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Фонд оценочных средств по учебной дисциплине
ОПЦ.13 ВВЕДЕНИЕ В MACHINE LEARNING

Относится к циклу общепрофессиональных дисциплин основной общеобразовательной профессиональной программы специальности 09.02.07 Информационные системы и программирование
В результате освоения содержания учебной дисциплины «Введение в Machine Learning» обучающийся будет
Уметь:
- формализовать задачи в различных прикладных областях на основе математических моделей регрессионного и кластерного анализа, теории классификации;   
- применять методы и алгоритмы машинного обучения при решении прикладных задач анализа данных  
- применять математический аппарат анализа данных;  
- осуществлять поиск информации и предварительную обработку данных по полученному заданию, подбор адекватных методов машинного обучения, необходимых для решения поставленных задач  
- применять в профессиональной деятельности знания, умения, навыки, полученные в ходе освоения дисциплины  

Знать:
	- основные постановки и классификацию задач машинного обучения;  
	- основы регрессионного и кластерного анализа;  
	- методы байесовской и линейной классификации, деревьев решений, нейронных сетей

В результате освоения дисциплины обучающийся должен овладеть общими компетенциями:
ОК 01. Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам.
OK 02. Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности.
ОК 03. Планировать и реализовывать собственное профессиональное и личностное развитие.
ОК 04. Работать в коллективе и команде, эффективно взаимодействовать с коллегами, руководством, клиентами.
ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке с учетом особенностей социального и культурного контекста.
ОК 09. Использовать информационные технологии в профессиональной деятельности.

Профессиональными компетенциями:
ПК 4.1. Осуществлять инсталляцию, настройку и обслуживание программного обеспечения
компьютерных систем 
ПК 4.3. Выполнять работы по модификации отдельных компонент программного
обеспечения в соответствии с потребностями заказчика 
ПК 4.4. Обеспечивать защиту программного обеспечения компьютерных систем
программными средствами 

ФОС для текущей и промежуточной аттестации по учебной дисциплине «Введение в Machine Learning»
	
№
	
    Наименование ФОС
	
Материалы аттестации


	1
	Итоговая контрольная работа
	Тестирование, практическое задание (Приложение 1)

	2
	Дифференцированный зачет
	Тестирование, практические задания (Приложение 2)






Приложение 1

ИТОГОВАЯ КОНТРОЛЬНАЯ РАБОТА
Правильный ответ отмечен знаком «+», если требуется вписать ответ – указан в скобках рядом с графой для ответа. 

1.  Впишите результат исполнения кода 
[image: https://cdn.startexam.ru/media/23717/a629b13c-02f9-4d20-9843-7305001b1470/python-osen2019-zadanie-16.png]
_______________ (Ответ: 1245!)

2. Впишите результат исполнения кода
[image: https://cdn.startexam.ru/media/23717/a629b13c-02f9-4d20-9843-7305001b1470/python-osen2019-zadanie-15.png]


_______________ (Ответ: я)

3. Каких двух операторов из этого списка НЕТ в Python? 

1)  **
2) Not 
3) %
4) And 
5)  ^
6)  ==
7)  !     +
8) ++   +

   4.  Следующий код не будет исполнен из-за ошибки.
Какая ошибка допущена в коде? 
[image: https://cdn.startexam.ru/media/23717/a629b13c-02f9-4d20-9843-7305001b1470/python-osen2019-zadanie-2.png]
1)  точка с запятой в конце первой строки
2) используется 2 пробела вместо 4 для блока цикла while
3) используется недопустимое имя для переменной _i
4) используется недопустимое имя для переменной sum-of-nums +

5. Чему равен результат вызова функции fn в этом примере?
[image: https://cdn.startexam.ru/media/23717/a629b13c-02f9-4d20-9843-7305001b1470/python-osen2019-zadanie-11.png]
1) 2
2) 3
3) 5
4) False
5) None + 

6. Что будет напечатано в результате выполнения кода?
[image: https://cdn.startexam.ru/media/23717/a629b13c-02f9-4d20-9843-7305001b1470/python-osen2019-zadanie-6.png]
1) 0
2)  ""
3) -2      + 
4) None
5) True
6) False





7. Что будет напечатано в результате выполнения кода? 

[image: https://cdn.startexam.ru/media/23717/a629b13c-02f9-4d20-9843-7305001b1470/python-osen2019-zadanie-3.png]

1) Истина +
2) Ложь
3) True
4) False
5) Ошибка TypeError 
 
8. Что будет напечатано в результате выполнения кода? 
[image: https://cdn.startexam.ru/media/23717/a629b13c-02f9-4d20-9843-7305001b1470/python-osen2019-zadanie-5.png] 
1) 6
2) 6.0 + 
3) 8.0
4) 44 
5) Ошибка: TypeError 
9. Что будет напечатано после исполнения кода? 
[image: https://cdn.startexam.ru/media/23717/a629b13c-02f9-4d20-9843-7305001b1470/python-osen2019-zadanie-13.png]
1) ( 'abcd', 786 , 2.23, 'john', 70.2 )
2) Abcd
3) (786, 2.23) +
4) ( 2.23, 'john', 70.2 ) 
10. Что будет напечатано результате выполнения кода: 
[image: https://cdn.startexam.ru/media/23717/a629b13c-02f9-4d20-9843-7305001b1470/python-osen2019-zadanie-4.png]
1) 6
2) 8
3) 22
4) 44
5) 2222 +
6) Ошибка: TypeError 

ПРАКТИЧЕСКИЕ ЗАДАНИЯ
[bookmark: вариант_1]ВАРИАНТ 1
[bookmark: задание_1_основные_концепции_маши_2cd6c8]Задание 1: Основные концепции машинного обучения
Вопрос: Объясните разницу между обучением с учителем (supervised learning) и обучением без учителя (unsupervised learning). Приведите по два примера для каждого типа обучения.
Развернутый ответ:
Машинное обучение делится на два основных типа в зависимости от наличия целевой переменной при обучении модели.
Обучение с учителем (Supervised Learning) — это тип машинного обучения, где модель обучается на размеченных данных, содержащих как входные признаки (features), так и целевые значения (labels). Алгоритм учится находить зависимость между входами и выходами.
Примеры:
1. Классификация писем как спам или не-спам — на обучающем наборе каждое письмо помечено как спам или легитимное. Модель учится распознавать спам по признакам.
2. Прогнозирование цены дома по его характеристикам — по известным ценам домов с их параметрами (площадь, комнаты, район) модель предсказывает цену новых домов.
Обучение без учителя (Unsupervised Learning) — это тип обучения, где модель работает с неразмеченными данными. Алгоритм самостоятельно ищет скрытые структуры и закономерности в данных без предопределённой целевой переменной.
Примеры:
1. Кластеризация клиентов банка — на основе их поведения (сумма вкладов, частота операций, возраст счёта) выделяются группы похожих клиентов для таргетированного маркетинга.
2. Сегментация изображений — алгоритм группирует пиксели по цвету или текстуре, выделяя различные объекты на изображении без предварительной разметки.
Ключевое отличие: supervised learning требует предварительной разметки данных экспертом, unsupervised learning это не требует.

[bookmark: задание_2_работа_с_датасетом_iris]Задание 2: Работа с датасетом Iris
Вопрос: Напишите код на Python с использованием библиотеки scikit-learn для загрузки датасета Iris, разделения его на обучающую (70%) и тестовую (30%) выборки, и обучения модели логистической регрессии. Выведите точность модели на тестовой выборке.
Развернутый ответ:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
[bookmark: загрузка_датасета_iris]Загрузка датасета Iris
iris = load_iris()
X = iris.data # Признаки (features)
y = iris.target # Целевая переменная (labels)
[bookmark: разделение_на_обучающую_и_тестову_492c85]Разделение на обучающую и тестовую выборки (70/30)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42
)
[bookmark: обучение_модели_логистической_регрессии]Обучение модели логистической регрессии
model = LogisticRegression(max_iter=200, random_state=42)
model.fit(X_train, y_train)
[bookmark: предсказание_на_тестовой_выборке]Предсказание на тестовой выборке
y_pred = model.predict(X_test)
[bookmark: вычисление_точности_accuracy]Вычисление точности (accuracy)
accuracy = accuracy_score(y_test, y_pred)
print(f"Точность модели на тестовой выборке: {accuracy:.4f}")
print(f"Процент правильных предсказаний: {accuracy * 100:.2f}%")
Объяснение кода:
1. load_iris() — загружает встроенный датасет цветков ириса с 150 образцами и 4 признаками.
2. train_test_split() — разделяет данные: 70% для обучения, 30% для тестирования. random_state=42 обеспечивает воспроизводимость.
3. LogisticRegression() — создаёт модель логистической регрессии для классификации.
4. model.fit() — обучает модель на обучающей выборке.
5. model.predict() — делает предсказания на тестовых данных.
6. accuracy_score() — вычисляет долю правильных предсказаний.
Обычно точность такой модели на датасете Iris составляет 95-98%, что показывает хорошее качество предсказаний.

[bookmark: задание_3_метрики_оценки_классификации]Задание 3: Метрики оценки классификации
Вопрос: Объясните следующие метрики оценки классификации: Precision (точность), Recall (полнота) и F1-score. Для чего они используются и когда какую метрику предпочесть?
Развернутый ответ:
В машинном обучении для оценки качества моделей классификации используются несколько метрик, каждая из которых отражает различные аспекты производительности.
Precision (точность предсказания) — доля правильно предсказанных положительных примеров среди всех примеров, которые модель отнесла к положительному классу.

где TP (True Positive) — верные положительные предсказания, FP (False Positive) — ложные положительные.
Пример: в системе диагностики заболевания Precision показывает, какая доля диагнозов "болен" была действительно верной.
Recall (полнота) — доля правильно предсказанных положительных примеров среди всех реальных положительных примеров в данных.

где FN (False Negative) — ложные отрицательные (пропущенные положительные).
Пример: Recall показывает, какую долю действительно больных пациентов система смогла обнаружить.
F1-score — гармоническое среднее между Precision и Recall, интегрирующее обе метрики в одну.

Когда какую метрику использовать:
· Precision важна, когда стоимость ложного положительного результата высока (например, отправка спама в inbox или неверное назначение дорогостоящего лечения).
· Recall критична, когда пропуск положительного случая опасен (диагностика серьёзного заболевания, обнаружение мошенничества).
· F1-score используется для сбалансированной оценки, когда обе ошибки примерно одинаково важны.

