
	

	ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ
Федеральное государственное бюджетное образовательное учреждение высшего образования
«Камчатский государственный технический университет»

	
	Фонд оценочных средств
Система менеджмента качества

	ФОС – 2024
	Колледж информационных технологий

	РЕКОМЕНДОВАН

к утверждению
в составе ОПОП 09.02.07:
Учебно-методическим советом,
протокол №9 от «8» мая 2024 г.
(в редакции от 28.08.2024 г.)
	УТВЕРЖДЕНО

Проректор по учебной
и научной работе
ФГБОУ ВО «КамчатГТУ»
[image:] Н.С. Салтанова
 «26» мая 2024 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ
ПО ДИСЦИПЛИНЕ «ВВЕДЕНИЕ В JAVASCRIPT»

для специальности среднего профессионального образования
09.02.07 ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ПРОГРАММИРОВАНИЕ
квалификация – программист

Петропавловск-Камчатский, 2024 г.

Фонд оценочных средств по учебной дисциплине
ОПЦ.14 «ВВЕДЕНИЕ В JAVASCRIPT»
Относится к циклу общепрофессиональных дисциплин основной общеобразовательной профессиональной программы специальности 09.02.07 Информационные системы и программирование
В результате освоения содержания учебной дисциплины «Введение в Java Script» обучающийся будет
Уметь:
- обрабатывать цифровую, текстовую и графическую информацию средствами языка JavaScript;
- разрабатывать интерактивные средствами языка JavaScript.
Знать:
- понятия, связанные с семантикой, синтаксисом, стандартами и структурой языка JavaScript;
- программное обеспечение для отладки и тестирования программ на языке JavaScript;
- методы языка JavaScript, реализующие интерактивность и динамичность на веб-страницах;
- приемы создания интерактивных динамических веб-страниц средствами языка JavaScript.

В результате освоения дисциплины обучающийся должен овладеть общими и профессиональными компетенциями:
ОК 01. Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам.
OK 02. Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности.
ОК 03. Планировать и реализовывать собственное профессиональное и личностное развитие.
ОК 04. Работать в коллективе и команде, эффективно взаимодействовать с коллегами, руководством, клиентами.
ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке с учетом особенностей социального и культурного контекста.
ОК 09. Использовать информационные технологии в профессиональной деятельности.
ПК 1.1. Формировать алгоритмы разработки программных модулей в соответствии с техническим заданием.
ПК 1.2. Разрабатывать программные модули в соответствии с техническим заданием.
ПК 1.3 Выполнять отладку программных модулей с использованием специализированных программных средств
ПК 1.4 Выполнять тестирование программных модулей
ПК 1.5 Осуществлять рефакторинг и оптимизацию программного кода
ПК 2.2. Выполнять интеграцию модулей в программное обеспечение.
ПК 4.4. Обеспечивать защиту программного обеспечения компьютерных систем программными средствами.

ФОС для промежуточной аттестации
по учебной дисциплине «Введение в JavaScript»
	
№
	
 Наименование ФОС
	
Материалы промежуточной аттестации

	1.
	Контрольная работа
	Тестирование, практическое задание.

	2.
	Экзамен
	Вопросы для подготовки к экзамену по дисциплине.

ТЕСТ К КОНТРОЛЬНОЙ РАБОТЕ
(правильный ответ выделен жирным шрифтом)
1. Что будет, если вызвать document.write(str) после загрузки страницы?
1) Строка str допишется в конец документа.
2) Содержимое документа будет полностью заменено на строку str.
3) Будет ошибка.
2. Где в документе может располагаться тег script по стандарту HTML?
1) Только в <head>.
2) Только в <body>.
3) В <head> или в <body>.
4) Где угодно, главное чтоб был.
3. Как получить размер отступа margin-top у element?
1) element.style.marginTop
2) element.style["margin-top"]
3) element.style.margin-top
4. Как получить текстовое содержимое DOM-элемента p?
<p>Hello</p>
1) p.html
2) p.text
3) p.content
4) p.textContent
5) p.firstChild.nodeValue
5. Какие из этих свойств элемента могут указывать на текстовый узел?
1) firstElementChild
2) firstChild
3) parentNode
4) parentElement
5) nextSibling
6. Как отменить в функции-обработчике события его действие по умолчанию?
1) event.preventDefault()
2) event.stopDefault()
3) event.cancelEvent()
4) event.cancelDefault()
7. Как отменить эффект "всплытия пузырька"?
1) event.stopPropagation()
2) event.cancelPropagation()
3) event.stopBubble()
4) event.prohibitBubble()
8. Как указать внешний javascript-файл в html-документе?
1) <script src='script.js'/>
2) <script src='script.js'></script>
3) <script type='javascript'>script.js</script>
4) <link rel='javascript' href='script.js'/>
9. Можно ли инициировать DOM-событие из javascript?
Например, сэмулировать клик мышкой на элементе, чтобы javascript-код кликнул за пользователя, и сработали соответствующие обработчики.
1) Да, можно.
2) Нет, нельзя.
10. Есть элемент: <input id="input" value="Привет">
Как в нём поменять значение?
1) input.value = "Пока"
2) input.setValue("Пока")
3) input.set("value", "Пока");
4) input.set.value = "Пока";
5) input.defaultValue = "Пока"
6) Все вышеперечисленные
11. Вызов setTimeout(func, 100) вызовет func…
1) Через 100 миллисекунд после setTimeout.
2) Через 100 миллисекунд после setTimeout, но до следующей строки кода.
3) Через 100 миллисекунд после текущего скрипта, когда браузер выполнит весь JavaScript код.
12. Какого события из этого списка не существует?
1) Onmousescroll
2) Onclick
3) Onmouseover
4) Onmousemove
5) Onjump
6) все существуют
13. В документе
<body>
<p id='a'>A</p>
<p id='b'>B</p>
<p id='c'>C</p>
<p id='d'>D</p>
</body>
вызов document.querySelector('p').textContent вернёт
1) A
2) B
3) C
4) D
14. Для элемента button обработчик события onclick назначен следующим образом:
button.addEventListener('click', function(){ console.log('CLICKED!') })
Возможно ли отменить данные обработчик с помощью метода removeEventListener?
1) Да
2) Нет
15. Что будет результатом выполнения следующего кода?
[image: https://cdn.startexam.ru/media/26803/ea3a7744-d973-4d6a-8228-914a4a4e01d1/js-basic-13.png]
1) -1
2) 0
3) 1
4) True
5) False
6) NaN

[bookmark: контрольная_работа_по_дисциплине_9edfae]КОНТРОЛЬНАЯ РАБОТА
[bookmark: вводные_указания]ВВОДНЫЕ УКАЗАНИЯ
Контрольная работа включает 2 варианта, каждый из которых содержит 5 практических заданий по основным темам JavaScript. Студент должен выполнить один из предложенных вариантов полностью. Каждое задание содержит описание, развернутое решение с комментариями и объяснением кода.
Требования к выполнению:
· Код должен быть синтаксически корректен
· Использовать современный JavaScript (ES6+)
· Обязательно включать комментарии и объяснения
· Результаты должны быть воспроизводимы
· При работе с DOM использовать правильные селекторы
[bookmark: вариант_1]
ВАРИАНТ 1
[bookmark: задание_1_основы_синтаксиса_и_переменные]Задание 1: Основы синтаксиса и переменные
Описание задания:
Напишите программу на JavaScript, которая:
1. Объявляет переменные разных типов (строка, число, булево значение, объект, массив)
2. Выполняет операции над переменными
3. Выводит результаты в консоль
4. Демонстрирует использование методов строк и массивов
Решение:
// ===== ЗАДАНИЕ 1: ОСНОВЫ СИНТАКСИСА И ПЕРЕМЕННЫЕ =====
// 1. Объявление переменных разных типов
const studentName = "Иван Петров"; // Строка (const - неизменяемая)
let studentAge = 20; // Число (let - переменная)
var isActive = true; // Булево значение (var - устаревший способ)
const student = { // Объект
name: "Иван Петров",
age: 20,
specialization: "Программист",
gpa: 4.5
};
const grades = [85, 92, 78, 88, 95]; // Массив оценок
// 2. Операции над переменными
console.log("===== ИНФОРМАЦИЯ О СТУДЕНТЕ =====");
console.log(Имя: ${studentName}); // Шаблонные строки (template literals)
console.log(Возраст: ${studentAge} лет);
console.log(Статус: ${isActive ? "Активен" : "Неактивен"});
// 3. Работа с объектом
console.log("\n===== ДАННЫЕ ОБ ОБЪЕКТЕ STUDENT =====");
console.log(Специальность: ${student.specialization});
console.log(Средний балл: ${student.gpa});
// 4. Методы работы со строками
console.log("\n===== МЕТОДЫ СТРОК =====");
const fullInfo = Студент ${studentName.toUpperCase()} учится на специальности;
console.log(fullInfo);
console.log(Количество символов в имени: ${studentName.length});
console.log(Первые 5 символов: ${studentName.substring(0, 5)});
console.log(Содержит слово "Петров": ${studentName.includes("Петров")});
// 5. Методы работы с массивами
console.log("\n===== МЕТОДЫ МАССИВОВ =====");
console.log(Все оценки: ${grades});
console.log(Количество оценок: ${grades.length});
console.log(Первая оценка: ${grades[0]});
console.log(Последняя оценка: ${grades[grades.length - 1]});
// Методы для работы с массивами
const maxGrade = Math.max(...grades); // Максимальная оценка
const minGrade = Math.min(...grades); // Минимальная оценка
const avgGrade = grades.reduce((sum, grade) => sum + grade, 0) / grades.length;
console.log(Максимальная оценка: ${maxGrade});
console.log(Минимальная оценка: ${minGrade});
console.log(Средняя оценка: ${avgGrade.toFixed(2)});
// 6. Преобразование типов (Type Conversion)
console.log("\n===== ПРЕОБРАЗОВАНИЕ ТИПОВ =====");
const stringNumber = "42";
const number = parseInt(stringNumber); // Преобразование строки в число
console.log(Строка "${stringNumber}" + число 8 = ${number + 8});
const floatNumber = parseFloat("3.14");
console.log(Число с плавающей точкой: ${floatNumber});
// 7. Операторы сравнения и логические операции
console.log("\n===== ОПЕРАТОРЫ СРАВНЕНИЯ =====");
console.log(studentAge > 18: ${studentAge > 18}); // true
console.log(studentAge === "20": ${studentAge === "20"}); // false (строгое сравнение)
console.log(studentAge == "20": ${studentAge == "20"}); // true (нестрогое сравнение)
const isGoodStudent = avgGrade > 80 && isActive;
console.log(Хороший студент (средняя > 80 И активен): ${isGoodStudent});
Объяснение кода:
· const vs let vs var: const для неизменяемых данных, let для блоковой области видимости, var считается устаревшим
· Шаблонные строки: используют обратные кавычки и ${} для интерполяции переменных
· Методы строк: toUpperCase(), length, substring(), includes()
· Методы массивов: Math.max/min с оператором spread (...), reduce() для суммирования
· Преобразование типов: parseInt(), parseFloat(), Number()

