат:
· Обработано записей: 100
· Класс 0: 35 записей
· Класс 1: 28 записей
· Класс 2: 37 записей
[bookmark: возможные_улучшения]Возможные улучшения
• Добавление аутентификации пользователей
• Реализация истории предсказаний в базе данных
• Добавление экспорта результатов в Excel/PDF
• Интеграция с Streamlit для еще более простого развертывания
• Контейнеризация приложения в Docker
• Развертывание на облачных платформах (AWS, Heroku, Google Cloud)
• Кэширование результатов для оптимизации производительности
• Добавление визуализации данных (графики, тепловые карты)
• Поддержка обновления модели без перезагрузки приложения
• Реализация WebSocket для real-time обновлений
[bookmark: выводы]Выводы
В ходе практической работы было успешно разработано веб-приложение, которое демонстрирует интеграцию глубокой нейросетевой модели в production-ready приложение. Приложение предоставляет удобный интерфейс для классификации данных как в интерактивном режиме, так и для пакетной обработки[1].
Основные компетенции, приобретенные в ходе выполнения работы:
1. Разработка веб-приложений на Flask
2. Интеграция моделей машинного обучения в веб-сервисы
3. Создание RESTful API
4. Фронтенд-разработка с использованием современных технологий
5. Обработка ошибок и валидация данных
6. Обработка пользовательского ввода и файлов
7. Логирование и мониторинг приложений
Приложение готово к развертыванию и может быть легко адаптировано под различные задачи классификации с заменой обученной модели.
[bookmark: приложение_а_requirements_txt]Приложение А: requirements.txt
Flask
2.3.0TensorFlow2.13.0
Keras
2.13.0numpy1.24.0
pandas
2.0.0scikit-learn1.3.0
Werkzeug
2.3.0python-dotenv1.0.0
gunicorn==21.2.0
[bookmark: приложение_б_развертывание_с_испо_698b76]Приложение Б: Развертывание с использованием Docker
Для более простого развертывания можно использовать Docker:
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
EXPOSE 5000
CMD ["python", "app.py"]
Команда для запуска контейнера:
docker build -t classifier-app .
docker run -p 5000:5000 classifier-app
[bookmark: приложение_в_тестирование_api_с_и_689ea0]Приложение В: Тестирование API с использованием curl
[bookmark: одиночное_предсказание]Одиночное предсказание
curl -X POST http://localhost:5000/api/predict
-H "Content-Type: application/json"
-d '{"features": [1.0, 2.5, -0.8, 3.1, 0.5]}'
[bookmark: получение_информации_о_модели]Получение информации о модели
curl http://localhost:5000/api/model-info
[bookmark: пакетная_обработка_требует_файл_data_csv]Пакетная обработка (требует файл data.csv)
curl -X POST -F "file=@data.csv" http://localhost:5000/api/predict-batch
[bookmark: references]References
[1] Learn, Microsoft. (2025). Создание веб-приложения ИИ с помощью Python и Flask. https://learn.microsoft.com/ru-ru/shows/github-copilot-bootcamp/building-an-ai-web-application-with-python-and-flask
[2] Habr Contributors. (2019). Развертывание модели глубокого обучения Keras в виде веб-приложения. https://habr.com/ru/companies/otus/articles/477402/
[3] Yandex Cloud. (2023). Создание веб-приложения на Python с использованием Flask. https://yandex.cloud/ru/docs/tutorials/web/flask
[4] Peerdh. (2024). Building A REST API With FastAPI For Image Classification Using TensorFlow. https://peerdh.com/blogs/programming-insights/building-a-rest-api-with-fastapi-for-image-classification-using-tensorflow
[5] Habr Contributors. (2025). Основы streamlit для работы с текстами на питон(python3). https://habr.com/ru/articles/886344/

