ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

Факультет информационных технологий, экономики и управления

Кафедра «Системы управления»

УТВЕРЖДАЮ Декан ФИТЭУ

₋/И.А. Рычка/

« 24 » февраля 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Моделирование систем управления»

направление подготовки 27.03.04 «Управление в технических системах» (уровень бакалавриата)

направленность (профиль) «Автоматика электроэнергетических систем»

Петропавловск-Камчатский 2025

Рабочая программа разработана в соответствии с ФГОС ВО по направлению подготовки 27.03.04 «Управление в технических системах», профиль «Управление и информатика в технических системах» и учебного плана ФГБОУ ВО «КамчатГТУ».

Составитель рабочей программы: доцент кафедры СУ, к.ф.-м.н., доцент

Водинчар Г.М.

Рабочая программа рассмотрена на заседании кафедры «Системы управления»

Протокол № 6 от « 24 » февраля 2025 года.

« 24 » февраля 2025 г.

Заведующий кафедрой «Системы управления» А.А. Марченко

1. Цели и задачи учебной дисциплины, ее место в учебном процессе

Цели и задачи изучения дисциплины

Целью дисциплины является изучения основных методов моделирования систем управления и важнейших классов их математических моделей.

Задачей дисциплины является ознакомление студентов с методами построения моделей стохастических систем и методами нелинейной динамики в плане их использования для описания систем управления.

В результате изучения дисциплины:

- студент должен знать: принципы разработки непрерывных и дискретных систем в рамках модели «черного ящика», методы имитации случайных распределений на ЭВМ, основные понятия теории динамических систем;
- студент должен уметь: разрабатывать программы имитации случайных распределений и АРПСС-сигналов, рассчитывать передаточные функции и частотные характеристики линейных дискретных и непрерывных систем, исследовать на устойчивость траектории динамических систем;
- студент должен приобрести навыки по компьютерной имитации случайных величин и АРПСС-сигналов.

2. Требования к результатам освоения дисциплины

Дисциплина «Моделирование систем управления» направлена для освоения следующих компетенций основной образовательной программы подготовки бакалавра по направлению подготовки 27.03.04 «Управление в технических системах» федерального государственного образовательного стандарта высшего образования:

- Способен осуществлять сбор, обработку, анализ и обобщение результатов экспериментов и исследований в профессиональной деятельности (ПК-1);
- Способен планировать предварительные испытания и опытную эксплуатации АСУП (ПК-2).

Планируемые результаты обучения при изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы, представлены в таблице 1.

Таблица 1 - Планируемые результаты обучения при изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы

Код	Наименование	Код и наименование	Планируемый результат	Код		
компе	компетенции	индикатора	индикатора обучения			
тенци		достижения ПК	по дисциплине	ЛЯ		
И				освоения		
ПК-1	Способен	ИД-1пк-1: Знает цели и	Знать:			
	осуществлять сбор,	задачи проводимых	Особенности проведения			
	обработку, анализ и	исследований, методы	экспериментов и их методики	3(ПК-1)		
	обобщение	проведения				
	результатов	экспериментов и	Уметь:			
	экспериментов и	наблюдений, обобщения	Формировать и правильно			
	исследований в	и обработки	применять техническую			
	профессиональной	информации.	документацию в			
	деятельности	ИД-2 _{ПК-1} : Умеет	профессиональной деятельности	У(ПК-1)1		
		применять нормативную		V (111K 1)1		
		документацию в профессиональной	Владеть:			
		профессиональной	Навыками применения научно-			

		деятельности. ИД-3пк-1: Владеет навыками применения методов анализа научнотехнической информации в профессиональной деятельности.	технической информации.	В(ПК-1)1
ПК-2	Способен планировать предварительные испытания и опытную эксплуатации АСУП	ид-1 _{пк-2} : Знает архитектуры ИСУ в электроэнергетике ид-2 _{пк-2} : Знает состав и структуру программнотехнического комплекса ИСУ объектами электроэнергетики ид-3 _{пк-2} : Умеет	Знать: методы построения и анализа моделей процессов и объектов автоматизации и управления Уметь: строить системы на основе ИСУ в электроэнергетике	3(ПК-2)
		анализировать исходные данные на соответствие критериям полноты и непротиворечивости .	Владеть: - навыками поиска неисправностей в системах на основе критериев полноты в электроэнергетических системах	В(ПК-2)1

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к формируемой участниками образовательных отношений части блока 1 образовательной программы. Индекс дисциплины Б1.В.04.

4. Содержание дисциплины.