[bookmark: задание_2_функции_и_область_видимости]Задание 2: Функции и область видимости
Описание задания:
Создайте набор функций для работы с данными студента:
1. Функция для расчёта среднего балла
2. Стрелочная функция для проверки прохождения курса
3. Функция с параметрами по умолчанию
4. Функция высшего порядка (принимающая функцию как параметр)
Решение:
// ===== ЗАДАНИЕ 2: ФУНКЦИИ И ОБЛАСТЬ ВИДИМОСТИ =====
// 1. Обычная функция для расчёта среднего балла
function calculateAverageGrade(grades) {
if (grades.length === 0) {
return 0;
}
const sum = grades.reduce((acc, grade) => acc + grade, 0);
return sum / grades.length;
}
// 2. Стрелочная функция для проверки успеваемости
const isPassCourse = (averageGrade, passingScore = 60) => {
return averageGrade >= passingScore;
};
// 3. Функция с параметрами по умолчанию
function generateGradesReport(studentName, grades, scale = 100) {
const average = calculateAverageGrade(grades);
const percentage = (average / scale) * 100;
return {
 name: studentName,
 grades: grades,
 average: average.toFixed(2),
 percentage: percentage.toFixed(2),
 passed: isPassCourse(average)
};

}
// 4. Функция высшего порядка
function processGrades(grades, callback) {
// callback - это функция, которую мы передаём как параметр
return grades.map(callback);
}
// Пример использования функции высшего порядка
const doubleGrades = processGrades([85, 90, 78], grade => grade * 2);
const gradeCategories = processGrades([85, 90, 78], grade => {
if (grade >= 85) return "Отлично";
if (grade >= 70) return "Хорошо";
return "Удовлетворительно";
});
console.log("===== ФУНКЦИИ И ОБЛАСТЬ ВИДИМОСТИ =====\n");
// Использование функций
const studentGrades = [85, 92, 78, 88, 95];
const averageGrade = calculateAverageGrade(studentGrades);
console.log(Оценки: ${studentGrades});
console.log(Средняя оценка: ${averageGrade.toFixed(2)});
console.log(Студент прошёл курс: ${isPassCourse(averageGrade)});
// Генерация отчёта
const report = generateGradesReport("Иван Петров", studentGrades);
console.log("\n===== ОТЧЁТ О СТУДЕНТЕ =====");
console.log(Имя: ${report.name});
console.log(Оценки: ${report.grades});
console.log(Средний балл: ${report.average});
console.log(Процент: ${report.percentage}%);
console.log(Статус: ${report.passed ? "✓ Прошёл" : "✗ Не прошёл"});
// Функции высшего порядка
console.log("\n===== ФУНКЦИИ ВЫСШЕГО ПОРЯДКА =====");
console.log(Удвоенные оценки: ${doubleGrades});
console.log(Категории оценок: ${gradeCategories});
// 5. Демонстрация замыканий (Closures)
function createMultiplier(multiplier) {
return function(number) {
return number * multiplier;
};
}
const double = createMultiplier(2);
const triple = createMultiplier(3);
console.log("\n===== ЗАМЫКАНИЯ (CLOSURES) =====");
console.log(5 * 2 = ${double(5)});
console.log(5 * 3 = ${triple(5)});
// 6. Область видимости
let globalVariable = "Глобальная переменная";
function demonstrateScope() {
let functionVariable = "Переменная функции";
const blockVariable = "Переменная блока";
if (true) {
 let ifVariable = "Переменная в if блоке";
 console.log("\n===== ОБЛАСТЬ ВИДИМОСТИ =====");
 console.log(`globalVariable: ${globalVariable}`);
 console.log(`functionVariable: ${functionVariable}`);
 console.log(`blockVariable: ${blockVariable}`);
 console.log(`ifVariable: ${ifVariable}`);
}

// console.log(ifVariable); // Ошибка! ifVariable не определена здесь

}
demonstrateScope();
Объяснение кода:
· Обычные функции: используют ключевое слово function
· Стрелочные функции: более компактны, синтаксис (params) => expression
· Параметры по умолчанию: passingScore = 60
· Функции высшего порядка: функции, которые принимают или возвращают другие функции
· Замыкания: внутренние функции имеют доступ к переменным внешней функции
· Область видимости: let имеет блоковую область видимости, var имеет функциональную

[bookmark: задание_3_работа_с_объектами_и_методами]Задание 3: Работа с объектами и методами
Описание задания:
Создайте объект "Студент" с методами для управления данными:
1. Конструктор для создания объектов студента
2. Методы для добавления и удаления оценок
3. Метод для расчёта среднего балла
4. Методы для форматирования вывода информации
Решение:
// ===== ЗАДАНИЕ 3: РАБОТА С ОБЪЕКТАМИ И МЕТОДАМИ =====
// 1. Конструктор для создания объектов студента
function Student(name, specialization, groupNumber) {
this.name = name;
this.specialization = specialization;
this.groupNumber = groupNumber;
this.grades = [];
this.enrollmentDate = new Date();
}
// 2. Методы объекта Student
Student.prototype.addGrade = function(grade) {
if (grade >= 0 && grade <= 100) {
this.grades.push(grade);
console.log(✓ Оценка ${grade} добавлена студенту ${this.name});
} else {
console.log(✗ Ошибка: оценка должна быть от 0 до 100);
}
};
Student.prototype.removeGrade = function(index) {
if (index >= 0 && index < this.grades.length) {
const removed = this.grades.splice(index, 1);
console.log(✓ Оценка ${removed[0]} удалена);
} else {
console.log(✗ Ошибка: неверный индекс);
}
};
Student.prototype.calculateAverage = function() {
if (this.grades.length === 0) return 0;
const sum = this.grades.reduce((acc, grade) => acc + grade, 0);
return sum / this.grades.length;
};
Student.prototype.getGradeCategory = function() {
const average = this.calculateAverage();
if (average >= 85) return "Отличник";
if (average >= 70) return "Хороший студент";
if (average >= 60) return "Удовлетворительно";
return "Требует улучшения";
};
Student.prototype.displayInfo = function() {
const average = this.calculateAverage();
const category = this.getGradeCategory();
console.log("\n" + "=".repeat(50));
console.log(`Имя: ${this.name}`);
console.log(`Специальность: ${this.specialization}`);
console.log(`Номер группы: ${this.groupNumber}`);
console.log(`Дата поступления: ${this.enrollmentDate.toLocaleDateString('ru-RU')}`);
console.log(`Оценки: ${this.grades.length > 0 ? this.grades.join(", ") : "Нет оценок"}`);
console.log(`Средний балл: ${average.toFixed(2)}`);
console.log(`Категория: ${category}`);
console.log("=".repeat(50));

};
// 3. Использование конструктора и методов
console.log("===== РАБОТА С ОБЪЕКТАМИ И МЕТОДАМИ =====");
// Создание объектов студентов
const student1 = new Student("Иван Петров", "Программист", "ПО-101");
const student2 = new Student("Мария Сидорова", "Программист", "ПО-101");
// Добавление оценок
console.log("\n--- Добавление оценок для студента 1 ---");
student1.addGrade(85);
student1.addGrade(92);
student1.addGrade(88);
student1.addGrade(95);
console.log("\n--- Добавление оценок для студента 2 ---");
student2.addGrade(78);
student2.addGrade(82);
student2.addGrade(75);
// Попытка добавить неверную оценку
student1.addGrade(150); // Ошибка!
// Удаление оценки
console.log("\n--- Удаление оценки ---");
student2.removeGrade(1); // Удаление оценки с индексом 1
// Вывод информации
student1.displayInfo();
student2.displayInfo();
// 4. Работа с методом Object.create() для прототипного наследования
console.log("\n===== ПРОТОТИПНОЕ НАСЛЕДОВАНИЕ =====");
function GraduateStudent(name, specialization, groupNumber, thesis) {
Student.call(this, name, specialization, groupNumber);
this.thesis = thesis;
this.isGraduated = false;
}
// Установка прототипа
GraduateStudent.prototype = Object.create(Student.prototype);
GraduateStudent.prototype.constructor = GraduateStudent;
// Дополнительный метод для аспирантов
GraduateStudent.prototype.graduate = function() {
if (this.calculateAverage() >= 70) {
this.isGraduated = true;
console.log(✓ ${this.name} успешно защитил диссертацию: "${this.thesis}");
} else {
console.log(✗ ${this.name} не может защищать диссертацию (средний балл < 70));
}
};
// Использование наследованного объекта
const graduateStudent = new GraduateStudent(
"Алексей Иванов",
"Программист",
"ПО-001",
"Оптимизация алгоритмов машинного обучения"
);
graduateStudent.addGrade(90);
graduateStudent.addGrade(88);
graduateStudent.addGrade(92);
graduateStudent.displayInfo();
graduateStudent.graduate();
// 5. Использование литерального синтаксиса объектов
console.log("\n===== ЛИТЕРАЛЬНЫЙ СИНТАКСИС ОБЪЕКТОВ =====");
const studentObject = {
name: "Петр Сидоров",
specialization: "Программист",
grades: [88, 91, 85],
// Метод в объекте
calculateAverage() {
 return this.grades.reduce((a, b) => a + b, 0) / this.grades.length;
},