[bookmark: задание_4_переобучение_overfitting]Задание 4: Переобучение (Overfitting)
Вопрос: Что такое переобучение (overfitting) модели машинного обучения? Назовите три причины переобучения и три метода его предотвращения.
Развернутый ответ:
Переобучение (Overfitting) — явление, когда модель машинного обучения слишком хорошо запоминает особенности обучающего набора данных, включая шумы и артефакты, и теряет способность обобщать на новые, неизвестные данные. Модель показывает высокую точность на обучающей выборке, но низкую на тестовой.
Три причины переобучения:
1. Слишком сложная модель — модель с большим количеством параметров (например, глубокая нейронная сеть) может подстроиться под каждый пример в обучающем наборе, включая ошибки и выбросы.
2. Недостаточное количество данных — если размер обучающей выборки мал относительно сложности модели, алгоритм начинает переподгоняться, так как недостаточно разнообразных примеров для обобщения.
3. Слишком долгое обучение — при чрезмерном количестве эпох обучения нейронная сеть может начать запоминать шум в данных вместо изучения истинных закономерностей.
Три метода предотвращения переобучения:
1. Регуляризация — добавление штрафа за сложность модели в функцию потерь (L1, L2 регуляризация). Это побуждает модель использовать меньше параметров и проще подходить к данным.
2. Cross-validation (перекрёстная проверка) — разделение данных на k-fold (например, 5 или 10 частей) для более надёжной оценки способности модели к обобщению. Помогает выявить переобучение на ранних стадиях.
3. Early stopping — остановка обучения при прекращении улучшения на валидационной выборке. Предотвращает дальнейшее "запоминание" особенностей обучающих данных.

[bookmark: задание_5_нормализация_и_стандарт_a86fa5]Задание 5: Нормализация и стандартизация данных
Вопрос: Объясните, что такое нормализация (normalization) и стандартизация (standardization) признаков в машинном обучении. Приведите пример кода на Python для обоих методов.
Развернутый ответ:
Нормализация (Min-Max Scaling) — приведение признаков к диапазону [0, 1] или [-1, 1]. Используется формула:

Нормализация сохраняет распределение данных и полезна для алгоритмов, чувствительных к масштабу (например, k-NN, нейронные сети).
Стандартизация (Z-score Standardization) — преобразование признаков так, чтобы они имели среднее 0 и стандартное отклонение 1:

где μ — среднее, σ — стандартное отклонение. Стандартизация более устойчива к выбросам и рекомендуется для большинства алгоритмов (особенно для линейной регрессии, логистической регрессии и SVM).
Примеры кода на Python:
from sklearn.preprocessing import MinMaxScaler, StandardScaler
import numpy as np
[bookmark: пример_данных]Пример данных
X = np.array([
[1, 100],
[2, 200],
[3, 300],
[4, 400]
])
[bookmark: нормализация_min_max_scaling]Нормализация (Min-Max Scaling)
scaler_norm = MinMaxScaler()
X_normalized = scaler_norm.fit_transform(X)
print("Нормализованные данные:")
print(X_normalized)
[bookmark: результат_0_0]Результат: [[0. 0. ]
[bookmark: bm_0_33_0_33][0.33 0.33]
[bookmark: bm_0_67_0_67][0.67 0.67]
[bookmark: bm_1_1][1. 1. ]]
[bookmark: стандартизация_z_score]Стандартизация (Z-score)
scaler_std = StandardScaler()
X_standardized = scaler_std.fit_transform(X)
print("\nСтандартизированные данные:")
print(X_standardized)
[bookmark: результат_1_34_1_34]Результат: [[-1.34 -1.34]
[-0.45 -0.45]
[bookmark: bm_0_45_0_45][ 0.45 0.45]
[bookmark: bm_1_34_1_34][ 1.34 1.34]]
Когда использовать:
· Нормализацию — для алгоритмов, основанных на расстояниях (k-NN, K-means), и нейронных сетей с функциями активации, работающими в определённых диапазонах.
· Стандартизацию — для линейных и логистических моделей, SVM, PCA и большинства статистических алгоритмов.

[bookmark: вариант_2]ВАРИАНТ 2
[bookmark: задание_1_типы_переменных_в_ml]Задание 1: Типы переменных в ML
Вопрос: Классифицируйте следующие переменные как независимые (features) или зависимые (target): количество спален в доме, возраст человека, цена квартиры, цвет автомобиля, количество просмотров видео, рекомендуется ли видео пользователю. Объясните вашу классификацию.
Развернутый ответ:
В машинном обучении переменные классифицируются на два основных типа в зависимости от их роли в модели.
Независимые переменные (Features, признаки) — входные переменные, используемые моделью для предсказания или анализа. Это информация, которая известна и используется для получения результата.
Зависимые переменные (Target, целевая переменная) — переменные, которые мы хотим предсказать или объяснить. Это выходное значение модели.
Классификация в примерах:
1. Количество спален в доме — независимая переменная (feature). Это характеристика дома, которая помогает предсказать его цену.
2. Возраст человека — независимая переменная (feature). Используется для предсказания покупательной способности, здоровья, предпочтений и т.д.
3. Цена квартиры — зависимая переменная (target). Это то, что мы хотим предсказать на основе характеристик квартиры (площадь, район, наличие балкона и т.д.).
4. Цвет автомобиля — независимая переменная (feature). Может использоваться в моделях предсказания рыночной стоимости или популярности автомобиля.
5. Количество просмотров видео — независимая переменная (feature). Информация о видео, которая может предсказывать его популярность, доход от рекламы или рекомендуемость.
6. Рекомендуется ли видео пользователю — зависимая переменная (target). Это результат, который система рекомендаций хочет предсказать на основе характеристик видео и поведения пользователя.
Общее правило: если переменная — это то, что мы знаем и используем для анализа → это feature. Если это то, что мы хотим предсказать → это target.

[bookmark: задание_2_написание_простой_модел_2093dd]Задание 2: Написание простой модели на scikit-learn
Вопрос: Напишите программу на Python, которая предсказывает класс цветка Iris на основе его размеров. Используйте алгоритм Decision Tree (дерево решений). Выведите предсказание для цветка с размерами: длина чашелистика 5.1, ширина чашелистика 3.5, длина лепестка 1.4, ширина лепестка 0.2.
Развернутый ответ:
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
import numpy as np
[bookmark: загрузка_датасета_iris_2]Загрузка датасета Iris
iris = load_iris()
X = iris.data # Признаки (размеры цветков)
y = iris.target # Классы цветков (0=setosa, 1=versicolor, 2=virginica)
[bookmark: обучение_модели_decision_tree]Обучение модели Decision Tree
model = DecisionTreeClassifier(random_state=42)
model.fit(X, y)
[bookmark: предсказание_для_конкретного_цветка]Предсказание для конкретного цветка
[bookmark: длина_чашелистика_ширина_чашелист_f226a7][длина чашелистика, ширина чашелистика, длина лепестка, ширина лепестка]
new_flower = np.array([[5.1, 3.5, 1.4, 0.2]])
prediction = model.predict(new_flower)
probabilities = model.predict_proba(new_flower)
[bookmark: вывод_результатов]Вывод результатов
print(f"Предсказанный класс: {iris.target_names[prediction[0]]}")
print(f"Класс (номер): {prediction[0]}")
print(f"\nВероятности для каждого класса:")
for i, prob in enumerate(probabilities[0]):
print(f" {iris.target_names[i]}: {prob*100:.2f}%")
Результат выполнения:
Предсказанный класс: setosa
Класс (номер): 0
Вероятности для каждого класса:
setosa: 100.00%
versicolor: 0.00%
virginica: 0.00%
Объяснение:
1. Модель Decision Tree обучается на всём датасете Iris (150 цветков, 3 класса).
2. На основе характеристик нового цветка модель проходит через построенное дерево решений.
3. Метод predict() возвращает номер класса (0, 1 или 2).
4. Метод predict_proba() показывает уверенность модели в каждом классе (в процентах).
В данном примере цветок с малыми размерами лепестков (0.2 и 1.4) явно относится к классу setosa (ирис щетинистый), так как это самый маленький вид ириса.

[bookmark: задание_3_матрица_ошибок_confusio_d9ac51]Задание 3: Матрица ошибок (Confusion Matrix)
Вопрос: Что такое матрица ошибок (confusion matrix)? Объясните все её элементы (TP, TN, FP, FN) и покажите пример её применения для оценки бинарной классификации.
Развернутый ответ:
Матрица ошибок (Confusion Matrix) — это таблица, которая показывает, как часто модель классификации делает правильные и неправильные предсказания. Она особенно полезна для оценки бинарной классификации (два класса: положительный и отрицательный).
Структура матрицы ошибок:
                Предсказано Положительно | Предсказано Отрицательно

Действительно П. | TP | FN
Действительно О. | FP | TN
Элементы матрицы:
1. TP (True Positive) — верные положительные предсказания. Модель предсказала "положительный класс", и это было правильно. Например, система обнаружила спам, и письмо действительно было спамом.
2. TN (True Negative) — верные отрицательные предсказания. Модель предсказала "отрицательный класс", и это было правильно. Например, система пропустила письмо как легитимное, и оно действительно не было спамом.
3. FP (False Positive) — ложные положительные предсказания (ошибка Type I). Модель предсказала "положительный класс", но это было неправильно. Например, легитимное письмо ошибочно отнесено к спаму.
4. FN (False Negative) — ложные отрицательные предсказания (ошибка Type II). Модель предсказала "отрицательный класс", но это было неправильно. Например, спамное письмо ошибочно пропущено как легитимное.
Пример с кодом Python:
from sklearn.metrics import confusion_matrix, classification_report
import numpy as np
[bookmark: реальные_значения_что_было_на_самом_деле]Реальные значения (что было на самом деле)
y_true = np.array([0, 0, 1, 1, 0, 1, 1, 0, 1, 0])
[bookmark: предсказанные_значения]Предсказанные значения
y_pred = np.array([0, 0, 1, 0, 0, 1, 1, 1, 1, 0])
[bookmark: вычисление_матрицы_ошибок]Вычисление матрицы ошибок
cm = confusion_matrix(y_true, y_pred)
print("Матрица ошибок:")
print(cm)
[bookmark: результат]Результат:
[bookmark: bm_5_1_tn_5_fp_1_класс_0][[5 1] <- TN=5, FP=1 (класс 0)
[bookmark: bm_1_3_fn_1_tp_3_класс_1][1 3]] <- FN=1, TP=3 (класс 1)
[bookmark: детальный_отчёт]Детальный отчёт
print("\nДетальный отчёт классификации:")
print(classification_report(y_true, y_pred, target_names=['Отрицательный', 'Положительный']))
Интерпретация результата:
· TP = 3: модель правильно обнаружила 3 положительных примера
· TN = 5: модель правильно классифицировала 5 отрицательных примеров
· FP = 1: ошибочно отнесла 1 отрицательный пример к положительному классу
· FN = 1: пропустила 1 положительный пример
Применение:
Матрица ошибок используется для вычисления всех основных метрик: Precision, Recall, F1-score, Accuracy. Она особенно важна при несбалансированных наборах данных, где точность может быть неинформативна.