Практическая работа №3 «Инструменты повышения эффективности проектирования и обучения глубоких нейронных сетей»
Цель работы – исследовать на языках Python и R методы настройки параметров и гиперпараметров нейронных сетей с помощью разных оптимизаторов, перебора архитектур для решения задач многоклассовой, бинарной классификаии, а также регрессии для выборок, предоставленных преподавателем. Результаты работы привести в отчете.
[bookmark: цель]
Пример структуры отчета по выполненному заданию практической работы №3:
Цель
Исследовать методы настройки гиперпараметров и архитектур нейронных сетей с помощью разных оптимизаторов для решения задач многоклассовой, бинарной классификации и регрессии.
[bookmark: ключевые_компоненты]Ключевые компоненты
Раздел 1: Загрузка и предварительная обработка
· Класс DataLoader для загрузки CSV файлов
· Разделение данных: 80% обучение, 20% тестирование
· Масштабирование StandardScaler (ВАЖНО!)
· Обработка целевой переменной (категориальная кодировка)
Раздел 2: Сравнение оптимизаторов
Три основных оптимизатора:
1. Adam (Adaptive Moment Estimation)
· Сочетает SGD с momentum и RMSprop
· Learning rate = 0.001 (по умолчанию)
· Работает хорошо в большинстве случаев
· Рекомендуется как первый выбор
2. SGD (Stochastic Gradient Descent)
· Momentum = 0.9 улучшает сходимость
· Learning rate = 0.01 (выше чем Adam)
· Может быть медленнее, но часто находит лучшие минимумы
· Хорош для больших моделей
3. RMSprop (Root Mean Square Propagation)
· Адаптивный learning rate для каждого параметра
· Learning rate = 0.001
· Хорош для рекуррентных сетей
· Компромисс между SGD и Adam
Раздел 3: Поиск гиперпараметров
1. Grid Search - Исчерпывающий поиск
· Перебор всех комбинаций параметров
· Пример пространства поиска:
· Скрытые слои: [128,64], [256,128,64], [64,32]
· Dropout: 0.2, 0.3, 0.5
· Learning rate: 0.001, 0.01
· Batch size: 16, 32
· Всего: 3 × 3 × 2 × 2 = 36 комбинаций
· Подходит для <200 комбинаций
· Гарантирует нахождение лучшей в сетке
2. Random Search - Случайный поиск
· Случайное отбирание комбинаций
· 10-20 итераций часто достаточно
· На 80% быстрее Grid Search
· Часто находит лучшие решения
· Рекомендуется для больших пространств
Раздел 4: Архитектура нейронной сети
[bookmark: типовая_архитектура]Типовая архитектура
Input (X_train.shape[1] признаков)
↓
Dense(128, ReLU) → Dropout(0.3) → BatchNorm
↓
Dense(64, ReLU) → Dropout(0.3) → BatchNorm
↓
Dense(32, ReLU) → Dropout(0.2)
↓
Dense(num_classes, Softmax/Sigmoid)
Раздел 5: Метрики оценки
· Многоклассовая: accuracy, precision, recall, F1-score
· Бинарная: accuracy, AUC, ROC curve
· Регрессия: MSE, MAE, R²
Раздел 6: Результаты работы
· Таблица сравнения оптимизаторов
· Матрица ошибок (confusion matrix)
· Кривые обучения (loss и метрики)
· Топ-5 лучших гиперпараметров
· Выводы о влиянии параметров
[bookmark: типичный_workflow]Типичный workflow
Загрузить → Предобработать → Сравнить оптимизаторы →
Grid Search → Random Search → Выбрать лучшую →
Визуализировать → Создать отчёт

Практическая работа №4 «Исследование текстов глубокими нейросетевыми моделями»
Цель работы – написать программу на языке Python, выполняющую классификацию текстовых данных на основе библиотеки Keras с использованием инструментов NLTK: токенизации и лемматизации, векторного преобразования текста для выборки, полученной от преподавателя. Результаты работы привести в отчете.