// Форматированный вывод
toString() {
 return `${this.name} (специальность: ${this.specialization}) - средний балл: ${this.calculateAverage().toFixed(2)}`;
}

};
console.log(studentObject.toString());
Объяснение кода:
· Конструктор: функция для создания объектов с одинаковой структурой
· Методы через prototype: добавляют методы к конструктору
· this: контекст выполнения функции, указывает на объект, для которого вызывается метод
· Прототипное наследование: Object.create() для создания цепочки прототипов
· Литеральный синтаксис: {key: value} для быстрого создания простых объектов

[bookmark: задание_4_работа_с_dom_и_обработк_9881d2]Задание 4: Работа с DOM и обработка событий
Описание задания:
Создайте веб-приложение для управления списком студентов:
1. HTML структура со списком и формой
2. Функции для добавления и удаления студентов
3. Обработка событий клика и отправки формы
4. Динамическое обновление DOM
HTML:
Управление студентами
📚 Управление студентами
Имя студента:
Специальность:
Номер группы:
➕ Добавить студента

Объяснение кода:
· DOM селекторы: getElementById(), querySelector()
· Обработка событий: addEventListener(), event.preventDefault()
· Манипуляция DOM: innerHTML, appendChild(), createElement()
· Валидация форм: проверка пустых значений перед обработкой
· Функции обратного вызова: onclick в HTML, addEventListener в JavaScript

[bookmark: задание_5_асинхронное_программиро_687156]Задание 5: Асинхронное программирование (Promises и Async/Await)
Описание задания:
Создайте программу для работы с асинхронными операциями:
1. Функция, которая возвращает Promise
2. Обработка Promise с методами .then() и .catch()
3. Использование async/await синтаксиса
4. Работа с несколькими асинхронными операциями параллельно
Решение:
// ===== ЗАДАНИЕ 5: АСИНХРОННОЕ ПРОГРАММИРОВАНИЕ =====
console.log("===== АСИНХРОННОЕ ПРОГРАММИРОВАНИЕ: PROMISES И ASYNC/AWAIT =====\n");
// 1. Функция, которая возвращает Promise
function fetchStudentData(studentId) {
return new Promise((resolve, reject) => {
console.log(⏳ Загрузка данных студента ${studentId}...);
 // Имитация задержки сетевого запроса (2 секунды)
 setTimeout(() => {
 if (studentId > 0) {
 const studentData = {
 id: studentId,
 name: `Студент ${studentId}`,
 specialization: "Программист",
 grades: [85, 92, 88, 95]
 };

 console.log(`✓ Данные студента ${studentId} получены`);
 resolve(studentData); // Успешное завершение Promise
 } else {
 reject(new Error("❌ Неверный ID студента")); // Ошибка
 }
 }, 2000);
});

}
// 2. Обработка Promise с .then() и .catch()
console.log("--- Способ 1: Использование .then() и .catch() ---\n");
fetchStudentData(1)
.then(student => {
console.log(Имя: ${student.name});
console.log(Специальность: ${student.specialization});
console.log(Оценки: ${student.grades});
 // Цепочка Promise
 return student.grades.reduce((a, b) => a + b, 0) / student.grades.length;
})
.then(average => {
 console.log(`Средний балл: ${average.toFixed(2)}\n`);
})
.catch(error => {
 console.log(`Ошибка: ${error.message}`);
});

// 3. Функция с async/await синтаксисом
async function loadAndProcessStudent(studentId) {
try {
console.log("--- Способ 2: Использование async/await ---\n");
 const student = await fetchStudentData(studentId);

 console.log(`Имя: ${student.name}`);
 console.log(`Специальность: ${student.specialization}`);
 console.log(`Оценки: ${student.grades}`);

 const average = student.grades.reduce((a, b) => a + b, 0) / student.grades.length;
 console.log(`Средний балл: ${average.toFixed(2)}\n`);

 return average;
} catch (error) {
 console.log(`Ошибка: ${error.message}\n`);
}

}
// 4. Вызов async функции
loadAndProcessStudent(2);
// 5. Работа с несколькими Promise параллельно
async function loadMultipleStudents() {
console.log("--- Способ 3: Загрузка нескольких студентов параллельно ---\n");
try {
 // Promise.all - ждёт завершения всех Promise
 const promises = [
 fetchStudentData(3),
 fetchStudentData(4),
 fetchStudentData(5)
];

 console.log("⏳ Загрузка всех студентов параллельно...\n");
 const students = await Promise.all(promises);

 console.log("✓ Все студенты загружены!\n");

 // Обработка полученных данных
 students.forEach((student, index) => {
 const average = student.grades.reduce((a, b) => a + b, 0) / student.grades.length;
 console.log(`${index + 1}. ${student.name} - средний балл: ${average.toFixed(2)}`);
 });

 return students;
} catch (error) {
 console.log(`Ошибка при загрузке: ${error.message}`);
}

}
// 6. Promise.race - завершается с результатом первого выполненного Promise
async function demonstrateRace() {
console.log("\n--- Способ 4: Promise.race (первый выполненный) ---\n");
const promise1 = new Promise(resolve => {
 setTimeout(() => resolve("Результат 1"), 1000);
});

const promise2 = new Promise(resolve => {
 setTimeout(() => resolve("Результат 2"), 500);
});

const promise3 = new Promise(resolve => {
 setTimeout(() => resolve("Результат 3"), 2000);
});

const firstResult = await Promise.race([promise1, promise2, promise3]);
console.log(`Первый выполненный Promise: ${firstResult}\n`);

}
// 7. Обработка ошибок в асинхронном коде
async function demonstrateErrorHandling() {
console.log("--- Способ 5: Обработка ошибок с try/catch ---\n");
try {
 const student = await fetchStudentData(-1); // Неверный ID
} catch (error) {
 console.log(`Поймана ошибка: ${error.message}`);
 console.log("Программа продолжает работу...\n");
}

}
// 8. Последовательное выполнение асинхронных операций
async function sequentialOperations() {
console.log("--- Способ 6: Последовательное выполнение ---\n");
try {
 console.log("Начало последовательной загрузки...\n");

 const student1 = await fetchStudentData(6);
 console.log(`Загружен: ${student1.name}\n`);

 const student2 = await fetchStudentData(7);
 console.log(`Загружен: ${student2.name}\n`);

 console.log("Все студенты загружены последовательно\n");
} catch (error) {
 console.log(`Ошибка: ${error.message}`);
}

}
// 9. Вспомогательная функция для демонстрации с задержкой
async function runAllDemonstrations() {
await loadAndProcessStudent(2);
await new Promise(resolve => setTimeout(resolve, 3000));

await loadMultipleStudents();

await new Promise(resolve => setTimeout(resolve, 2000));

await demonstrateRace();

await new Promise(resolve => setTimeout(resolve, 4000));

await demonstrateErrorHandling();

await new Promise(resolve => setTimeout(resolve, 2000));

await sequentialOperations();