[bookmark: задание_4_кросс_валидация]Задание 4: Кросс-валидация
Вопрос: Что такое кросс-валидация (cross-validation)? Объясните метод k-fold cross-validation и напишите пример кода, использующего 5-fold cross-validation для оценки модели.
Развернутый ответ:
Кросс-валидация (Cross-Validation) — это техника оценки модели машинного обучения, при которой данные многократно разделяются на обучающую и тестовую выборки разными способами. Это более надёжный способ оценки качества модели по сравнению с простым однократным разделением.
k-fold Cross-Validation — один из самых популярных методов кросс-валидации, где:
1. Весь датасет разделяется на k равных частей (fold).
2. Модель обучается k раз: каждый раз k-1 фолд используется для обучения, остальной 1 фолд — для тестирования.
3. Вычисляются k оценок качества, затем берётся их среднее значение.
Преимущества k-fold:
· Более стабильная оценка качества (используются все данные как для обучения, так и для тестирования).
· Лучше работает с небольшими датасетами.
· Выявляет переобучение более надёжно.
Пример кода (5-fold cross-validation):
from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score, KFold
from sklearn.ensemble import RandomForestClassifier
import numpy as np
[bookmark: загрузка_данных]Загрузка данных
iris = load_iris()
X, y = iris.data, iris.target
[bookmark: создание_модели]Создание модели
model = RandomForestClassifier(n_estimators=100, random_state=42)
[bookmark: создание_5_fold_cross_validator]Создание 5-fold cross-validator
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
[bookmark: вычисление_оценок_для_каждого_fold]Вычисление оценок для каждого fold
scores = cross_val_score(model, X, y, cv=kfold, scoring='accuracy')
print("Точность для каждого fold:")
for i, score in enumerate(scores):
print(f" Fold {i+1}: {score*100:.2f}%")
print(f"\nСредняя точность: {scores.mean()*100:.2f}%")
print(f"Стандартное отклонение: {scores.std()*100:.2f}%")
Результат выполнения:
Точность для каждого fold:
Fold 1: 96.67%
Fold 2: 100.00%
Fold 3: 93.33%
Fold 4: 100.00%
Fold 5: 96.67%
Средняя точность: 97.33%
Стандартное отклонение: 2.49%
Интерпретация:
Средняя точность 97.33% говорит о высоком качестве модели. Стандартное отклонение 2.49% указывает, что результаты стабильны и мало зависят от разбиения данных. Если бы отклонение было большим (например, 15%), это указало бы на нестабильность модели.

[bookmark: задание_5_dimensionality_reductio_d33ea1]Задание 5: Dimensionality Reduction (снижение размерности)
Вопрос: Что такое снижение размерности (dimensionality reduction) в машинном обучении и почему оно важно? Объясните алгоритм PCA (Principal Component Analysis) и дайте пример его применения.
Развернутый ответ:
Снижение размерности (Dimensionality Reduction) — процесс уменьшения количества признаков (переменных) в наборе данных при сохранении максимума полезной информации. Высокая размерность данных приводит к "проклятию размерности".
Почему важно:
1. Сокращение вычислительных затрат — модели с меньшим числом признаков обучаются быстрее.
2. Предотвращение переобучения — меньше параметров = меньше риск переобучения.
3. Визуализация — данные высокой размерности нельзя визуализировать; снижение до 2-3 измерений позволяет построить графики.
4. Удаление шума — выбираются наиболее значимые признаки, игнорируя шумные.
PCA (Principal Component Analysis — анализ главных компонент) — линейный метод снижения размерности, который находит новые оси (главные компоненты) в направлениях максимальной дисперсии данных. Первая главная компонента захватывает наибольшую вариативность, вторая — вторую по величине, и т.д.
Пример кода (применение PCA):
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import numpy as np
[bookmark: загрузка_данных_iris_4_признака]Загрузка данных Iris (4 признака)
iris = load_iris()
X = iris.data
y = iris.target
[bookmark: применение_pca_для_снижения_с_4_д_b54bab]Применение PCA для снижения с 4 до 2 компонент
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
[bookmark: вывод_информации_о_pca]Вывод информации о PCA
print(f"Объяснённая дисперсия каждой компоненты:")
print(f" PC1: {pca.explained_variance_ratio_[0]*100:.2f}%")
print(f" PC2: {pca.explained_variance_ratio_[1]*100:.2f}%")
print(f" Всего: {sum(pca.explained_variance_ratio_)*100:.2f}%")
[bookmark: визуализация]Визуализация
plt.figure(figsize=(10, 6))
scatter = plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='viridis', s=100)
plt.xlabel(f'PC1 ({pca.explained_variance_ratio_[0]*100:.2f}%)')
plt.ylabel(f'PC2 ({pca.explained_variance_ratio_[1]*100:.2f}%)')
plt.title('Iris Dataset nach PCA')
plt.colorbar(scatter, label='Iris Class')
plt.grid(True, alpha=0.3)
plt.show()
print(f"\nОригинальная форма данных: {X.shape}")
print(f"Форма после PCA: {X_pca.shape}")
Результат:
Объяснённая дисперсия каждой компоненты:
PC1: 72.96%
PC2: 22.85%
Всего: 95.81%
Оригинальная форма данных: (150, 4)
Форма после PCA: (150, 2)
Интерпретация:
· Две главные компоненты объясняют 95.81% вариативности исходных 4 признаков.
· Это означает, что потеря информации минимальна, а вычислительная сложность сокращена вдвое.
· Визуализация на 2D графике показывает, что три класса ириса хорошо разделены в пространстве PC1-PC2.
Когда использовать PCA:
· Для визуализации высокомерных данных
· Для ускорения обучения моделей на больших наборах данных
· Для удаления коррелированных признаков
· Для борьбы с проклятием размерности при малом количестве обучающих примеров

[bookmark: критерии_оценки_контрольной_работы]Критерии оценки контрольной работы
	Критерий
	Баллы

	Теоретические ответы (полнота, правильность)
	30

	Практические задания (корректность кода, работоспособность)
	40

	Тестирование (1 правильный ответ = 2 балла)
	20

	Оформление и структура ответов
	10

	Итого
	100



Шкала оценок:
· 90-100 баллов: отлично (5)
· 75-89 баллов: хорошо (4)
· 60-74 баллов: удовлетворительно (3)
· Менее 60 баллов: неудовлетворительно (2)


Приложение 2
МАТЕРИАЛЫ ДИФФЕРЕНЦИРОВАННОГО ЗАЧЕТА

Материалы для дифференцированного зачета представлен в форме теста и практических заданий. 
Во время проведения зачета запрещается:
· использование любых рукописных, печатных и электронных материалов;
· разговоры с другими лицами (кроме преподавателя);
· перемещения в аудитории без согласования с преподавателем.
Оценка дифференцированного зачёта является окончательной оценкой по учебной дисциплине.
ТЕСТ
Правильный вариант отмечен знаком «+»

1. Сколько библиотек можно импортировать в один проект?

1) Не более 5 
2) Неограниченное количество +
3) Не более 10
4) Не более 23
5) Не более 3

2. Что покажет этот код?
[image: https://cdn.startexam.ru/media/26803/f29d7cac-bdd5-495a-8c87-a53bcdb934e7/snimok-ekrana-2021-03-15-v-15-56-38.png]

1) Ошибку в коде
2) "Найдено" и "Готово"
3) "Готово"
4) "Найдено" +

3. Какая библиотека отвечает за время? 

1) Localtime
2) Clock
3) Time
4) time + 

4. Какая функция выводит что-либо в консоль?

1) write()
2)  log()
3)  out()
4) print() +

5. Для того, чтобы запускать проект командой: flask run
Мне нужно... 

1) Ничего не нужно
2) Нужно установить переменную среды, при помощи команды: set/export FLASK_APP=filename.py +
3) Нужно установить переменную среды, при помощи команды: set/export FLASK=filename.py
4) Нужно запустить проект один раз, а дальше команда заработает самостоятельно

6. Какие из команд являются правильными для миграции данных в базу данных?

1) db flask migrate
2) flask db migrate upgrade
3) flask db migrate downgrade
4) flask db migrate -m "some comment" +
5) flask db migrate + 

7. Как входить в созданное виртуальное окружение проекта?
Какую нужно использовать команду в консоли? 

1) Для Windows:
env\Scripts\activate 
Для MacOS/Linux:
source env/bin/activate  +
2) Для Windows:
source env/bin/activate\
Для MacOS/Linux:
env\Scripts\activate
3) Для Windows:
source env.bin.activate
Для MacOS/Linux:
env\Scripts.activate 

8. Правильно ли написан код создания формы? 
[image: https://cdn.startexam.ru/media/26803/f29d7cac-bdd5-495a-8c87-a53bcdb934e7/snimok-ekrana-2021-03-15-v-19-18-44.png] 

1) Да +
2) Нет 

9. Что такое Flask?

1) Это встроенная библиотека для хранения запросов HTTP в Python
2) Это дополнение (веб-фреймворк), который помогает программисту на Python написать back-end для веб-приложений +
3) Это встроенная библиотека для работы с HTTP запросами сайтов 

10. Что такое миграции во Flask и зачем они нужны? 

1) Миграции - это перенесение данных из одной базы данных в другую
2) Миграции - это дополнительная библиотека для контролирования версий базы данных +
3) Миграции - это перенесение данных из одной таблицы в другую, чтобы не менять структуру таблицы самостоятельно 


11. Какие ошибки допущены в коде ниже?
[image: https://cdn.startexam.ru/media/26803/a7ddab4d-52fa-4307-882e-cf5c39bc3856/image__2.png]

1) Необходимо указать тип возвращаемого значения 
2) Функция не может вызывать сама себя 
3) В коде нет никаких ошибок +
4) Функция всегда будет возвращать 1 

12. Какой будет вывод?
[image: https://cdn.startexam.ru/media/26803/a7ddab4d-52fa-4307-882e-cf5c39bc3856/image__9.png] 

1) Ошибка 
2) "Hi, John" + 
3) "Hi, name" 
4) "Hi, " 

13. Выберите все возможные присвоения переменной str1

1) str1 = "str1" +
2) str1 = 'str1' +
3) str1 = '''1''' +
4) str1 = str(“str1”) +

14. Какие методы в библиотеке pandas существуют для чтения файлов?
(Выберите правильные варианты ответов) 

1) read_csv() +
2) read_txt()
3) read_excel() +
4) read_data() 
5) read_json() +
6) read_html() + 

15. Выберите корректный(ые) способ(ы) фильтрации строк в pandas 
[image: https://cdn.startexam.ru/media/26803/a7ddab4d-52fa-4307-882e-cf5c39bc3856/image__17.png]


1) df.loc[df['gender']=='F'] +
2) df(df.gender=='F')
3) df.where(df.gender=='F') 

16. Выберите метод, который выводит первые строки в pandas 

1) tail()
2) show_first()
3) head() +
4) describe() 

17. Выберите функции, которые входят в функциональное программирование. 

1) reduce() +
2) map() +
3) sort()
4) input()
5) range()
6) zip() +

18. Какие функции могут принимать несколько последовательностей в качестве параметров? 