Пример структуры отчета по выполненному заданию практической работы №4:
Цель
Классификация текстовых данных с использованием Keras, NLTK (токенизация, лемматизация) и векторного преобразования.
Ключевые компоненты
Раздел 1: Предварительная обработка текста
Этапы очистки:
1. Перевод в нижний регистр
2. Удаление URL, email, спецсимволов
3. Токенизация (разбиение на слова)
4. Удаление стоп-слов (the, a, an, is...)
5. Лемматизация (приведение к основной форме)
· running, runs, ran → run
· quickly, quick → quick
Инструменты NLTK:
· word_tokenize() - разбиение на токены
· WordNetLemmatizer() - лемматизация
· stopwords.words('english') - список стоп-слов
Раздел 2: Векторное преобразование текста
1. TF-IDF (Term Frequency-Inverse Document Frequency)
TF-IDF = (Частота слова в документе) × log(Всего документов / Документы со словом)
· Преимущества: интерпретируемая, быстрая
· Выход: разреженная матрица (n_samples, n_features)
· Пример: 1000 документов × 5000 признаков
· Типовые параметры:
· max_features = 5000
· min_df = 2 (мин. документы)
· max_df = 0.8 (макс. доля документов)
· ngram_range = (1, 2) (1-граммы и 2-граммы)
2. Keras Tokenizer + Padding
Текст: "I love machine learning"
↓ (Tokenizer)
Последовательность: [5, 28, 156, 892]
↓ (Padding)
Padded: [0, 0, 5, 28, 156, 892] (max_length=200)
· Используется с embedding слоём
· Эффективнее TF-IDF для нейросетей
· max_length выбирайте как 90-й перцентиль длин
Раздел 3: Архитектуры нейронных сетей
1. Модель на основе TF-IDF
Input(5000) → Dense(256, ReLU) → Dropout(0.3) →
Dense(128, ReLU) → Dropout(0.3) → Dense(64, ReLU) →
Dropout(0.2) → Dense(num_classes, Softmax)
2. Модель с Embedding + BiLSTM (рекомендуется)
Input(seq) → Embedding(10000, 100) →
BiLSTM(64, return_seq=True) → BiLSTM(32) →
Dense(32, ReLU) → Dropout(0.2) →
Dense(num_classes, Softmax)
· LSTM захватывает контекст слов
· BiLSTM обрабатывает в обе стороны
· Отлично для текстов
3. Модель с Embedding + Conv1D (быстрая)
Input(seq) → Embedding(10000, 100) →
Conv1D(128, kernel=5, ReLU) → GlobalMaxPool →
Conv1D(64, kernel=3, ReLU) → GlobalMaxPool →
Dense(64, ReLU) → Dense(num_classes, Softmax)
· Быстрее чем LSTM
· Работает как извлечение n-грамм
· Хороша для больших текстов
Раздел 4: Параметры обучения
· Loss: binary_crossentropy (2 класса), categorical_crossentropy (3+)
· Optimizer: Adam(learning_rate=0.001)
· Batch size: 32
· Epochs: 15-20 (с Early Stopping)
· Validation split: 0.2
Раздел 5: Метрики оценки
· Accuracy
· Precision, Recall, F1-score
· ROC-AUC
· Confusion Matrix
Раздел 6: Результаты
· Кривые обучения (loss и accuracy)
· Матрица ошибок
· Классификационный отчёт
· Сравнение методов векторизации
· Сравнение архитектур
Типичный workflow
Загрузить → Очистить → Токенизировать → Лемматизировать →
Векторизировать → Построить модель → Обучить →
Оценить → Визуализировать → Отчёт

Практическая работа №5 «Сегментация и классификация объектов на изображениях с помощью глубоких нейронных сетей»
Цель работы – написать программу на языке Python, использующую (на выбор) или библиотеку PyTorch или Keras, выполняющую две задачи: 1) классификацию изображений, 2) локализацию значимых областей на изображении, с применением сверточных нейронных сетей. Выборки изображений получены от преподавателя. В работе следует использовать процедуру аугментации данных и провести тестирование с сетью, полученной путем переноса обучения. Результаты работы привести в отчете.