}
// Запуск всех демонстраций
// runAllDemonstrations();
// Или просто используйте отдельные функции:
// loadAndProcessStudent(2);
// loadMultipleStudents();
// demonstrateRace();
// demonstrateErrorHandling();
// sequentialOperations();
Объяснение кода:
· Promise: объект для работы с асинхронными операциями (resolve/reject)
· .then(): обработка успешного результата
· .catch(): обработка ошибок
· async/await: современный синтаксис для работы с Promise
· Promise.all(): ждёт завершения всех Promise в массиве
· Promise.race(): возвращает результат первого выполненного Promise
· try/catch: обработка исключений в async функциях
[bookmark: вариант_2]
ВАРИАНТ 2
[bookmark: задание_1_манипуляция_строками_и_b40f53]Задание 1: Манипуляция строками и методы массивов
Описание задания:
Напишите программу для работы со строками и массивами:
1. Методы работы со строками (slice, substring, split, replace)
2. Методы массивов (map, filter, find, some, every)
3. Деструктуризация массивов и объектов
4. Оператор spread (...)
Решение:
// ===== ЗАДАНИЕ 1: МАНИПУЛЯЦИЯ СТРОКАМИ И МЕТОДЫ МАССИВОВ =====
console.log("===== РАБОТА СО СТРОКАМИ =====\n");
// 1. Методы работы со строками
const text = "JavaScript - мощный язык программирования";
console.log(Исходная строка: "${text}");
console.log(Длина: ${text.length});
console.log(В верхнем регистре: ${text.toUpperCase()});
console.log(В нижнем регистре: ${text.toLowerCase()});
console.log(Первые 10 символов (slice): ${text.slice(0, 10)});
console.log(С 13 позиции (substring): ${text.substring(13)});
console.log(Разделение по пробелу: ${text.split(' ')});
console.log(Замена слова: ${text.replace('JavaScript', 'TypeScript')});
console.log(Начинается с "Java": ${text.startsWith('Java')});
console.log(Содержит "программ": ${text.includes('программ')});
console.log(Заканчивается на "ание": ${text.endsWith('ание')});
console.log(Повторение строки 3 раза: ${text.repeat(3).substring(0, 50)}...);
console.log(Удаление пробелов: "${text.trim()}");
console.log(Индекс слова "язык": ${text.indexOf('язык')});
// 2. Методы работы с массивами
console.log("\n===== РАБОТА С МАССИВАМИ =====\n");
const numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
const students = [
{ name: "Иван", grade: 85 },
{ name: "Мария", grade: 92 },
{ name: "Алексей", grade: 78 },
{ name: "Ольга", grade: 88 },
{ name: "Петр", grade: 95 }
];
// map - преобразование каждого элемента
console.log("map - квадраты чисел:");
const squared = numbers.map(num => num * num);
console.log(squared);
console.log("\nmap - имена студентов в верхнем регистре:");
const upperNames = students.map(student => student.name.toUpperCase());
console.log(upperNames);
// filter - отфильтровать элементы по условию
console.log("\nfilter - чётные числа:");
const evenNumbers = numbers.filter(num => num % 2 === 0);
console.log(evenNumbers);
console.log("\nfilter - студенты с оценкой >= 85:");
const goodStudents = students.filter(student => student.grade >= 85);
console.log(goodStudents);
// find - найти первый элемент, удовлетворяющий условию
console.log("\nfind - первый нечётный нумер:");
const firstOdd = numbers.find(num => num % 2 !== 0);
console.log(firstOdd);
console.log("\nfind - студент с имением Мария:");
const maria = students.find(student => student.name === "Мария");
console.log(maria);
// some - проверка, есть ли хотя бы один элемент, удовлетворяющий условию
console.log("\nsome - есть ли числа > 8:");
const hasLargeNumber = numbers.some(num => num > 8);
console.log(hasLargeNumber);
console.log("\nsome - есть ли студент с оценкой > 90:");
const hasExcellent = students.some(student => student.grade > 90);
console.log(hasExcellent);
// every - проверка, все ли элементы удовлетворяют условию
console.log("\nevery - все ли числа > 0:");
const allPositive = numbers.every(num => num > 0);
console.log(allPositive);
console.log("\nevery - все ли студенты имеют оценку >= 70:");
const allPassed = students.every(student => student.grade >= 70);
console.log(allPassed);
// reduce - сворачивание массива в одно значение
console.log("\nreduce - сумма всех чисел:");
const sum = numbers.reduce((acc, num) => acc + num, 0);
console.log(sum);
console.log("\nreduce - средняя оценка:");
const avgGrade = students.reduce((sum, student) => sum + student.grade, 0) / students.length;
console.log(avgGrade.toFixed(2));
// join - соединение элементов массива в строку
console.log("\njoin - числа через запятую:");
console.log(numbers.join(", "));
// 3. Цепочка методов (method chaining)
console.log("\n===== ЦЕПОЧКА МЕТОДОВ =====\n");
const result = students
.filter(student => student.grade >= 80)
.map(student => ({ ...student, grade: student.grade + 5 }))
.sort((a, b) => b.grade - a.grade);
console.log("Студенты с оценкой >= 80, +5 к оценке, отсортированы:");
console.log(result);
// 4. Деструктуризация массивов
console.log("\n===== ДЕСТРУКТУРИЗАЦИЯ МАССИВОВ =====\n");
const colors = ['красный', 'зелёный', 'синий', 'жёлтый'];
const [first, second, ...rest] = colors;
console.log(Первый цвет: ${first});
console.log(Второй цвет: ${second});
console.log(Остальные цвета: ${rest});
// 5. Деструктуризация объектов
console.log("\n===== ДЕСТРУКТУРИЗАЦИЯ ОБЪЕКТОВ =====\n");
const person = {
name: "Иван Петров",
age: 25,
city: "Москва",
job: "Программист"
};
const { name, age, ...otherInfo } = person;
console.log(Имя: ${name});
console.log(Возраст: ${age});
console.log(Другая информация:, otherInfo);
// Переименование при деструктуризации
const { name: personName, job: profession } = person;
console.log(Профессия: ${profession});
// 6. Оператор spread (...)
console.log("\n===== ОПЕРАТОР SPREAD (...) =====\n");
const arr1 = [1, 2, 3];
const arr2 = [4, 5, 6];
const combined = [...arr1, ...arr2];
console.log(Объединённые массивы: ${combined});
const array = [2, 3, 4];
const newArray = [1, ...array, 5, 6];
console.log(Вставка в массив: ${newArray});
// Spread для объектов
const obj1 = { a: 1, b: 2 };
const obj2 = { c: 3, d: 4 };
const mergedObj = { ...obj1, ...obj2 };
console.log("Объединённые объекты:", mergedObj);
const updatedObj = { ...person, city: "Санкт-Петербург", age: 26 };
console.log("Обновленный объект:", updatedObj);
Объяснение кода:
· Методы строк: slice(), substring(), split(), replace(), includes(), startsWith(), endsWith()
· Методы массивов: map(), filter(), find(), some(), every(), reduce(), join()
· Деструктуризация: извлечение значений из массивов и объектов в отдельные переменные
· Оператор spread (...): распаковка массивов и объектов
· Method chaining: последовательное применение методов

[bookmark: задание_2_классы_и_объектно_ориен_def87a]Задание 2: Классы и объектно-ориентированное программирование
Описание задания:
Создайте иерархию классов для управления учебным заведением:
1. Базовый класс Person с общими свойствами
2. Классы Student и Teacher, наследующие Person
3. Методы и getters/setters для управления данными
4. Статические методы и свойства
5. Инкапсуляция данных (приватные поля)
Решение:
// ===== ЗАДАНИЕ 2: КЛАССЫ И ООП =====
console.log("===== КЛАССЫ И ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ =====\n");
// 1. Базовый класс Person
class Person {
constructor(name, age, email) {
this.name = name;
this.age = age;
this.email = email;
this.createdAt = new Date();
}
// Getters
get info() {
 return `${this.name} (${this.age} лет)`;
}

// Setters
set age(value) {
 if (value < 0) {
 console.warn("⚠️ Возраст не может быть отрицательным");
 return;
 }
 this._age = value;
}

get age() {
 return this._age;
}

// Обычный метод
displayInfo() {
 console.log(`Имя: ${this.name}`);
 console.log(`Возраст: ${this.age}`);
 console.log(`Email: ${this.email}`);
}

// Статический метод
static getAdultAge() {
 return 18;
}

}
// 2. Класс Student, наследующий Person
class Student extends Person {
constructor(name, age, email, groupNumber, specialization) {
super(name, age, email);
this.groupNumber = groupNumber;
this.specialization = specialization;
this.grades = [];
this.isActive = true;
}
// Методы класса Student
addGrade(subject, grade) {
 if (grade < 0 || grade > 100) {
 console.warn("⚠️ Оценка должна быть от 0 до 100");
 return;
 }

 this.grades.push({
 subject: subject,
 grade: grade,
 date: new Date()
 });

 console.log(`✓ Оценка ${grade} по предмету "${subject}" добавлена для ${this.name}`);
}

getAverageGrade() {
 if (this.grades.length === 0) return 0;
 const sum = this.grades.reduce((acc, item) => acc + item.grade, 0);
 return sum / this.grades.length;
}

displayInfo() {
 super.displayInfo();
 console.log(`Группа: ${this.groupNumber}`);
 console.log(`Специальность: ${this.specialization}`);
 console.log(`Средний балл: ${this.getAverageGrade().toFixed(2)}`);
 console.log(`Статус: ${this.isActive ? "Активен" : "Неактивен"}`);
}

// Переопределение метода родителя
get info() {
 return `${super.info} (Студент ${this.groupNumber})`;
}

}
// 3. Класс Teacher, наследующий Person
class Teacher extends Person {
constructor(name, age, email, subject, experience) {
super(name, age, email);
this.subject = subject;
this.experience = experience;
this.students = [];
}
addStudent(student) {
 this.students.push(student);
 console.log(`✓ Студент ${student.name} добавлен к преподавателю ${this.name}`);
}

getStudentCount() {
 return this.students.length;
}

displayInfo() {
 super.displayInfo();
 console.log(`Предмет: ${this.subject}`);
 console.log(`Опыт: ${this.experience} лет`);
 console.log(`Студентов: ${this.getStudentCount()}`);
}

// Переопределение метода родителя
get info() {
 return `${super.info} (Преподаватель ${this.subject})`;
}

}
// 4. Класс SchoolManagement с статическими методами
class SchoolManagement {
static #totalStudents = 0; // Приватное статическое свойство
static #totalTeachers = 0;
static registerStudent(student) {
 SchoolManagement.#totalStudents++;
 console.log(`✓ Студент ${student.name} зарегистрирован. Всего студентов: ${SchoolManagement.#totalStudents}`);
}

static registerTeacher(teacher) {
 SchoolManagement.#totalTeachers++;
 console.log(`✓ Преподаватель ${teacher.name} зарегистрирован. Всего преподавателей: ${SchoolManagement.#totalTeachers}`);
}

static getTotalStudents() {
 return SchoolManagement.#totalStudents;
}

static getTotalTeachers() {
 return SchoolManagement.#totalTeachers;
}

static getStatistics() {
 return {
 totalStudents: SchoolManagement.#totalStudents,
 totalTeachers: SchoolManagement.#totalTeachers,
 ratio: (SchoolManagement.#totalStudents / SchoolManagement.#totalTeachers).toFixed(2)
 };
}