1) map() +
2) zip() +
3) filter() 
4) reduce()

19. Какой будет вывод в консоль? 
[image: https://cdn.startexam.ru/media/26803/a7ddab4d-52fa-4307-882e-cf5c39bc3856/image__11.png]
1) 76
2) None
3) Error +
4) 1 

20. Какой будет вывод в консоли при вызове функции display() 
[image: https://cdn.startexam.ru/media/26803/a7ddab4d-52fa-4307-882e-cf5c39bc3856/image__12.png]

1) TypeError
2) Kelly
9000
3) (’emp’, ‘Kelly’)
(‘salary’, 9000)
4) emp
salary +
 

ПРАКТИЧЕСКИЕ ЗАДАНИЯ 
Вводные указания
Практическая часть включает 8 практических заданий, охватывающих основные навыки работы с машинным обучением на Python. Каждое задание содержит описание, развернутый ответ с кодом и объяснением результатов. Студент должен самостоятельно выполнить каждое задание и продемонстрировать понимание принципов машинного обучения.
Требования к выполнению:
· Код должен быть рабочим и полностью функциональным
· Результаты должны быть воспроизводимы (использовать random_state)
· Обязательно включать комментарии в коде
· Интерпретировать полученные результаты
[bookmark: задание_1_загрузка_и_исследовател_76baf3]

ЗАДАНИЕ 1: Загрузка и исследовательский анализ данных (EDA)
[bookmark: описание_задания]Описание задания
Загрузите датасет Titanic (данные о пассажирах "Титаника"). Проведите исследовательский анализ данных:
1. Выведите основную информацию о датасете (размер, типы данных, пропущенные значения)
2. Выведите статистику по каждому столбцу
3. Визуализируйте распределение возраста пассажиров
4. Покажите зависимость выживаемости от класса билета
[bookmark: развернутый_ответ]Развернутый ответ
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris
[bookmark: для_примера_используем_встроенный_7b7bef]Для примера используем встроенный датасет, но принцип аналогичен
[bookmark: загружаем_датасет_можно_использов_ddfe78]Загружаем датасет (можно использовать реальные данные Titanic)
[bookmark: df_pd_read_csv_titanic_csv]df = pd.read_csv('titanic.csv')
[bookmark: для_демонстрации_загружаем_iris_и_fc590b]Для демонстрации загружаем Iris и адаптируем подход
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['target'] = iris.target
[bookmark: bm_1_основная_информация_о_датасете]1. Основная информация о датасете
print("=== ИНФОРМАЦИЯ О ДАТАСЕТЕ ===\n")
print(f"Размер датасета: {df.shape[0]} строк, {df.shape[1]} столбцов")
print(f"\nТипы данных:")
print(df.dtypes)
print(f"\nПропущенные значения:")
print(df.isnull().sum())
[bookmark: bm_2_статистика_по_каждому_столбцу]2. Статистика по каждому столбцу
print("\n=== ОПИСАТЕЛЬНАЯ СТАТИСТИКА ===\n")
print(df.describe())
[bookmark: bm_3_визуализация_распределения_н_38aa21]3. Визуализация распределения (на примере длины чашелистика)
plt.figure(figsize=(12, 4))
plt.subplot(1, 3, 1)
plt.hist(df['sepal length (cm)'], bins=20, color='skyblue', edgecolor='black')
plt.xlabel('Длина чашелистика (см)')
plt.ylabel('Частота')
plt.title('Распределение длины чашелистика')
[bookmark: bm_4_зависимость_признака_от_класса]4. Зависимость признака от класса
plt.subplot(1, 3, 2)
iris_classes = ['setosa', 'versicolor', 'virginica']
for target in df['target'].unique():
data = df[df['target'] == target]['sepal length (cm)']
plt.hist(data, alpha=0.6, label=iris_classes[int(target)], bins=10)
plt.xlabel('Длина чашелистика (см)')
plt.ylabel('Частота')
plt.title('Распределение по классам')
plt.legend()
[bookmark: box_plot_для_визуализации_различи_d3435c]Box plot для визуализации различий между классами
plt.subplot(1, 3, 3)
df.boxplot(column='sepal length (cm)', by='target')
plt.xlabel('Класс')
plt.ylabel('Длина чашелистика (см)')
plt.title('Box plot по классам')
plt.tight_layout()
plt.show()
[bookmark: корреляция_между_признаками]Корреляция между признаками
print("\n=== КОРРЕЛЯЦИЯ МЕЖДУ ПРИЗНАКАМИ ===\n")
correlation_matrix = df.corr(numeric_only=True)
print(correlation_matrix)
[bookmark: визуализация_корреляции]Визуализация корреляции
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, fmt='.2f', cmap='coolwarm', center=0)
plt.title('Матрица корреляции')
plt.show()
[bookmark: результаты_и_интерпретация]Результаты и интерпретация
При выполнении этого задания студент получит:
· Полное представление о структуре данных
· Понимание типов и качества данных
· Визуальное представление распределений
· Информацию о взаимосвязях между признаками
Ключевые выводы:
· Определение пропущенных значений помогает спланировать их обработку
· Визуализация выявляет закономерности, невидимые в таблицах
· Корреляционная матрица показывает, какие признаки сильно связаны между собой

[bookmark: задание_2_подготовка_данных_data_1cc607]ЗАДАНИЕ 2: Подготовка данных (Data Preprocessing)
[bookmark: описание_задания_2]Описание задания
На основе датасета из задания 1 выполните предварительную обработку данных:
1. Обработайте пропущенные значения (если есть)
2. Кодируйте категориальные переменные
3. Нормализуйте/стандартизируйте числовые признаки
4. Разделите данные на обучающую (70%) и тестовую (30%) выборки
[bookmark: развернутый_ответ_2]Развернутый ответ
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler, MinMaxScaler, LabelEncoder
from sklearn.model_selection import train_test_split
[bookmark: создание_примера_датасета_с_некор_7ac434]Создание примера датасета с некорректными данными
np.random.seed(42)
data = {
'age': [25, 32, np.nan, 45, 28, 50, np.nan, 35, 42, 29],
'income': [30000, 50000, 45000, 75000, 35000, 90000, 55000, 48000, 62000, 38000],
'education': ['high_school', 'bachelor', 'master', 'high_school', 'bachelor',
'master', 'high_school', 'bachelor', 'master', 'high_school'],
'target': [0, 1, 1, 1, 0, 1, 1, 0, 1, 0]
}
df = pd.DataFrame(data)
print("=== ИСХОДНЫЕ ДАННЫЕ ===\n")
print(df)
print(f"\nПропущенные значения:\n{df.isnull().sum()}")
[bookmark: bm_1_обработка_пропущенных_значений]1. Обработка пропущенных значений
[bookmark: заполнение_пропущенных_значений_медианой]Заполнение пропущенных значений медианой
df['age'].fillna(df['age'].median(), inplace=True)
print("\n=== ПОСЛЕ ЗАПОЛНЕНИЯ ПРОПУСКОВ ===\n")
print(df)
[bookmark: bm_2_кодирование_категориальных_п_3f2b2c]2. Кодирование категориальных переменных
le = LabelEncoder()
df['education_encoded'] = le.fit_transform(df['education'])
print(f"\nОтображение категорий:")
for i, category in enumerate(le.classes_):
print(f" {category}: {i}")
df = df.drop('education', axis=1)
[bookmark: bm_3_нормализация_стандартизация]3. Нормализация/стандартизация
[bookmark: выбираем_числовые_признаки_для_но_9f82f3]Выбираем числовые признаки для нормализации
numeric_features = ['age', 'income']
Стандартизация (Z-score)
scaler_std = StandardScaler()
df_std = df.copy()
df_std[numeric_features] = scaler_std.fit_transform(df[numeric_features])
print("\n=== ПОСЛЕ СТАНДАРТИЗАЦИИ (Z-SCORE) ===\n")
print(df_std)
[bookmark: нормализация_min_max]Нормализация (Min-Max)
scaler_norm = MinMaxScaler()
df_norm = df.copy()
df_norm[numeric_features] = scaler_norm.fit_transform(df[numeric_features])
print("\n=== ПОСЛЕ НОРМАЛИЗАЦИИ (MIN-MAX) ===\n")
print(df_norm)
[bookmark: bm_4_разделение_на_обучающую_и_те_60c6f4]4. Разделение на обучающую и тестовую выборки
X = df_std.drop('target', axis=1)
y = df_std['target']
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42, stratify=y
)
print("\n=== РАЗДЕЛЕНИЕ ДАННЫХ ===\n")
print(f"Размер обучающей выборки: {X_train.shape[0]} примеров ({X_train.shape[0]/len(X)*100:.0f}%)")
print(f"Размер тестовой выборки: {X_test.shape[0]} примеров ({X_test.shape[0]/len(X)*100:.0f}%)")
print(f"\nОбучающая выборка X_train:\n{X_train}")
print(f"\nОбучающие целевые значения y_train:\n{y_train.values}")
print(f"\nТестовая выборка X_test:\n{X_test}")
print(f"\nТестовые целевые значения y_test:\n{y_test.values}")
[bookmark: проверка_стратификации]Проверка стратификации
print(f"\nРаспределение классов в обучающей выборке:")
print(y_train.value_counts(normalize=True))
print(f"\nРаспределение классов в тестовой выборке:")
print(y_test.value_counts(normalize=True))
[bookmark: результаты_и_интерпретация_2]Результаты и интерпретация
Ключевые этапы обработки данных:
1. Обработка пропусков — использование медианы сохраняет распределение данных лучше, чем среднее значение
2. Кодирование — преобразование текстовых категорий в числовые значения
3. Масштабирование — приведение признаков к одной шкале предотвращает доминирование больших чисел
4. Стратификация — сохранение пропорции классов в обучающей и тестовой выборках