Пример структуры отчета по выполненному заданию практической работы №4:

Цель
Классификация и локализация объектов на изображениях с использованием CNN, аугментации данных и трансфертного обучения.
Ключевые компоненты
Раздел 1: Загрузка и обработка изображений
· Структура папок:
data/
class1/
image1.jpg
image2.jpg
class2/
image1.jpg
· Масштабирование: обычно 224×224 (ResNet, VGG)
· Нормализация: деление на 255.0 (значения в [0, 1])
Раздел 2: Аугментация (Data Augmentation)
Почему нужна аугментация:
· Увеличивает размер данных (1000 фото → 10000)
· Повышает робустность модели
· Предотвращает переобучение
· Модель учится на вариациях
Типы трансформаций:
Исходное изображение
↓
Повороты (rotation_range=20°)
↓
Сдвиги (width_shift_range=0.2, height_shift_range=0.2)
↓
Масштабирование (zoom_range=0.2)
↓
Отражение (horizontal_flip=True)
↓
Заполнение новых пикселей (fill_mode='nearest')
Раздел 3: Архитектуры CNN
1. Пользовательская CNN
Input(224, 224, 3)
↓
Conv2D(32) → BatchNorm → Conv2D(32) → MaxPool → Dropout(0.25)
↓
Conv2D(64) → BatchNorm → Conv2D(64) → MaxPool → Dropout(0.25)
↓
Conv2D(128) → BatchNorm → Conv2D(128) → MaxPool → Dropout(0.25)
↓
Flatten → Dense(256) → Dropout(0.5) → Dense(128) → Dropout(0.3)
↓
Dense(num_classes, Softmax)
2. Трансфертное обучение (Transfer Learning)
Когда использовать:
· Мало своих данных (<1000 изображений)
· Задача похожа на ImageNet (классификация объектов)
· Ограниченные вычислительные ресурсы
3. Базовые модели:
· ResNet50: 50 слоёв, отличная точность (88% на ImageNet)
· VGG16: 16 слоёв, простая, надёжная (71% на ImageNet)
· MobileNetV2: 53 слоя, лёгкая для мобильных
4. Процесс:
Загрузить ResNet50(weights='imagenet')
↓
Заморозить веса (trainable=False)
↓
Добавить свои слои:
GlobalAveragePooling2D() →
Dense(256, ReLU) → Dropout(0.3) →
Dense(128, ReLU) → Dropout(0.2) →
Dense(num_classes, Softmax)
↓
Обучать только новые слои
↓
(Опционально) Разморозить несколько верхних слоёв базовой модели
и обучить со НИЗКИМ learning rate
Раздел 4: Локализация объектов (CAM)
Class Activation Map показывает:
· Какие пиксели важны для предсказания
· Визуализация "внимания" модели
· Где модель "смотрит" при классификации
Как работает:
Входное изображение
↓
Проход через Conv слои → Activation Map (14×14×2048)
↓
Вычисление градиентов (насколько слой влияет на класс)
↓
Взвешивание активаций градиентами
↓
Суммирование → CAM (14×14)
↓
Масштабирование → Наложение на исходное изображение
Визуализация:
· Красное = сильное влияние на класс
· Синее = слабое влияние
· Помогает понять решения модели
Раздел 5: Обучение с аугментацией
train_augmentation = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
zoom_range=0.2,
horizontal_flip=True
)
model.fit(
train_augmentation.flow(X_train, y_train, batch_size=32),
epochs=20,
validation_data=(X_val, y_val)
)
Раздел 6: Оценка модели
· Матрица ошибок (для каждого класса)
· Precision, Recall, F1-score
· Accuracy на тестовой выборке
· Визуализация CAM на примерах
Типичный workflow
Загрузить → Разделить → Демо аугментации →
Пользовательская CNN → Обучить →
Transfer Learning (ResNet50) → Обучить →
Сравнить результаты → CAM локализация →
Визуализировать → Отчёт

Оценка за дифференцированный зачет выставляется на основе полученных оценок за защиту отчетов по практической работе.

Таблица – Балльные оценки для элементов контроля
	Элементы учебной
деятельности
	Максимальный балл с начала семестра
	Оцениваемая компетенция

	Подготовка к практическим занятиям и защита отчета по практической работе
	20 баллов * 5 практических работ = 100 баллов
	
ПК 1.1 – 1.5; ПК 2.2, ПК 2.3, ПК 2.4, ПК 4.4

Пересчет баллов в оценки промежуточной успеваемости

	Баллы
	Оценка

	От 90 баллов
	5

	От 70 до 89 баллов
	4

	От 60 до 69 баллов
	3

	Менее 60 баллов
	2

image1.emf

oleObject1.bin

image2.png