}
// 5. Использование классов
console.log("--- Создание объектов ---\n");
// Создание студентов
const student1 = new Student("Иван Петров", 20, "ivan@example.com", "ПО-101", "Программист");
const student2 = new Student("Мария Сидорова", 19, "maria@example.com", "ПО-101", "Программист");
// Регистрация студентов
SchoolManagement.registerStudent(student1);
SchoolManagement.registerStudent(student2);
// Создание преподавателя
const teacher = new Teacher("Алексей Иванов", 45, "alex@example.com", "JavaScript", 15);
// Регистрация преподавателя
SchoolManagement.registerTeacher(teacher);
// Добавление оценок
console.log("\n--- Добавление оценок ---\n");
student1.addGrade("JavaScript", 85);
student1.addGrade("HTML/CSS", 90);
student1.addGrade("JavaScript", 88);
student2.addGrade("JavaScript", 92);
student2.addGrade("HTML/CSS", 87);
// Добавление студентов к преподавателю
console.log("\n--- Добавление студентов к преподавателю ---\n");
teacher.addStudent(student1);
teacher.addStudent(student2);
// Вывод информации
console.log("\n--- Информация о студентах ---\n");
student1.displayInfo();
console.log();
student2.displayInfo();
console.log("\n--- Информация о преподавателе ---\n");
teacher.displayInfo();
// Использование getters
console.log("\n--- Использование getters ---\n");
console.log(Student1 info (getter): ${student1.info});
console.log(Teacher info (getter): ${teacher.info});
// Статические методы
console.log("\n--- Статические методы и свойства ---\n");
console.log(Взрослый возраст: ${Person.getAdultAge()} лет);
const stats = SchoolManagement.getStatistics();
console.log("Статистика учебного заведения:");
console.log(Всего студентов: ${stats.totalStudents});
console.log(Всего преподавателей: ${stats.totalTeachers});
console.log(Соотношение студент/преподаватель: ${stats.ratio});
// 6. Абстрактные методы (использование полиморфизма)
console.log("\n--- Полиморфизм ---\n");
function printInfo(person) {
console.log(person.info);
person.displayInfo();
console.log();
}
printInfo(student1);
printInfo(teacher);
Объяснение кода:
· Наследование: класс Student наследует от Person с помощью extends и super
· Инкапсуляция: приватные поля (# prefix) для ограничения доступа
· Getters/Setters: методы для безопасного доступа к свойствам
· Статические методы: принадлежат классу, а не экземплярам
· Переопределение методов: переопределение get info в подклассах
· Полиморфизм: работа с объектами разных типов через единый интерфейс

[bookmark: задание_3_работа_с_json_и_localstorage]Задание 3: Работа с JSON и localStorage
Описание задания:
Создайте приложение для сохранения и загрузки данных студентов:
1. Преобразование объектов в JSON и обратно
2. Сохранение данных в localStorage
3. Загрузка данных из localStorage
4. Управление списком студентов с сохранением в браузере
HTML и JavaScript:
Управление студентами с localStorage
📚 Управление студентами (с localStorage)
💡 Данные сохраняются в localStorage браузера и сохранятся после перезагрузки
Добавить нового студента
[bookmark: studentName]Имя студента:
[bookmark: studentAge]Возраст:
[bookmark: studentEmail]Email:
[bookmark: groupNumber]Номер группы:
➕ Добавить студента 🗑️ Очистить данные 💾 Экспортировать JSON

Список студентов

JSON представление данных
Данные отобразятся здесь...
Объяснение кода:
· JSON.stringify(): преобразование объекта в JSON строку
· JSON.parse(): преобразование JSON строки в объект
· localStorage.setItem(): сохранение данных в браузере
· localStorage.getItem(): загрузка данных из браузера
· localStorage.removeItem(): удаление данных из браузера
· Обработка ошибок: try/catch при разборе JSON

[bookmark: задание_4_регулярные_выражения_re_2b12d2]Задание 4: Регулярные выражения (Regular Expressions)
Описание задания:
Создайте программу для валидации данных с помощью регулярных выражений:
1. Валидация email адреса
2. Проверка формата телефонного номера
3. Проверка пароля (сложность)
4. Извлечение данных из строки
Решение:
// ===== ЗАДАНИЕ 4: РЕГУЛЯРНЫЕ ВЫРАЖЕНИЯ =====
console.log("===== РЕГУЛЯРНЫЕ ВЫРАЖЕНИЯ =====\n");
// 1. Простые регулярные выражения
console.log("--- Простые примеры ---\n");
const pattern1 = /hello/i; // Флаг i = игнорирование регистра
console.log("Паттерн: /hello/i");
console.log("Hello, World!".match(/hello/i):, "Hello, World!".match(/hello/i));
const pattern2 = /\d+/; // \d = цифра, + = один или более
const text2 = "У меня 3 яблока и 5 апельсинов";
console.log("\nПаттерн: /\d+/");
console.log(Найденные числа: ${text2.match(/\d+/g)});
// 2. Валидация email
console.log("\n--- Валидация Email ---\n");
const emailRegex = /[\s@]+@[\s@]+.[\s@]+$/;
function validateEmail(email) {
const isValid = emailRegex.test(email);
console.log(Email: "${email}" - ${isValid ? "✓ Валидный" : "✗ Невалидный"});
return isValid;
}
validateEmail("user@example.com");
validateEmail("john.doe@company.co.uk");
validateEmail("invalid.email@");
validateEmail("noatexample.com");
validateEmail("user @example.com");
// 3. Валидация телефонного номера
console.log("\n--- Валидация телефонного номера ---\n");
[bookmark: fnref1]// Формат: +7 (900) 123-45-67 или +7-900-123-45-67
const phoneRegex = /[1]?[(]?[0-9]{1,4}[)]?[-\s.]?[(]?[0-9]{1,4}[)]?[-\s.]?[0-9]{1,9}$/;
function validatePhone(phone) {
const isValid = phoneRegex.test(phone);
console.log(Телефон: "${phone}" - ${isValid ? "✓ Валидный" : "✗ Невалидный"});
return isValid;
}
validatePhone("+7 (900) 123-45-67");
validatePhone("+7-900-123-4567");
validatePhone("8 (800) 555-35-35");
validatePhone("123");
validatePhone("abc-def-ghij");
// 4. Проверка сложности пароля
console.log("\n--- Проверка сложности пароля ---\n");
function validatePassword(password) {
const criteria = {
length: password.length >= 8,
uppercase: /[A-Z]/.test(password),
lowercase: /[a-z]/.test(password),
numbers: /\d/.test(password),
 specialChars: /[!@#$%^&*()_+\-=\[\]{};:'",.<>?/\\|`~]/.test(password)
};

const score = Object.values(criteria).filter(v => v).length;

console.log(`\nПароль: "${password}"`);
console.log(` Длина >= 8 символов: ${criteria.length ? "✓" : "✗"}`);
console.log(` Заглавные буквы: ${criteria.uppercase ? "✓" : "✗"}`);
console.log(` Строчные буквы: ${criteria.lowercase ? "✓" : "✗"}`);
console.log(` Цифры: ${criteria.numbers ? "✓" : "✗"}`);
console.log(` Специальные символы: ${criteria.specialChars ? "✓" : "✗"}`);

const strength = score <= 2 ? "Слабый" : score <= 3 ? "Средний" : "Сильный";
console.log(` Сложность: ${strength} (${score}/5)`);

return score >= 4;

}
validatePassword("weak");
validatePassword("Medium123");
validatePassword("VeryStrong123!@#");
// 5. Поиск и замена
console.log("\n--- Поиск и замена ---\n");
const text = "Я люблю JavaScript. JavaScript очень популярен. Изучайте JavaScript!";
console.log(Исходный текст: "${text}");
const replaced = text.replace(/JavaScript/g, "TypeScript");
console.log(После замены: "${replaced}");
// 6. Извлечение данных из строки
console.log("\n--- Извлечение данных ---\n");
const htmlContent = <student> <name>Иван Петров</name> <email>ivan@example.com</email> <grade>85</grade> </student>;
const nameMatch = htmlContent.match(/<name>(.
?)</name>/);const emailMatch = htmlContent.match(/<email>(.?)</email>/);
const gradeMatch = htmlContent.match(/<grade>(\d+)</grade>/);
console.log(Имя: ${nameMatch ? nameMatch[1] : "не найдено"});
console.log(Email: ${emailMatch ? emailMatch[1] : "не найдено"});
console.log(Оценка: ${gradeMatch ? gradeMatch[1] : "не найдено"});
// 7. Разделение строки с регулярным выражением
console.log("\n--- Разделение строки ---\n");
const csvData = "Иван,20,Программист;Мария,19,Веб-разработчик;Петр,21,Администратор";
const students = csvData.split(/[,;]/);
console.log("Разбитые данные:");
students.forEach(item => console.log(- ${item}));
// 8. Проверка URL
console.log("\n--- Валидация URL ---\n");
const urlRegex = /^(https?://)?(www.)?[-a-zA-Z0-9@:%._+#=]{1,256}.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_+.#?&//=]*)$/;
function validateURL(url) {
const isValid = urlRegex.test(url);
console.log(URL: "${url}" - ${isValid ? "✓ Валидный" : "✗ Невалидный"});
return isValid;
}
validateURL("https://www.example.com");
validateURL("example.com");
validateURL("www.google.com/search");
validateURL("not a url");
validateURL("http://invalid");
Объяснение кода:
· Флаги: i (игнорирование регистра), g (глобальный поиск), m (многострочный)
· Метасимволы: \d (цифры), \w (буквы и цифры), \s (пробелы), . (любой символ)
· Квантификаторы: + (один или более), * (ноль или более), ? (ноль или один), {n} (ровно n)
· Методы: test(), exec(), match(), replace(), split(), search()