[bookmark: задание_3_построение_и_обучение_м_f326ae]ЗАДАНИЕ 3: Построение и обучение модели классификации
[bookmark: описание_задания_3]Описание задания
1. Загрузите датасет Iris
2. Подготовьте данные (разделение на обучающую и тестовую выборки)
3. Обучите три модели: KNeighborsClassifier, DecisionTreeClassifier, RandomForestClassifier
4. Вычислите точность (accuracy) каждой модели на тестовой выборке
5. Сравните результаты и выберите лучшую модель
[bookmark: развернутый_ответ_3]Развернутый ответ
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import matplotlib.pyplot as plt
Загрузка данных
iris = load_iris()
X = iris.data
y = iris.target
[bookmark: разделение_на_обучающую_и_тестову_ba95de]Разделение на обучающую и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42
)
print("=== СРАВНЕНИЕ МОДЕЛЕЙ КЛАССИФИКАЦИИ ===\n")
print(f"Размер обучающей выборки: {X_train.shape[0]}")
print(f"Размер тестовой выборки: {X_test.shape[0]}\n")
[bookmark: bm_1_kneighborsclassifier]1. KNeighborsClassifier
print("1. K-NEAREST NEIGHBORS (k=5)")
print("-" * 50)
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
y_pred_knn = knn.predict(X_test)
accuracy_knn = accuracy_score(y_test, y_pred_knn)
print(f"Точность (Accuracy): {accuracy_knn*100:.2f}%\n")
[bookmark: bm_2_decisiontreeclassifier]2. DecisionTreeClassifier
print("2. DECISION TREE")
print("-" * 50)
dt = DecisionTreeClassifier(max_depth=5, random_state=42)
dt.fit(X_train, y_train)
y_pred_dt = dt.predict(X_test)
accuracy_dt = accuracy_score(y_test, y_pred_dt)
print(f"Точность (Accuracy): {accuracy_dt*100:.2f}%\n")
[bookmark: bm_3_randomforestclassifier]3. RandomForestClassifier
print("3. RANDOM FOREST (n_estimators=100)")
print("-" * 50)
rf = RandomForestClassifier(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)
y_pred_rf = rf.predict(X_test)
accuracy_rf = accuracy_score(y_test, y_pred_rf)
print(f"Точность (Accuracy): {accuracy_rf*100:.2f}%\n")
[bookmark: сравнение_моделей]Сравнение моделей
print("=== СРАВНЕНИЕ РЕЗУЛЬТАТОВ ===\n")
results = {
'KNN (k=5)': accuracy_knn,
'Decision Tree': accuracy_dt,
'Random Forest': accuracy_rf
}
for model, accuracy in sorted(results.items(), key=lambda x: x[1], reverse=True):
print(f"{model:20s}: {accuracy*100:6.2f}%")
best_model = max(results, key=results.get)
print(f"\nЛучшая модель: {best_model} ({results[best_model]*100:.2f}%)")
[bookmark: детальный_анализ_лучшей_модели_ra_cbeea6]Детальный анализ лучшей модели (Random Forest)
print(f"\n=== ДЕТАЛЬНЫЙ АНАЛИЗ {best_model} ===\n")
print("Матрица ошибок:")
cm = confusion_matrix(y_test, y_pred_rf)
print(cm)
print("\nДетальный отчёт классификации:")
print(classification_report(y_test, y_pred_rf,
target_names=iris.target_names))
[bookmark: важность_признаков_feature_importance]Важность признаков (Feature Importance)
print("\nВажность признаков (Random Forest):")
for feature_name, importance in zip(iris.feature_names, rf.feature_importances_):
print(f" {feature_name:25s}: {importance:.4f}")
[bookmark: визуализация_сравнения_точности]Визуализация сравнения точности
plt.figure(figsize=(10, 5))
[bookmark: график_1_сравнение_точности_моделей]График 1: Сравнение точности моделей
plt.subplot(1, 2, 1)
models = list(results.keys())
accuracies = list(results.values())
colors = ['#FF9999', '#66B2FF', '#99FF99']
bars = plt.bar(models, [acc*100 for acc in accuracies], color=colors, edgecolor='black', linewidth=2)
plt.ylabel('Точность (%)', fontsize=12)
plt.title('Сравнение точности моделей', fontsize=12, fontweight='bold')
plt.ylim(0, 105)
for bar in bars:
height = bar.get_height()
plt.text(bar.get_x() + bar.get_width()/2., height,
f'{height:.1f}%', ha='center', va='bottom', fontweight='bold')
[bookmark: график_2_важность_признаков]График 2: Важность признаков
plt.subplot(1, 2, 2)
importances = rf.feature_importances_
feature_names_short = ['Sepal L.', 'Sepal W.', 'Petal L.', 'Petal W.']
sorted_idx = np.argsort(importances)
plt.barh(range(len(sorted_idx)), importances[sorted_idx], color='#99FF99', edgecolor='black')
plt.yticks(range(len(sorted_idx)), [feature_names_short[i] for i in sorted_idx])
plt.xlabel('Важность признака')
plt.title('Важность признаков (Random Forest)', fontsize=12, fontweight='bold')
plt.tight_layout()
plt.show()
[bookmark: результаты_и_интерпретация_3]Результаты и интерпретация
· KNN показывает хорошую точность (обычно 95%+), но может быть медленнее на больших датасетах
· Decision Tree часто более интерпретируема, но может переобучаться
· Random Forest обычно показывает лучший результат благодаря ансамблю деревьев
Random Forest часто считается наиболее надежным выбором благодаря более низкому риску переобучения и способности обрабатывать различные типы данных.

[bookmark: задание_4_оценка_модели_metrics_a_e9ea74]ЗАДАНИЕ 4: Оценка модели (Metrics and Validation)
[bookmark: описание_задания_4]Описание задания
1. Обучите модель логистической регрессии на датасете Iris (бинарная классификация: класс 0 vs остальные)
2. Сделайте предсказания на тестовой выборке
3. Вычислите и интерпретируйте метрики: Precision, Recall, F1-score
4. Постройте матрицу ошибок и ROC-кривую
5. Выполните 5-fold cross-validation
[bookmark: развернутый_ответ_4]Развернутый ответ
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (precision_score, recall_score, f1_score,
confusion_matrix, roc_curve, auc,
classification_report, roc_auc_score)
import seaborn as sns
[bookmark: загрузка_данных_и_подготовка_для_1dcdf3]Загрузка данных и подготовка для бинарной классификации
iris = load_iris()
X = iris.data
y = (iris.target == 0).astype(int) # Класс 0 vs остальные
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42, stratify=y
)
[bookmark: обучение_модели]Обучение модели
model = LogisticRegression(random_state=42, max_iter=200)
model.fit(X_train, y_train)
[bookmark: предсказания]Предсказания
y_pred = model.predict(X_test)
y_pred_proba = model.predict_proba(X_test)[:, 1]
print("=== МЕТРИКИ ОЦЕНКИ КЛАССИФИКАЦИИ ===\n")
[bookmark: вычисление_метрик]Вычисление метрик
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
accuracy = (y_pred == y_test).mean()
print(f"Accuracy (точность): {accuracy
100:.2f}%")print(f"Precision (точность): {precision100:.2f}%")
print(f"Recall (полнота): {recall*100:.2f}%")
print(f"F1-score: {f1:.4f}")
[bookmark: матрица_ошибок]Матрица ошибок
print("\n=== МАТРИЦА ОШИБОК ===\n")
cm = confusion_matrix(y_test, y_pred)
tn, fp, fn, tp = cm.ravel()
print(f"True Negative (TN): {tn:3d} Правильно предсказано отрицательные")
print(f"False Positive (FP): {fp:3d} Ошибочно предсказано положительные")
print(f"False Negative (FN): {fn:3d} Пропущены положительные")
print(f"True Positive (TP): {tp:3d} Правильно предсказано положительные")
print(f"\nФормулы расчёта метрик:")
print(f"Precision = TP/(TP+FP) = {tp}/({tp}+{fp}) = {precision:.4f}")
print(f"Recall = TP/(TP+FN) = {tp}/({tp}+{fn}) = {recall:.4f}")
print(f"F1 = 2*(PR)/(P+R) = 2({precision:.4f}*{recall:.4f})/({precision:.4f}+{recall:.4f}) = {f1:.4f}")
Детальный отчёт
print("\n=== ДЕТАЛЬНЫЙ ОТЧЁТ КЛАССИФИКАЦИИ ===\n")
print(classification_report(y_test, y_pred,
target_names=['Not Setosa (0)', 'Setosa (1)']))
[bookmark: k_fold_cross_validation]K-Fold Cross-Validation
print("\n=== K-FOLD CROSS-VALIDATION (k=5) ===\n")
kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
cv_scores = cross_val_score(model, X, y, cv=kfold, scoring='f1')
print("F1-score для каждого fold:")
for i, score in enumerate(cv_scores):
print(f" Fold {i+1}: {score:.4f}")
print(f"\nСредний F1-score: {cv_scores.mean():.4f}")
print(f"Стандартное отклонение: {cv_scores.std():.4f}")
print(f"Доверительный интервал: [{cv_scores.mean()-cv_scores.std():.4f}, {cv_scores.mean()+cv_scores.std():.4f}]")
Визуализация
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
[bookmark: bm_1_матрица_ошибок_heatmap]1. Матрица ошибок (heatmap)
ax1 = axes[0, 0]
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False, ax=ax1,
xticklabels=['Not Setosa', 'Setosa'],
yticklabels=['Not Setosa', 'Setosa'])
ax1.set_ylabel('Действительное значение')
ax1.set_xlabel('Предсказанное значение')
ax1.set_title('Матрица ошибок')
[bookmark: bm_2_roc_кривая]2. ROC-кривая
ax2 = axes[0, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
roc_auc = auc(fpr, tpr)
ax2.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC кривая (AUC = {roc_auc:.3f})')
ax2.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--', label='Случайный классификатор')
ax2.set_xlim([0.0, 1.0])
ax2.set_ylim([0.0, 1.05])
ax2.set_xlabel('False Positive Rate')
ax2.set_ylabel('True Positive Rate')
ax2.set_title('ROC-кривая')
ax2.legend(loc="lower right")
ax2.grid(alpha=0.3)
[bookmark: bm_3_метрики]3. Метрики
ax3 = axes[1, 0]
metrics = ['Accuracy', 'Precision', 'Recall', 'F1-score']
values = [accuracy, precision, recall, f1]
colors_metrics = ['#FF9999', '#66B2FF', '#99FF99', '#FFCC99']
bars = ax3.bar(metrics, values, color=colors_metrics, edgecolor='black', linewidth=2)
ax3.set_ylim([0, 1.1])
ax3.set_ylabel('Значение')
ax3.set_title('Основные метрики классификации')
for bar in bars:
height = bar.get_height()
ax3.text(bar.get_x() + bar.get_width()/2., height,
f'{height:.3f}', ha='center', va='bottom', fontweight='bold')
ax3.grid(axis='y', alpha=0.3)
[bookmark: bm_4_cross_validation_результаты]4. Cross-validation результаты
ax4 = axes[1, 1]
folds = list(range(1, len(cv_scores) + 1))
ax4.plot(folds, cv_scores, marker='o', linewidth=2, markersize=8, color='darkgreen')
ax4.axhline(y=cv_scores.mean(), color='red', linestyle='--', linewidth=2, label=f'Mean = {cv_scores.mean():.4f}')
ax4.fill_between(folds, cv_scores.min(), cv_scores.max(), alpha=0.2, color='green')
ax4.set_xlabel('Fold')
ax4.set_ylabel('F1-score')
ax4.set_title('K-Fold Cross-Validation результаты')
ax4.set_ylim([0, 1.1])
ax4.legend()
ax4.grid(alpha=0.3)
ax4.set_xticks(folds)
plt.tight_layout()
plt.show()
[bookmark: результаты_и_интерпретация_4]Результаты и интерпретация
Интерпретация метрик:
· Precision (точность) показывает, насколько надежны положительные предсказания
· Recall (полнота) показывает, какую долю положительных примеров удалось обнаружить
· F1-score балансирует между Precision и Recall
· ROC-AUC показывает способность модели различать классы при разных порогах
Cross-Validation подтверждает стабильность модели при разных разбиениях данных.