[bookmark: задание_5_работа_с_api_и_fetch]Задание 5: Работа с API и fetch
Описание задания:
Создайте приложение для работы с JSON API:
1. Использование fetch() для загрузки данных
2. Обработка response и преобразование в JSON
3. Обработка ошибок при запросе
4. Отправка POST запроса на сервер
5. Кэширование результатов
Решение:
// ===== ЗАДАНИЕ 5: РАБОТА С API И FETCH =====
console.log("===== РАБОТА С API И FETCH =====\n");
// 1. Простой GET запрос
console.log("--- Пример 1: GET запрос (JSONPlaceholder API) ---\n");
function getUser(userId) {
return fetch(https://jsonplaceholder.typicode.com/users/${userId})
.then(response => {
if (!response.ok) {
throw new Error(HTTP Error: ${response.status});
}
return response.json();
})
.then(data => {
console.log(Пользователь ${userId}:);
console.log(Имя: ${data.name});
console.log(Email: ${data.email});
console.log(Компания: ${data.company.name});
return data;
})
.catch(error => {
console.error(Ошибка при загрузке пользователя: ${error.message});
});
}
// 2. Использование async/await
console.log("\n--- Пример 2: async/await синтаксис ---\n");
async function getPost(postId) {
try {
console.log(⏳ Загрузка поста ${postId}...);
 const response = await fetch(`https://jsonplaceholder.typicode.com/posts/${postId}`);

 if (!response.ok) {
 throw new Error(`HTTP ${response.status}`);
 }

 const post = await response.json();

 console.log(`✓ Пост загружен`);
 console.log(` Заголовок: ${post.title}`);
 console.log(` Содержание: ${post.body.substring(0, 100)}...`);

 return post;
} catch (error) {
 console.error(`❌ Ошибка: ${error.message}`);
}

}
// 3. Загрузка нескольких ресурсов параллельно
console.log("\n--- Пример 3: Параллельная загрузка нескольких ресурсов ---\n");
async function getMultiplePosts(postIds) {
try {
console.log(⏳ Загрузка ${postIds.length} постов...);
 const urls = postIds.map(id =>
 fetch(`https://jsonplaceholder.typicode.com/posts/${id}`)
 .then(res => res.json())
);

 const posts = await Promise.all(urls);

 console.log(`✓ Все посты загружены\n`);

 posts.forEach((post, index) => {
 console.log(`${index + 1}. ${post.title} (ID: ${post.id})`);
 });

 return posts;
} catch (error) {
 console.error(`❌ Ошибка: ${error.message}`);
}

}
// 4. POST запрос (отправка данных)
console.log("\n--- Пример 4: POST запрос (отправка данных) ---\n");
async function createPost(title, body, userId) {
try {
console.log(⏳ Создание нового поста...);
 const response = await fetch('https://jsonplaceholder.typicode.com/posts', {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json'
 },
 body: JSON.stringify({
 title: title,
 body: body,
 userId: userId
 })
 });

 if (!response.ok) {
 throw new Error(`HTTP ${response.status}`);
 }

 const newPost = await response.json();

 console.log(`✓ Пост успешно создан`);
 console.log(` ID: ${newPost.id}`);
 console.log(` Заголовок: ${newPost.title}`);

 return newPost;
} catch (error) {
 console.error(`❌ Ошибка: ${error.message}`);
}

}
// 5. Кэширование результатов
console.log("\n--- Пример 5: Кэширование результатов ---\n");
class APICache {
constructor() {
this.cache = new Map();
}
async fetch(url) {
 // Проверка кэша
 if (this.cache.has(url)) {
 console.log(`📦 Данные загружены из кэша`);
 return this.cache.get(url);
 }

 // Если в кэше нет, загружаем с сервера
 console.log(`⏳ Загрузка с сервера...`);

 try {
 const response = await fetch(url);

 if (!response.ok) {
 throw new Error(`HTTP ${response.status}`);
 }

 const data = await response.json();

 // Сохраняем в кэш
 this.cache.set(url, data);
 console.log(`✓ Данные сохранены в кэш`);

 return data;
 } catch (error) {
 console.error(`❌ Ошибка: ${error.message}`);
 }
}

clearCache() {
 this.cache.clear();
 console.log("✓ Кэш очищен");
}

}
// 6. Обработка разных типов ответов
console.log("\n--- Пример 6: Обработка разных типов ответов ---\n");
async function fetchAndLogInfo(url) {
try {
console.log(Запрос к: ${url});
 const response = await fetch(url);

 // Логирование информации о ответе
 console.log(` Статус: ${response.status} ${response.statusText}`);
 console.log(` Content-Type: ${response.headers.get('content-type')}`);
 console.log(` Размер: ${response.headers.get('content-length')} байт`);

 if (!response.ok) {
 throw new Error(`Ошибка HTTP: ${response.status}`);
 }

 const contentType = response.headers.get('content-type');

 let data;
 if (contentType && contentType.includes('application/json')) {
 data = await response.json();
 console.log(` Тип: JSON`);
 } else if (contentType && contentType.includes('text')) {
 data = await response.text();
 console.log(` Тип: Text`);
 } else {
 data = await response.blob();
 console.log(` Тип: Blob`);
 }

 return data;
} catch (error) {
 console.error(`❌ Ошибка: ${error.message}`);
}

}
// 7. Timeout для запроса
console.log("\n--- Пример 7: Timeout для запроса ---\n");
async function fetchWithTimeout(url, timeoutMs = 5000) {
try {
const controller = new AbortController();
const timeoutId = setTimeout(() => controller.abort(), timeoutMs);
 console.log(`⏳ Загрузка с timeout ${timeoutMs}ms...`);

 const response = await fetch(url, {
 signal: controller.signal
 });

 clearTimeout(timeoutId);

 if (!response.ok) {
 throw new Error(`HTTP ${response.status}`);
 }

 const data = await response.json();
 console.log(`✓ Данные загружены за время`);

 return data;
} catch (error) {
 if (error.name === 'AbortError') {
 console.error(`❌ Timeout: запрос выполнялся дольше ${timeoutMs}ms`);
 } else {
 console.error(`❌ Ошибка: ${error.message}`);
 }
}

}
// Примеры использования (раскомментируйте для тестирования):
// getUser(1);
// getPost(1);
// getMultiplePosts([1, 2, 3]);
// createPost("Мой новый пост", "Это содержание поста", 1);
// const cache = new APICache();
// cache.fetch('https://jsonplaceholder.typicode.com/users/1');
// cache.fetch('https://jsonplaceholder.typicode.com/users/1'); // Из кэша
// fetchAndLogInfo('https://jsonplaceholder.typicode.com/posts/1');
// fetchWithTimeout('https://jsonplaceholder.typicode.com/users/1', 3000);
Объяснение кода:
· fetch(): встроенный API для загрузки ресурсов
· response.json(): преобразование response в JSON
· HTTP методы: GET (по умолчанию), POST, PUT, DELETE
· Headers: задание заголовков запроса
· AbortController: отмена запроса с timeout
· Обработка ошибок: catch блоки для network ошибок
[bookmark: критерии_оценки_контрольной_работы]

КРИТЕРИИ ОЦЕНКИ
	Критерий
	Баллы

	Выполнение всех заданий контрольной работы
	40

	Правильность и работоспособность кода
	30

	Оформление и комментарии в коде
	10

	Тест (1 вопрос = 1 балл)
	15

	Итого
	100

Шкала оценок:
· 90-100 баллов: отлично (5)
· 75-89 баллов: хорошо (4)
· 60-74 баллов: удовлетворительно (3)
· Менее 60 баллов: неудовлетворительно (2)

ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ ПО ДИСЦИПЛИНЕ.
Материалы для экзамена представлены в форме вопросов к экзамену.
Во время проведения зачета запрещается:
· использование любых рукописных, печатных и электронных материалов;
· разговоры с другими лицами (кроме преподавателя);
· перемещения в аудитории без согласования с преподавателем.
Оценка, полученная по экзамену, является окончательной оценкой по учебной дисциплине.
Список вопросов для экзамена с вариантами ответов:
1. Какова роль JavaScript в веб-разработке?

Основная роль: Обеспечение интерактивности и динамичности веб-страниц.
Функции:
Обработка событий пользователя (клики, наведение мыши, отправка форм и т.д.).
Изменение содержимого и структуры DOM (Document Object Model) в реальном времени.
Создание анимаций и визуальных эффектов.
Взаимодействие с сервером (отправка и получение данных через AJAX/Fetch).
Валидация данных на стороне клиента.
Разработка Single Page Applications (SPA) и Progressive Web Apps (PWA).
Разработка серверных приложений (Node.js).
Значение: Делает сайты более удобными, отзывчивыми и функциональными для пользователей.

2. В чем заключаются основы синтаксиса JavaScript?

Переменные: var, let, const (различия в области видимости и возможности переопределения).
Типы данных:
Примитивные: Number, String, Boolean, Null, Undefined, Symbol, BigInt.

Объектные: Object, Array, Function.
Операторы: Арифметические, логические, сравнения, присваивания, битовые и др.
Управляющие конструкции: if...else, switch, for, while, do...while.
Функции: Объявление, вызов, параметры, возвращаемые значения.
Объекты: Создание, доступ к свойствам (через точку ., или квадратные скобки []).
Комментарии: Однострочные (//) и многострочные (/* ... */).
Чувствительность к регистру: JavaScript чувствителен к регистру.
Точка с запятой: Необязательна, но рекомендуется для явного указания конца оператора.

3. Что такое замыкания в JavaScript и как они используются?

Определение: Замыкание - это функция, которая имеет доступ к переменным внешней функции, даже после того, как внешняя функция завершила своё выполнение.
Механизм: Функция сохраняет ссылку на лексическое окружение, в котором она была создана.
Использование:
Создание приватных переменных и методов.
Сохранение состояния между вызовами функции.
Реализация каррирования и частичного применения.
Обработчики событий в циклах.
Пример: Функция-счетчик, где замыкание хранит значение счетчика.

4. Как работают прототипы в JavaScript?

Определение: Каждый объект в JavaScript имеет прототип (другой объект), от которого он наследует свойства и методы.
Цепочка прототипов: Если свойство не найдено в самом объекте, поиск продолжается в его прототипе, затем в прототипе прототипа и так далее, до тех пор, пока не будет достигнут null.
__proto__ и prototype:
__proto__ - свойство объекта, указывающее на его прототип. (Устаревшее, не рекомендуется к использованию)
prototype - свойство функции-конструктора, которое определяет прототип создаваемых ею объектов.
Использование: Реализация наследования, добавление новых методов ко встроенным объектам (осторожно!), повторное использование кода.

5. Что такое асинхронное программирование и почему оно важно?

Определение: Асинхронное программирование позволяет выполнять операции, не блокируя основной поток выполнения программы.
Важность:
Улучшение производительности и отзывчивости приложения.
Особенно важно для операций ввода-вывода (запросы к серверу, чтение файлов и т.д.).
Позволяет пользовательскому интерфейсу оставаться отзывчивым во время выполнения длительных операций.
Механизмы: Callback-функции, Promises, Async/Await.
Пример: Загрузка данных с сервера без "зависания" страницы.

6. Какие методы позволяют работать с DOM-элементами?

Получение элементов:
document.getElementById(id)
document.getElementsByClassName(className)
document.getElementsByTagName(tagName)
document.querySelector(selector) (возвращает первый элемент, соответствующий селектору)
document.querySelectorAll(selector) (возвращает все элементы, соответствующие селектору)
Создание элементов:
document.createElement(tagName)
document.createTextNode(text)
Добавление элементов:
parentNode.appendChild(childNode)
parentNode.insertBefore(newNode, existingNode)
Удаление элементов:
parentNode.removeChild(childNode)
Замена элементов:
parentNode.replaceChild(newNode, oldNode)
Модификация атрибутов:
element.setAttribute(name, value)
element.getAttribute(name)
element.removeAttribute(name)
Модификация стилей:
element.style.property = value
element.classList.add(className)
element.classList.remove(className)

7. Что такое делегирование событий и в чем его преимущества?

Определение: При делегировании событий, обработчик назначается на родительский элемент, а не на отдельные дочерние элементы. Когда событие происходит на дочернем элементе, оно "всплывает" (bubbles up) по DOM-дереву к родительскому элементу, где и обрабатывается.
Преимущества:
Производительность: Меньше обработчиков событий, что экономит память и повышает производительность.
Простота: Легче управлять событиями для динамически добавляемых элементов. Не нужно назначать обработчики для каждого нового элемента.
Удобство: Более чистый и понятный код.
Пример: Обработка кликов на элементах списка, когда обработчик назначен на сам список.

8. Какие типы событий существуют в JavaScript?

События мыши: click, dblclick, mousedown, mouseup, mousemove, mouseover, mouseout, contextmenu.
События клавиатуры: keydown, keyup, keypress.
События формы: submit, focus, blur, change, input.
События окна: load, unload, resize, scroll.

События документа: DOMContentLoaded (документ загружен и разобран), readystatechange.
События перетаскивания: dragstart, drag, dragenter, dragleave, dragover, drop, dragend.
События сенсорного экрана(Touch events): touchstart, touchmove, touchend, touchcancel.
События таймера: setTimeout, setInterval.
Пользовательские события: CustomEvent.

9. Что такое промисы и как они помогают в асинхронном программировании?

Определение: Promis (Обещание) - это объект, представляющий собой результат асинхронной операции, который может быть доступен сейчас, в будущем или никогда.
Состояния:
Pending (Ожидание): Начальное состояние, ни выполнено, ни отклонено.
Fulfilled (Выполнено): Операция успешно завершена, есть результат.
Rejected (Отклонено): Операция завершилась с ошибкой, есть причина ошибки.
Методы:
then(onFulfilled, onRejected): Обработчики для успешного завершения и отклонения.
catch(onRejected): Обработчик для отклонения.
finally(onFinally): Выполняется всегда, после выполнения или отклонения (независимо от результата).
Цепочка промисов: Можно создавать последовательность асинхронных операций, где результат одной операции передается в следующую.
Преимущества: Улучшение читаемости и обработки ошибок по сравнению с callback-функциями. Упрощение написания асинхронного кода.

10. Как использовать async/await для управления асинхронными операциями?

async: Ключевое слово, которое ставится перед объявлением функции. Оно указывает на то, что функция будет асинхронной и будет возвращать Promise.
await: Ключевое слово, которое можно использовать только внутри async функций. Оно приостанавливает выполнение функции до тех пор, пока Promise не будет выполнен.
Пример:
javascript
Копировать
async function fetchData() {
 try {
 const response = await fetch('https://example.com/api/data');
 const data = await response.json();
 console.log(data);
 } catch (error) {
 console.error('Error:', error);
 }
}
fetchData();
Преимущества:
Более читаемый и структурированный код по сравнению с использованием только Promises.
Упрощает обработку ошибок с помощью try...catch.

11. Как осуществляется работа с API с использованием асинхронных запросов?

Fetch API: Используется для отправки HTTP-запросов (GET, POST, PUT, DELETE и т.д.) к API.
Этапы:
Создание запроса: С использованием fetch(url, options). options позволяют указать метод, заголовки, тело запроса и другие параметры.
Отправка запроса: Вызов fetch() возвращает Promise, который разрешается в объект Response.
Обработка ответа:
Проверка статуса ответа (response.ok, response.status).
Преобразование тела ответа в нужный формат (например, response.json(), response.text()). Эти методы также возвращают Promises.
Обработка данных: Использование полученных данных.
Обработка ошибок: Использование try...catch или .catch() для обработки ошибок во время запроса или обработки ответа.
Пример (см. пример в вопросе 10).

12. В чем заключается шаблонизация в веб-разработке?

Определение: Шаблонизация - это процесс создания HTML-структуры динамически, используя данные, полученные из разных источников (например, из API, базы данных или пользовательского ввода).
Цель: Разделение данных и представления, упрощение создания динамических интерфейсов, повторное использование кода.
Механизм: Использование шаблонов (HTML-структуры с плейсхолдерами) и движков шаблонизации (библиотек, которые заменяют плейсхолдеры на реальные данные).

13. Какие методы используются для создания динамических интерфейсов с помощью шаблонизации?

Строковое конкатенация: (Не рекомендуется для сложных случаев) Создание HTML-фрагментов путем объединения строк с данными.
Шаблонные литералы (Template literals): Позволяют встраивать выражения JavaScript непосредственно в строки, используя обратные кавычки (`).
Библиотеки шаблонизации:
Handlebars.js: Простая и мощная библиотека для создания семантических шаблонов.
Mustache.js: Минималистичная библиотека шаблонизации без логики.
Pug (Jade): Шаблонизатор, использующий более компактный синтаксис, чем HTML.
React JSX: Расширение синтаксиса JavaScript, которое позволяет писать HTML-подобный код прямо в JavaScript.
Vue.js Templates: Специальный синтаксис шаблонов, встроенный во Vue.js

14. Какие возможности предоставляет Fetch API для обмена данными между клиентом и сервером?

Отправка различных типов запросов: GET, POST, PUT, DELETE, PATCH, HEAD, OPTIONS.
Управление заголовками запроса: Добавление, изменение и удаление заголовков.
Отправка данных в различных форматах: JSON, текст, FormData, Blob.
Получение данных в различных форматах: JSON, текст, Blob, ArrayBuffer, ReadableStream.
Обработка ошибок: Перехват ошибок сети и HTTP-ошибок.
Управление CORS (Cross-Origin Resource Sharing): Работа с запросами к другим доменам.
Управление кэшированием: Управление кэшированием запросов и ответов.
Работа с потоками (Streams): Потоковая загрузка данных для улучшения производительности.

15. Какие практические примеры использования Fetch API вы можете привести?

Получение списка товаров из API интернет-магазина.
Отправка формы обратной связи на сервер.
Загрузка изображений на сервер.
Обновление данных пользователя на сервере (например, изменение профиля).
Автоматическое обновление данных на странице с определенным интервалом (Polling).
Реализация поиска по базе данных на сервере.

16. Каким образом JavaScript используется для динамического изменения содержимого веб-страницы?

DOM Manipulation: Использование методов DOM API (см. вопрос 6) для создания, удаления, изменения и перемещения элементов на странице.
Изменение текста и атрибутов элементов: Изменение содержимого текстовых узлов, изменение значений атрибутов элементов (например, src для изображений, href для ссылок).
Изменение стилей элементов: Изменение CSS-свойств элементов (например, цвета, шрифта, размера).
Обработка событий: Реагирование на действия пользователя (клики, наведение мыши, отправка форм) и изменение содержимого страницы в зависимости от этих действий.
Асинхронные запросы: Загрузка новых данных с сервера и обновление содержимого страницы без перезагрузки всей страницы.
Шаблонизация: Использование шаблонов для создания динамических HTML-фрагментов.

17. Как работает создание, удаление и модификация DOM-элементов?

Получение элементов:
document.getElementById(id)
document.getElementsByClassName(className)
document.getElementsByTagName(tagName)
document.querySelector(selector) (возвращает первый элемент, соответствующий селектору)
document.querySelectorAll(selector) (возвращает все элементы, соответствующие селектору)
Создание элементов:
document.createElement(tagName)
document.createTextNode(text)
Добавление элементов:
parentNode.appendChild(childNode)
parentNode.insertBefore(newNode, existingNode)
Удаление элементов:
parentNode.removeChild(childNode)
Замена элементов:
parentNode.replaceChild(newNode, oldNode)
Модификация атрибутов:
element.setAttribute(name, value)
element.getAttribute(name)
element.removeAttribute(name)
Модификация стилей:
element.style.property = value
element.classList.add(className)
element.classList.remove(className)

18. В чем отличие между синхронным и асинхронным выполнением кода в JavaScript?