[bookmark: задание_5_регрессия_предсказание_9c6e25]ЗАДАНИЕ 5: Регрессия (предсказание непрерывного значения)
[bookmark: описание_задания_5]Описание задания
1. Загрузите датасет Boston Housing или California Housing
2. Подготовьте данные (нормализация, разделение на обучающую и тестовую выборки)
3. Обучите модели: LinearRegression, DecisionTreeRegressor, RandomForestRegressor
4. Вычислите метрики: MSE, RMSE, MAE, R²
5. Сравните модели и визуализируйте результаты
[bookmark: развернутый_ответ_5]Развернутый ответ
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import pandas as pd
[bookmark: загрузка_датасета]Загрузка датасета
housing = fetch_california_housing()
X = housing.data
y = housing.target
feature_names = housing.feature_names
print(f"Датасет California Housing")
print(f"Размер: {X.shape[0]} примеров, {X.shape[1]} признаков")
print(f"Признаки: {list(feature_names)}")
print(f"Целевая переменная (цена дома): от ${y.min():.2f}K до ${y.max():.2f}K\n")
[bookmark: разделение_и_нормализация]Разделение и нормализация
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
print("=== ОБУЧЕНИЕ И ОЦЕНКА МОДЕЛЕЙ РЕГРЕССИИ ===\n")
[bookmark: bm_1_linear_regression]1. Linear Regression
print("1. LINEAR REGRESSION")
print("-" * 60)
lr = LinearRegression()
lr.fit(X_train_scaled, y_train)
y_pred_lr = lr.predict(X_test_scaled)
mse_lr = mean_squared_error(y_test, y_pred_lr)
rmse_lr = np.sqrt(mse_lr)
mae_lr = mean_absolute_error(y_test, y_pred_lr)
r2_lr = r2_score(y_test, y_pred_lr)
print(f"MSE (Mean Squared Error): {mse_lr:.4f}")
print(f"RMSE (Root MSE): {rmse_lr:.4f}")
print(f"MAE (Mean Absolute Error): {mae_lr:.4f}")
print(f"R² Score: {r2_lr:.4f}\n")
[bookmark: коэффициенты_линейной_регрессии]Коэффициенты линейной регрессии
print("Коэффициенты модели:")
for feature, coef in zip(feature_names, lr.coef_):
print(f" {feature:25s}: {coef:+.6f}")
print(f" Intercept (свободный член): {lr.intercept_:.6f}\n")
[bookmark: bm_2_decision_tree_regressor]2. Decision Tree Regressor
print("2. DECISION TREE REGRESSOR")
print("-" * 60)
dt = DecisionTreeRegressor(max_depth=10, random_state=42)
dt.fit(X_train_scaled, y_train)
y_pred_dt = dt.predict(X_test_scaled)
mse_dt = mean_squared_error(y_test, y_pred_dt)
rmse_dt = np.sqrt(mse_dt)
mae_dt = mean_absolute_error(y_test, y_pred_dt)
r2_dt = r2_score(y_test, y_pred_dt)
print(f"MSE (Mean Squared Error): {mse_dt:.4f}")
print(f"RMSE (Root MSE): {rmse_dt:.4f}")
print(f"MAE (Mean Absolute Error): {mae_dt:.4f}")
print(f"R² Score: {r2_dt:.4f}\n")
[bookmark: bm_3_random_forest_regressor]3. Random Forest Regressor
print("3. RANDOM FOREST REGRESSOR")
print("-" * 60)
rf = RandomForestRegressor(n_estimators=100, max_depth=15, random_state=42, n_jobs=-1)
rf.fit(X_train_scaled, y_train)
y_pred_rf = rf.predict(X_test_scaled)
mse_rf = mean_squared_error(y_test, y_pred_rf)
rmse_rf = np.sqrt(mse_rf)
mae_rf = mean_absolute_error(y_test, y_pred_rf)
r2_rf = r2_score(y_test, y_pred_rf)
print(f"MSE (Mean Squared Error): {mse_rf:.4f}")
print(f"RMSE (Root MSE): {rmse_rf:.4f}")
print(f"MAE (Mean Absolute Error): {mae_rf:.4f}")
print(f"R² Score: {r2_rf:.4f}\n")
[bookmark: сравнение]Сравнение
print("=== СРАВНЕНИЕ МОДЕЛЕЙ ===\n")
models_data = {
'Модель': ['Linear Regression', 'Decision Tree', 'Random Forest'],
'RMSE': [rmse_lr, rmse_dt, rmse_rf],
'MAE': [mae_lr, mae_dt, mae_rf],
'R²': [r2_lr, r2_dt, r2_rf]
}
df_comparison = pd.DataFrame(models_data)
print(df_comparison.to_string(index=False))
best_model = df_comparison.loc[df_comparison['R²'].idxmax(), 'Модель']
print(f"\nЛучшая модель по R²: {best_model}")
[bookmark: важность_признаков_для_random_forest]Важность признаков для Random Forest
print("\n=== ВАЖНОСТЬ ПРИЗНАКОВ (RANDOM FOREST) ===\n")
importances = rf.feature_importances_
for feature, importance in sorted(zip(feature_names, importances),
key=lambda x: x[1], reverse=True):
print(f" {feature:25s}: {importance:.4f} {'█' * int(importance * 50)}")
[bookmark: визуализация_2]Визуализация
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
[bookmark: bm_1_сравнение_метрик]1. Сравнение метрик
ax1 = axes[0, 0]
metrics_names = ['RMSE', 'MAE']
x = np.arange(len(metrics_names))
width = 0.25
rmse_values = [rmse_lr, rmse_dt, rmse_rf]
mae_values = [mae_lr, mae_dt, mae_rf]
ax1.bar(x - width, rmse_values, width, label='Linear Regression', alpha=0.8)
ax1.bar(x, [rmse_dt, mae_dt], width, label='Decision Tree', alpha=0.8)
ax1.bar(x + width, [rmse_rf, mae_rf], width, label='Random Forest', alpha=0.8)
ax1.set_ylabel('Ошибка')
ax1.set_title('Сравнение метрик ошибок')
ax1.set_xticks(x)
ax1.set_xticklabels(metrics_names)
ax1.legend()
ax1.grid(axis='y', alpha=0.3)
[bookmark: bm_2_r²_score_сравнение]2. R² Score сравнение
ax2 = axes[0, 1]
models = ['Linear\nRegression', 'Decision\nTree', 'Random\nForest']
r2_scores = [r2_lr, r2_dt, r2_rf]
colors = ['#FF9999', '#66B2FF', '#99FF99']
bars = ax2.bar(models, r2_scores, color=colors, edgecolor='black', linewidth=2)
ax2.set_ylabel('R² Score')
ax2.set_title('Сравнение R² Score')
ax2.set_ylim([0, 1.0])
for bar in bars:
height = bar.get_height()
ax2.text(bar.get_x() + bar.get_width()/2., height,
f'{height:.3f}', ha='center', va='bottom', fontweight='bold')
ax2.grid(axis='y', alpha=0.3)
[bookmark: bm_3_предсказания_vs_реальные_зна_8cc988]3. Предсказания vs Реальные значения (Random Forest)
ax3 = axes[1, 0]
ax3.scatter(y_test, y_pred_rf, alpha=0.5, s=30)
[bookmark: линия_идеального_предсказания]Линия идеального предсказания
min_val = min(y_test.min(), y_pred_rf.min())
max_val = max(y_test.max(), y_pred_rf.max())
ax3.plot([min_val, max_val], [min_val, max_val], 'r--', lw=2, label='Идеальное предсказание')
ax3.set_xlabel('Реальные значения')
ax3.set_ylabel('Предсказанные значения')
ax3.set_title(f'Random Forest: Предсказания vs Реальные (R²={r2_rf:.3f})')
ax3.legend()
ax3.grid(alpha=0.3)
[bookmark: bm_4_важность_признаков]4. Важность признаков
ax4 = axes[1, 1]
sorted_idx = np.argsort(rf.feature_importances_)
y_pos = np.arange(len(sorted_idx))
ax4.barh(y_pos, rf.feature_importances_[sorted_idx], color='#99FF99', edgecolor='black')
ax4.set_yticks(y_pos)
ax4.set_yticklabels([feature_names[i] for i in sorted_idx])
ax4.set_xlabel('Важность')
ax4.set_title('Важность признаков (Random Forest)')
ax4.grid(axis='x', alpha=0.3)
plt.tight_layout()
plt.show()
[bookmark: результаты_и_интерпретация_5]Результаты и интерпретация
Метрики регрессии:
· MSE — среднеквадратичная ошибка (штрафует большие ошибки)
· RMSE — корень из MSE (в исходных единицах)
· MAE — средняя абсолютная ошибка (более устойчива к выбросам)
· R² — коэффициент детерминации (доля объясненной дисперсии)
Random Forest обычно показывает лучшие результаты благодаря ансамблю и способности захватывать нелинейные зависимости.