Синхронное выполнение: Код выполняется последовательно, строка за строкой. Каждая операция должна завершиться, прежде чем начнется следующая. Если операция занимает много времени (например, запрос к серверу), основной поток выполнения блокируется, и пользовательский интерфейс может "зависнуть".
Асинхронное выполнение: Некоторые операции выполняются не сразу, а "в фоновом режиме". Основной поток выполнения не блокируется, и программа может продолжать выполнение других задач. Когда асинхронная операция завершается, вызывается callback-функция или разрешается Promise, который обрабатывает результат операции.

19. Как можно организовать обработку событий в JavaScript?

Inline обработчики (HTML-атрибуты): Указание обработчиков событий прямо в HTML-тегах (например, <button onclick="myFunction()">). (Не рекомендуется).
Свойства DOM: Назначение функций обработчиков событий свойствам DOM-элементов (например, element.onclick = myFunction;).
addEventListener(): Рекомендуемый способ. Позволяет добавлять несколько обработчиков к одному событию, удалять обработчики, указывать фазу обработчика (захват или всплытие) и передавать дополнительные данные в обработчик.

20. Какие методы использования асинхронных запросов к API вы знаете?

Callback-функции: (Устаревший подход, может привести к "callback hell").
Promises: (Более современный и удобный способ).
Async/Await: (Самый современный и простой способ, основанный на Promises).
XMLHttpRequest (XHR): (Более старый API, но все еще может использоваться в некоторых случаях).

21. Как можно оптимизировать работу с клиент-серверными веб-приложениями?

Минимизация количества HTTP-запросов: Объединение CSS и JavaScript файлов, использование спрайтов для изображений.
Сжатие данных: Использование Gzip или Brotli для сжатия передаваемых данных.
Кэширование:
Кэширование на стороне клиента: Использование localStorage, sessionStorage, IndexedDB для хранения данных.
Кэширование на стороне сервера: Использование HTTP-заголовков Cache-Control и Expires для управления кэшированием.
CDN (Content Delivery Network): Использование CDN для доставки статических ресурсов (изображения, CSS, JavaScript) с серверов, расположенных ближе к пользователю.
Оптимизация изображений: Сжатие изображений, использование правильного формата (например, WebP), использование ленивой загрузки (lazy loading).
Оптимизация JavaScript: Минимизация и обфускация кода, удаление неиспользуемого кода (tree shaking), использование code splitting для разделения приложения на более мелкие части.
Асинхронная загрузка ресурсов: Использование атрибутов async и defer для загрузки JavaScript-файлов.
Использование Web Workers: Для выполнения вычислительно сложных задач в фоновом потоке.
Оптимизация базы данных (на стороне сервера): Индексирование, правильное использование запросов, кэширование данных.

22. Какие методы и технологии используются для упрощения работы с интерфейсом в JavaScript?

JavaScript Frameworks (React, Vue.js, Angular): Предоставляют готовые компоненты, инструменты для управления состоянием, маршрутизацию и другие возможности.
UI Libraries (Material UI, Bootstrap, Ant Design): Предоставляют готовые компоненты пользовательского интерфейса (кнопки, формы, таблицы, диаграммы и т.д.).
CSS Frameworks (Bootstrap, Tailwind CSS): Предоставляют готовые стили и сетки для быстрого создания макетов.
Templating Engines (Handlebars, Mustache, Pug): Упрощают создание динамических HTML-фрагментов.
State Management Libraries (Redux, Vuex, Zustand): Упрощают управление состоянием приложения, особенно в сложных приложениях.
Bundlers (Webpack, Parcel, Rollup): Собирают все файлы приложения (JavaScript, CSS, изображения) в один или несколько оптимизированных бандлов.
Linting (ESLint): Позволяет поддерживать единый стиль кода и находить ошибки.
Testing Frameworks (Jest, Mocha, Cypress): Позволяют писать автоматизированные тесты для проверки правильности работы кода.

23. Какие существуют подходы к шаблонизации в веб-разработке?

Строковое конкатенация: (Не рекомендуется для сложных случаев) Создание HTML-фрагментов путем объединения строк с данными.
Шаблонные литералы (Template literals): Позволяют встраивать выражения JavaScript непосредственно в строки, используя обратные кавычки (`).
Библиотеки шаблонизации:
Handlebars.js: Простая и мощная библиотека для создания семантических шаблонов.
Mustache.js: Минималистичная библиотека шаблонизации без логики.
Pug (Jade): Шаблонизатор, использующий более компактный синтаксис, чем HTML.
React JSX: Расширение синтаксиса JavaScript, которое позволяет писать HTML-подобный код прямо в JavaScript.
Vue.js Templates: Специальный синтаксис шаблонов, встроенный во Vue.js

24. Какие основные принципы стоит учитывать при разработке динамических интерфейсов?

Разделение ответственности (Separation of Concerns): Разделение кода на модули, отвечающие за разные аспекты приложения (данные, представление, логика).
Повторное использование кода (DRY - Don't Repeat Yourself): Использование компонентов и функций для избежания дублирования кода.
Поддержка разных устройств и браузеров (Cross-Browser Compatibility): Обеспечение правильной работы приложения на разных устройствах и браузерах.
Доступность (Accessibility): Создание интерфейсов, доступных для людей с ограниченными возможностями.
Производительность (Performance): Оптимизация кода и ресурсов для улучшения производительности приложения.
Удобство использования (Usability): Создание интуитивно понятных и удобных интерфейсов.
Безопасность (Security): Предотвращение XSS-атак, CSRF-атак и других угроз безопасности.

25. Какие проблемы могут возникнуть при работе с асинхронным кодом, и как их можно решить?

Callback Hell: Глубоко вложенные callback-функции, которые трудно читать и поддерживать. Решение: Использование Promises или Async/Await.
Race Conditions: Когда несколько асинхронных операций выполняются одновременно, и результат зависит от порядка их завершения. Решение: Использование Promise.all(), Promise.race() или механизмов синхронизации.
Обработка ошибок: Сложность отладки ошибок в асинхронном коде. Решение: Использование try...catch и .catch() для обработки ошибок. Использование инструментов отладки браузера.
Управление состоянием: Сложность управления состоянием приложения при асинхронных обновлениях. Решение: Использование state management libraries (Redux, Vuex).

26. Каким образом асинхронные запросы обрабатываются в JavaScript?

Event Loop: JavaScript использует Event Loop для обработки асинхронных операций. Когда происходит асинхронная операция (например, запрос к серверу), она помещается в очередь задач (task queue). Event Loop постоянно проверяет очередь задач и, когда основной поток выполнения свободен, берет задачу из очереди и выполняет ее.
Callback Queue (Task Queue): Очередь, в которую помещаются callback-функции, которые должны быть выполнены после завершения асинхронных операций.
Microtask Queue: Очередь для микрозадач (например, Promises). Микрозадачи выполняются перед задачами из callback queue.

27. Какие существуют альтернативы Fetch API для работы с HTTP-запросами?

XMLHttpRequest (XHR): Более старый API, но все еще может использоваться. Менее удобен, чем Fetch API.
Axios: Сторонняя библиотека для HTTP-запросов. Предоставляет более удобный API и дополнительные возможности, такие как автоматическое преобразование JSON, перехват запросов и ответов, защиту от CSRF.
SuperAgent: Еще одна популярная библиотека для HTTP-запросов.

28. Какие методы шаблонизации вы предпочитаете и почему?

Это субъективный вопрос, ответ зависит от личных предпочтений и опыта. Вот несколько аргументов:
React JSX: Интегрирован в React, позволяет писать HTML-подобный код прямо в JavaScript, обеспечивает хорошую производительность.
Vue.js Templates: Легко изучать, простой и понятный синтаксис, хорошо интегрирован с Vue.js.
Handlebars.js: Универсальная библиотека, может использоваться с разными фреймворками, предоставляет мощные возможности шаблонизации.
Template literals: Простой и удобный способ для небольших шаблонов, не требует дополнительных библиотек.

29. Какие аспекты разработки клиент-серверных веб-приложений требуют особого внимания?

Безопасность:
Аутентификация и авторизация: Проверка подлинности пользователя и разграничение прав доступа.
Защита от XSS-атак (Cross-Site Scripting): Экранирование пользовательского ввода на клиенте и сервере.
Защита от CSRF-атак (Cross-Site Request Forgery): Использование токенов CSRF для защиты от подделки запросов.
Защита от SQL-инъекций: Использование параметризированных запросов к базе данных.
Валидация данных на сервере: Проверка данных, полученных от клиента, на соответствие требованиям.
Масштабируемость: Возможность приложения обрабатывать возрастающую нагрузку.
Надежность: Обеспечение стабильной работы приложения.

Удобство использования API: Проектирование API, которое легко использовать и понимать.

Документация API: Предоставление подробной документации для API.

Мониторинг и логирование: Отслеживание работы приложения и запись информации об ошибках.

30. Какие основные принципы лежат в основе работы с промисами?

Состояния (Pending, Fulfilled, Rejected) (см. вопрос 9).
Неизменяемость (Immutability): Promise может быть выполнен или отклонен только один раз. После этого его состояние не может быть изменено.
Цепочка (Chaining): Можно создавать последовательность асинхронных операций с помощью .then().
Обработка ошибок (Error Handling): Использование .catch() для обработки ошибок.
Решение проблемы "callback hell": Упрощение написания и чтения асинхронного кода по сравнению с callback-функциями.
Улучшение читаемости кода: Более структурированный и понятный код по сравнению с использованием только callback-функций.
image1.emf

oleObject1.bin

image2.png

image3.png
console.log("IT-HUB" > "IT-Hub");