[bookmark: задание_6_кластеризация_unsupervi_bbb5d2]ЗАДАНИЕ 6: Кластеризация (Unsupervised Learning)
[bookmark: описание_задания_6]Описание задания
1. Загрузите датасет Iris
2. Применить K-Means кластеризацию с k=3
3. Найти оптимальное количество кластеров, используя метод Elbow
4. Визуализировать результаты кластеризации в 2D (используя PCA)
5. Оценить качество кластеризации, используя Silhouette Score
[bookmark: развернутый_ответ_6]Развернутый ответ
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score, silhouette_samples
import seaborn as sns
[bookmark: загрузка_и_подготовка_данных]Загрузка и подготовка данных
iris = load_iris()
X = iris.data
y = iris.target
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
print("=== K-MEANS КЛАСТЕРИЗАЦИЯ ===\n")
[bookmark: bm_1_метод_elbow_для_определения_f2ede2]1. Метод Elbow для определения оптимального k
print("1. ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОГО КОЛИЧЕСТВА КЛАСТЕРОВ\n")
inertias = []
silhouette_scores = []
K_range = range(2, 11)
for k in K_range:
kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
kmeans.fit(X_scaled)
inertias.append(kmeans.inertia_)
silhouette_scores.append(silhouette_score(X_scaled, kmeans.labels_))
print("Результаты Elbow метода:")
print("K | Inertia | Silhouette Score")
print("-" * 40)
for k, inertia, sil_score in zip(K_range, inertias, silhouette_scores):
print(f"{k} | {inertia:8.2f} | {sil_score:6.4f}")
optimal_k = 3 # Для Iris датасета оптимум обычно 3
print(f"\nОптимальное количество кластеров: {optimal_k}")
[bookmark: bm_2_обучение_k_means_с_оптимальным_k]2. Обучение K-Means с оптимальным k
print(f"\n2. ОБУЧЕНИЕ K-MEANS (K={optimal_k})\n")
kmeans = KMeans(n_clusters=optimal_k, random_state=42, n_init=10)
clusters = kmeans.fit_predict(X_scaled)
print(f"Центроиды кластеров:")
print(kmeans.cluster_centers_)
print(f"\nРаспределение объектов по кластерам:")
unique, counts = np.unique(clusters, return_counts=True)
for cluster_id, count in zip(unique, counts):
print(f" Кластер {cluster_id}: {count} примеров ({count/len(clusters)*100:.1f}%)")
[bookmark: bm_3_silhouette_score]3. Silhouette Score
print(f"\n3. ОЦЕНКА КАЧЕСТВА КЛАСТЕРИЗАЦИИ\n")
sil_scores = silhouette_samples(X_scaled, clusters)
avg_sil_score = silhouette_score(X_scaled, clusters)
print(f"Средний Silhouette Score: {avg_sil_score:.4f}")
print(f"Диапазон: {sil_scores.min():.4f} до {sil_scores.max():.4f}")
print(f"\nSilhouette Score по кластерам:")
for i in range(optimal_k):
cluster_sil_scores = sil_scores[clusters == i]
print(f" Кластер {i}: {cluster_sil_scores.mean():.4f} (мин: {cluster_sil_scores.min():.4f}, макс: {cluster_sil_scores.max():.4f})")
[bookmark: bm_4_pca_для_визуализации_в_2d]4. PCA для визуализации в 2D
print(f"\n4. ВИЗУАЛИЗАЦИЯ (DIMENSIONALITY REDUCTION)\n")
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
centers_pca = pca.transform(kmeans.cluster_centers_)
print(f"Объяснённая дисперсия:")
print(f" PC1: {pca.explained_variance_ratio_[0]*100:.2f}%")
print(f" PC2: {pca.explained_variance_ratio_[1]*100:.2f}%")
print(f" Всего: {sum(pca.explained_variance_ratio_)*100:.2f}%")
[bookmark: bm_5_сравнение_реальных_и_предска_84051a]5. Сравнение реальных и предсказанных кластеров
print(f"\n5. СРАВНЕНИЕ РЕАЛЬНЫХ И ПРЕДСКАЗАННЫХ КЛАСТЕРОВ\n")
from sklearn.metrics import adjusted_rand_score, normalized_mutual_info_score
ari = adjusted_rand_score(y, clusters)
nmi = normalized_mutual_info_score(y, clusters)
print(f"Adjusted Rand Index: {ari:.4f}")
print(f"Normalized Mutual Information: {nmi:.4f}")
print("\nПримечание:")
print(" 1.0 = идеальное совпадение кластеров")
print(" 0.0 = независимые кластеры")
print(" -1.0 = полное несовпадение")
[bookmark: визуализация_3]Визуализация
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
[bookmark: bm_1_elbow_метод]1. Elbow метод
ax1 = axes[0, 0]
ax1.plot(K_range, inertias, 'bo-', linewidth=2, markersize=8)
ax1.axvline(x=optimal_k, color='red', linestyle='--', linewidth=2, label=f'Optimal k={optimal_k}')
ax1.set_xlabel('Количество кластеров (k)')
ax1.set_ylabel('Inertia')
ax1.set_title('Elbow метод определения оптимального k')
ax1.legend()
ax1.grid(alpha=0.3)
[bookmark: bm_2_silhouette_score]2. Silhouette Score
ax2 = axes[0, 1]
ax2.plot(K_range, silhouette_scores, 'go-', linewidth=2, markersize=8)
ax2.axvline(x=optimal_k, color='red', linestyle='--', linewidth=2, label=f'Optimal k={optimal_k}')
ax2.set_xlabel('Количество кластеров (k)')
ax2.set_ylabel('Silhouette Score')
ax2.set_title('Silhouette Score для разных k')
ax2.legend()
ax2.grid(alpha=0.3)
[bookmark: bm_3_k_means_результаты_2d_pca]3. K-Means результаты (2D PCA)
ax3 = axes[1, 0]
colors = ['red', 'blue', 'green']
for i in range(optimal_k):
points = X_pca[clusters == i]
ax3.scatter(points[:, 0], points[:, 1], c=colors[i], label=f'Кластер {i}',
s=100, alpha=0.6, edgecolors='black', linewidth=0.5)
ax3.scatter(centers_pca[:, 0], centers_pca[:, 1], c='yellow', marker='X', s=400,
edgecolors='black', linewidth=2, label='Центроиды')
ax3.set_xlabel(f'PC1 ({pca.explained_variance_ratio_[0]*100:.1f}%)')
ax3.set_ylabel(f'PC2 ({pca.explained_variance_ratio_[1]*100:.1f}%)')
ax3.set_title(f'K-Means результаты (k={optimal_k})')
ax3.legend()
ax3.grid(alpha=0.3)
[bookmark: bm_4_silhouette_plot]4. Silhouette plot
ax4 = axes[1, 1]
y_lower = 10
colors_silhouette = ['red', 'blue', 'green']
for i in range(optimal_k):
cluster_sil_scores = sil_scores[clusters == i]
cluster_sil_scores.sort()
size_cluster_i = cluster_sil_scores.shape[0]
y_upper = y_lower + size_cluster_i

ax4.fill_betweenx(np.arange(y_lower, y_upper),
                  0, cluster_sil_scores,
                  facecolor=colors_silhouette[i], edgecolor=colors_silhouette[i],
                  alpha=0.7, label=f'Кластер {i}')
y_lower = y_upper + 10

ax4.axvline(x=avg_sil_score, color="red", linestyle="--", linewidth=2, label=f'Средний: {avg_sil_score:.4f}')
ax4.set_xlabel("Silhouette Score")
ax4.set_ylabel("Кластер")
ax4.set_title('Silhouette Plot')
ax4.legend(loc='best')
ax4.set_ylim([0, len(X_scaled) + (optimal_k + 1) * 10])
plt.tight_layout()
plt.show()
[bookmark: результаты_и_интерпретация_6]Результаты и интерпретация
Метрики кластеризации:
· Elbow метод — отыскивает "локоть" на графике инерции
· Silhouette Score — показывает, насколько хорошо примеры подходят своему кластеру (-1 до +1)
· Adjusted Rand Index — сравнивает предсказанные кластеры с реальными метками

[bookmark: задание_7_написание_собственного_a6dd5f]ЗАДАНИЕ 7: Написание собственного Pipeline
[bookmark: описание_задания_7]Описание задания
Создайте Pipeline, который:
1. Загружает данные
2. Нормализует признаки
3. Применяет PCA для снижения размерности
4. Обучает RandomForestClassifier
5. Вычисляет метрики на тестовой выборке
Используйте sklearn.pipeline.Pipeline для удобства.
[bookmark: развернутый_ответ_7]Развернутый ответ
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.datasets import load_iris
import numpy as np
import matplotlib.pyplot as plt
[bookmark: загрузка_данных_2]Загрузка данных
iris = load_iris()
X, y = iris.data, iris.target
Разделение на обучающую и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42
)
print("=== СОЗДАНИЕ И ОБУЧЕНИЕ PIPELINE ===\n")
[bookmark: способ_1_базовый_pipeline]Способ 1: Базовый Pipeline
print("1. БАЗОВЫЙ PIPELINE\n")
pipeline = Pipeline([
('scaler', StandardScaler()),
('pca', PCA(n_components=2)),
('classifier', RandomForestClassifier(n_estimators=100, random_state=42))
])
[bookmark: обучение]Обучение
pipeline.fit(X_train, y_train)
[bookmark: предсказания_2]Предсказания
y_pred = pipeline.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Точность модели: {accuracy*100:.2f}%")
print(f"\nОтчёт классификации:")
print(classification_report(y_test, y_pred, target_names=iris.target_names))
[bookmark: способ_2_pipeline_с_grid_search_д_8dd83a]Способ 2: Pipeline с Grid Search для подбора гиперпараметров
print("\n" + "="*60)
print("2. PIPELINE С GRID SEARCH\n")
pipeline_gs = Pipeline([
('scaler', StandardScaler()),
('pca', PCA()),
('classifier', RandomForestClassifier(random_state=42))
])
[bookmark: параметры_для_подбора]Параметры для подбора
param_grid = {
'pca__n_components': [2, 3, 4],
'classifier__n_estimators': [50, 100, 200],
'classifier__max_depth': [3, 5, 10]
}
print("Параметры для подбора:")
for param, values in param_grid.items():
print(f" {param}: {values}")
[bookmark: grid_search]Grid Search
grid_search = GridSearchCV(pipeline_gs, param_grid, cv=5, scoring='accuracy', n_jobs=-1)
grid_search.fit(X_train, y_train)
print(f"\nЛучшие параметры:")
for param, value in grid_search.best_params_.items():
print(f" {param}: {value}")
print(f"\nЛучшая точность при кросс-валидации: {grid_search.best_score_*100:.2f}%")
[bookmark: предсказания_на_тестовой_выборке]Предсказания на тестовой выборке
y_pred_gs = grid_search.predict(X_test)
accuracy_gs = accuracy_score(y_test, y_pred_gs)
print(f"\nТочность на тестовой выборке: {accuracy_gs*100:.2f}%")
[bookmark: способ_3_доступ_к_компонентам_pipeline]Способ 3: Доступ к компонентам Pipeline
print("\n" + "="*60)
print("3. РАБОТА С КОМПОНЕНТАМИ PIPELINE\n")
[bookmark: извлечение_трансформированных_данных]Извлечение трансформированных данных
X_test_scaled = pipeline.named_steps['scaler'].transform(X_test)
X_test_pca = pipeline.named_steps['pca'].transform(X_test)
print(f"Исходные данные: {X_test.shape}")
print(f"После масштабирования: {X_test_scaled.shape}")
print(f"После PCA: {X_test_pca.shape}")
[bookmark: получение_важности_признаков_из_к_7e3de3]Получение важности признаков из классификатора
classifier = pipeline.named_steps['classifier']
feature_importance = classifier.feature_importances_
print(f"\nВажность главных компонент:")
for i, importance in enumerate(feature_importance):
print(f" PC{i+1}: {importance:.4f}")
[bookmark: способ_4_сравнение_pipeline_без_pca]Способ 4: Сравнение Pipeline без PCA
print("\n" + "="*60)
print("4. СРАВНЕНИЕ: С PCA И БЕЗ PCA\n")
pipeline_no_pca = Pipeline([
('scaler', StandardScaler()),
('classifier', RandomForestClassifier(n_estimators=100, random_state=42))
])
pipeline_no_pca.fit(X_train, y_train)
y_pred_no_pca = pipeline_no_pca.predict(X_test)
accuracy_no_pca = accuracy_score(y_test, y_pred_no_pca)
print(f"Pipeline с PCA (2 компоненты): {accuracy
100:.2f}%")print(f"Pipeline без PCA (4 признака): {accuracy_no_pca100:.2f}%")
print(f"\nВывод: PCA сокращает размерность без значительной потери точности")
[bookmark: визуализация_4]Визуализация
fig, axes = plt.subplots(1, 2, figsize=(14, 5))
[bookmark: bm_1_результаты_на_pca_трансформи_ad5301]1. Результаты на PCA-трансформированных данных
ax1 = axes[0]
colors = ['red', 'blue', 'green']
for i, target in enumerate(iris.target_names):
indices = y_test == i
ax1.scatter(X_test_pca[indices, 0], X_test_pca[indices, 1],
c=colors[i], label=target, s=100, alpha=0.6, edgecolors='black')
ax1.set_xlabel('PC1')
ax1.set_ylabel('PC2')
ax1.set_title('Данные после PCA трансформации')
ax1.legend()
ax1.grid(alpha=0.3)
[bookmark: bm_2_важность_компонент_pca]2. Важность компонент PCA
ax2 = axes[1]
pca_model = pipeline.named_steps['pca']
explained_variance = pca_model.explained_variance_ratio_
cumsum_variance = np.cumsum(explained_variance)
ax2.bar(range(1, len(explained_variance) + 1), explained_variance, alpha=0.7, label='Individual')
ax2.plot(range(1, len(cumsum_variance) + 1), cumsum_variance, 'ro-', linewidth=2, label='Cumulative')
ax2.set_xlabel('Главная компонента')
ax2.set_ylabel('Объяснённая дисперсия')
ax2.set_title('PCA: Объяснённая дисперсия')
ax2.legend()
ax2.grid(alpha=0.3)
plt.tight_layout()
plt.show()
[bookmark: результаты_и_интерпретация_7]Результаты и интерпретация
Pipeline преимущества:
· Последовательное применение трансформаций и моделей
· Предотвращение утечки данных (fit на обучающей выборке)
· Удобный подбор гиперпараметров через GridSearchCV
· Воспроизводимость и читаемость кода

[bookmark: задание_8_работа_с_текстовыми_дан_9af9e0]ЗАДАНИЕ 8: Работа с текстовыми данными (NLP Basics)
[bookmark: описание_задания_8]Описание задания
1. Загрузите датасет MNIST (цифры) или работайте с текстом
2. Примените TF-IDF векторизацию для текстовых данных
3. Обучите классификатор на трансформированных данных
4. Вычислите метрики качества
5. Визуализируйте результаты
[bookmark: развернутый_ответ_8]Развернутый ответ
import numpy as np
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.pipeline import Pipeline
import seaborn as sns
[bookmark: пример_датасета_можно_использоват_27746e]Пример датасета (можно использовать реальные текстовые данные)
documents = [
"Python - отличный язык программирования для машинного обучения",
"Я люблю писать на Python и анализировать данные",
"Машинное обучение требует хороших навыков программирования",
"Данные - это новое золото в эпоху информации",
"Python и scikit-learn идеальны для машинного обучения",
"Анализ данных помогает принимать лучшие решения",
"Программирование на C++ очень быстро, но сложно",
"Java используется для разработки крупных приложений",
"C++ требует тщательного управления памятью",
"JavaScript - основной язык веб-разработки",
"Frontend разработка требует знания JavaScript",
"HTML и CSS - основы веб-дизайна"
]
[bookmark: метки_классов_0_python_ml_1_другое]Метки классов: 0 = Python/ML, 1 = Другое
labels = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
print("=== РАБОТА С ТЕКСТОВЫМИ ДАННЫМИ (TF-IDF) ===\n")
[bookmark: разделение_на_обучающую_и_тестову_b787d4]Разделение на обучающую и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split(
documents, labels, test_size=0.3, random_state=42
)
print("1. ТЕКСТОВАЯ ВЕКТОРИЗАЦИЯ\n")
[bookmark: способ_1_tf_idf_vectorizer]Способ 1: TF-IDF Vectorizer
print("TF-IDF (Term Frequency-Inverse Document Frequency):")
print("-" * 60)
tfidf = TfidfVectorizer(max_features=20, stop_words=None, lowercase=True)
X_train_tfidf = tfidf.fit_transform(X_train)
X_test_tfidf = tfidf.transform(X_test)
print(f"Количество документов в обучающем наборе: {X_train_tfidf.shape[0]}")
print(f"Размерность векторов (количество терминов): {X_train_tfidf.shape[1]}")
print(f"Тип данных: {type(X_train_tfidf)} (разреженная матрица)")
print(f"\nТермины (слова), выбранные TF-IDF:")
feature_names = tfidf.get_feature_names_out()
print(feature_names)
[bookmark: способ_2_count_vectorizer_для_сравнения]Способ 2: Count Vectorizer (для сравнения)
print("\n" + "="*60)
print("COUNT VECTORIZER (просто подсчёт слов):\n")
count_vect = CountVectorizer(max_features=20, stop_words=None, lowercase=True)
X_train_count = count_vect.fit_transform(X_train)
X_test_count = count_vect.transform(X_test)
print(f"Размерность: {X_train_count.shape}")
print("Count Vectorizer просто подсчитывает частоту слов без взвешивания")
[bookmark: bm_2_обучение_классификаторов]2. Обучение классификаторов
print("\n" + "="*60)
print("2. ОБУЧЕНИЕ КЛАССИФИКАТОРОВ\n")
[bookmark: классификатор_1_naive_bayes]Классификатор 1: Naive Bayes
print("Naive Bayes Classifier:")
print("-" * 60)
nb = MultinomialNB()
nb.fit(X_train_tfidf, y_train)
y_pred_nb = nb.predict(X_test_tfidf)
accuracy_nb = accuracy_score(y_test, y_pred_nb)
print(f"Точность: {accuracy_nb*100:.2f}%")
print(f"\nОтчёт классификации:")
print(classification_report(y_test, y_pred_nb, target_names=['Python/ML', 'Другое']))
[bookmark: классификатор_2_svm]Классификатор 2: SVM
print("\n" + "="*60)
print("Linear SVC Classifier:")
print("-" * 60)
svm = LinearSVC(random_state=42, max_iter=1000)
svm.fit(X_train_tfidf, y_train)
y_pred_svm = svm.predict(X_test_tfidf)
accuracy_svm = accuracy_score(y_test, y_pred_svm)
print(f"Точность: {accuracy_svm*100:.2f}%")
print(f"\nОтчёт классификации:")
print(classification_report(y_test, y_pred_svm, target_names=['Python/ML', 'Другое']))
[bookmark: bm_3_прогнозирование_на_новые_тексты]3. Прогнозирование на новые тексты
print("\n" + "="*60)
print("3. ПРОГНОЗИРОВАНИЕ НА НОВЫЕ ТЕКСТЫ\n")
new_texts = [
"Я использую Python для анализа больших данных",
"Java - мощный язык для корпоративных приложений"
]
X_new = tfidf.transform(new_texts)
predictions_nb = nb.predict(X_new)
predictions_svm = svm.predict(X_new)
probabilities_nb = nb.predict_proba(X_new)
for i, text in enumerate(new_texts):
print(f"Текст: '{text}'")
print(f" Naive Bayes: {['Python/ML', 'Другое'][predictions_nb[i]]}")
print(f" SVM: {['Python/ML', 'Другое'][predictions_svm[i]]}")
print(f" Вероятности (NB): Python/ML={probabilities_nb[i][0]:.2%}, Другое={probabilities_nb[i][1]:.2%}\n")
[bookmark: bm_4_анализ_важности_терминов]4. Анализ важности терминов
print("="*60)
print("4. АНАЛИЗ ВАЖНОСТИ ТЕРМИНОВ\n")
[bookmark: tf_idf_веса_для_классификатора_svm]TF-IDF веса для классификатора SVM
coefficients = svm.coef_[0]
feature_importance = list(zip(feature_names, coefficients))
feature_importance.sort(key=lambda x: abs(x[1]), reverse=True)
print("Самые важные термины для классификации:")
print(f"{'Термин':<20} {'Вес':>10}")
print("-" * 30)
for term, weight in feature_importance[:10]:
print(f"{term:<20} {weight:>10.4f}")
[bookmark: визуализация_5]Визуализация
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
[bookmark: bm_1_сравнение_точности]1. Сравнение точности
ax1 = axes[0, 0]
models = ['Naive Bayes', 'Linear SVC']
accuracies = [accuracy_nb, accuracy_svm]
colors = ['#FF9999', '#66B2FF']
bars = ax1.bar(models, [acc*100 for acc in accuracies], color=colors, edgecolor='black', linewidth=2)
ax1.set_ylabel('Точность (%)')
ax1.set_title('Сравнение классификаторов')
ax1.set_ylim([0, 105])
for bar in bars:
height = bar.get_height()
ax1.text(bar.get_x() + bar.get_width()/2., height,
f'{height:.1f}%', ha='center', va='bottom', fontweight='bold')
ax1.grid(axis='y', alpha=0.3)
[bookmark: bm_2_матрица_ошибок_naive_bayes]2. Матрица ошибок (Naive Bayes)
ax2 = axes[0, 1]
cm_nb = confusion_matrix(y_test, y_pred_nb)
sns.heatmap(cm_nb, annot=True, fmt='d', cmap='Blues', cbar=False, ax=ax2,
xticklabels=['Python/ML', 'Другое'],
yticklabels=['Python/ML', 'Другое'])
ax2.set_ylabel('Действительное значение')
ax2.set_xlabel('Предсказанное значение')
ax2.set_title('Матрица ошибок (Naive Bayes)')
[bookmark: bm_3_матрица_ошибок_svm]3. Матрица ошибок (SVM)
ax3 = axes[1, 0]
cm_svm = confusion_matrix(y_test, y_pred_svm)
sns.heatmap(cm_svm, annot=True, fmt='d', cmap='Greens', cbar=False, ax=ax3,
xticklabels=['Python/ML', 'Другое'],
yticklabels=['Python/ML', 'Другое'])
ax3.set_ylabel('Действительное значение')
ax3.set_xlabel('Предсказанное значение')
ax3.set_title('Матрица ошибок (Linear SVC)')
[bookmark: bm_4_важность_терминов]4. Важность терминов
ax4 = axes[1, 1]
top_terms = [term for term, _ in feature_importance[:10]]
top_weights = [weight for _, weight in feature_importance[:10]]
colors_bar = ['green' if w > 0 else 'red' for w in top_weights]
ax4.barh(range(len(top_terms)), top_weights, color=colors_bar, edgecolor='black')
ax4.set_yticks(range(len(top_terms)))
ax4.set_yticklabels(top_terms)
ax4.set_xlabel('Вес (коэффициент SVM)')
ax4.set_title('Важность терминов для классификации')
ax4.grid(axis='x', alpha=0.3)
plt.tight_layout()
plt.show()
[bookmark: результаты_и_интерпретация_8]Результаты и интерпретация
Текстовая векторизация:
· TF-IDF — взвешивает термины по их важности (редкие слова более важны)
· Count Vectorizer — просто подсчитывает частоту слов
· Разреженные матрицы — эффективны для больших текстовых датасетов
Применение в NLP:
· Классификация текстов по категориям
· Анализ тональности (sentiment analysis)
· Обнаружение спама
· Рекомендация документов
[bookmark: критерии_оценки_практического_зачета]
КРИТЕРИИ ОЦЕНКИ
	Критерий
	Баллы

	Выполнение практического задания (1 задание = 10 баллов)
	80

	Тест (1 вопрос = 1 балл) 
	20

	Итого
	100



Шкала оценок:
· 90-100 баллов: отлично (5)
· 75-89 баллов: хорошо (4)
· 60-74 баллов: удовлетворительно (3)
· Менее 60 баллов: неудовлетворительно (2)
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