4.1 Тематический план дисциплины

Очняа форма обучения

	часов	занятия	Контактная работа по видам учебных занятий			ельная _з а	ущего ля	контроль исциплине
Наименование разделов и тем	Всего ча	Аудиторные	Лекции	Семинары (практическ	Лабораторн ые работы	Самостоятельная работа	Формы текущего контроля	Итоговый контроль знаний по дисциплине
Тема 1. Имитация случайных распределений	37	23	9	2	12	16	Опрос, ПЗ, Тест	
Тема 2. Линейные модели систем	37	23	9	8	6	16	Опрос, ПЗ	

Тема 3. Линейные стохастические модели систем	44	28	8	4	16	16	Опрос, ПЗ, Тест	
Тема 4. Динамические системы. модели систем. Нелинейные модели систем.	27	11	8	3	-	16	Опрос, ПЗ, Тест	
Курсовая работа	31					64		
Экзамен	36							36
Всего	216	85	34	17	34	95		

Заочная форма обучения

Наименование разделов и тем	Всего часов	Аудиторные занятия	р вид	абота и забота и забота и забота и завияти	10 Эных й	Самостоятельная работа	Формы текущего контроля	Итоговый контроль знаний по дисциплине
	Be	Аудит	Лекции	Семинары (практическ	Лабораторн ые работы	Самс	Форд	Итого знаний
Тема 1. Имитация случайных распределений	45	5	2	1	2	40	Опрос, ПЗ, Тест	
Тема 2. Линейные модели систем	45	5	2	1	2	40	Опрос, ПЗ	
Тема 3. Линейные стохастические модели систем	47	7	2	1	4	40	Опрос, ПЗ, Тест	
Тема 4. Динамические системы. модели систем. Нелинейные подели систем.	41	3	2	1	-	39	Опрос, ПЗ, Тест	
Курсовая работа	30					30		
Экзамен	9							9
Всего	216	20	8	4	8	187		

4.2 Описание содержания дисциплины

Тема 1. Имитация случайных распределений

Лекция 1.1. Моделирование случайных величин на ЭВМ. Генераторы псевдослучайных чисел — общие принципы построения. Мультипликативные конгруэнтные генераторы. Общий алгоритм имитации дискретного распределения. Метод обратных функций. Имитация гауссовского распределения. Имитация многомерного равномерного распределения. Имитация некоторых многомерных распределений.

Практическое занятие 1.1. Алгоритмы имитации случайных распределений. Вывод формул для преобразования последовательности случайных чисел в последовательность независимых одинаково распределенных величин с заданной плотностью вероятности.

Примерные задания:

- 2. Используя общий алгоритм, вывести формулы для имитации биномиального и пуассоновского распределений.
- 3. Используя метод обратных функций, вывести формулы для имитации показательного, равномерного, рэлеевского распределений.

Лабораторная работа 1.1. Генерация последовательностей непрерывных случайных величин на ЭВМ.

Цель работы: формирование умений по разработке программных приложений для генерации последовательностей независимых непрерывных случайных величин с различными законами распределения.

Задания:

- разработать приложение, генерирующее последовательность независимых реализаций случайных величин с показательным законом распределений и распределением Релея, используя метод обратных функций.
- разработать приложение, генерирующее последовательность независимых реализаций случайных величин с нормальным законом распределения, используя метод преобразования координат.

Лабораторная работа 1.2 Генерация последовательностей дискретных случайных величин на ЭВМ.

Цель работы: формирование умений по разработке программных приложений для генерации последовательностей независимых дискретных случайных величин с различными законами распределения.

Задания:

- Разработать приложение, генерирующее последовательность независимых реализаций случайных величин с биномиальным законом распределения, используя общий алгоритм для величин с конечным числом значений.
- Разработать приложение, генерирующее последовательности независимых реализаций случайных величин с законами распределения Пуассона и геометрическим, используя общий алгоритм для величин со счетным числом значений.
- Разработать приложение, имитирующее схему испытаний Бернулли для события с заданной вероятностью.

Тема 2. Линейные модели систем

Лекция 1.2. Линейные системы с непрерывным временем. Понятие линейной системы. Сверточные интегралы. Импульсная характеристика. Условие физической реализуемости. Комплексная, амплитудная, фазовая частотные характеристики. Система в частотной области. Передаточная функция. Устойчивость системы.

Практическое занятие 1.2 Передаточные функции и частотные характеристики линейных аналоговых систем.

Расчет передаточных функций и частотных характеристики систем, заданных дифференциальными уравнениями.

Примерные задания:

- Вывести выражения для передаточных функций и частотных характеристик пропорционального, дифференцирующего, интегрирующего, апериодического, колебательного звеньев.
- Исследовать системы из предыдущего задания на устойчивость.

Лекция 1.3. Линейные системы с дискретным временем. Дискретные сигналы. Подмена частот. Частота Найквиста. Z-преобразование, его свойства. Импульсная характеристика. Условие физической реализуемости. Передаточная функция. Комплексная, амплитудная, фазовая частотные характеристики. Система в частотной области. Устойчивость системы.

Практическое занятие 1.3 Частотные характеристики линейных дискретных систем.

Расчет передаточных функций и частотных характеристики систем, заданных разностными уравнениями.

Примерные задания:

- Вывести выражения для частотных характеристик фильтров скользящего среднего, авторегрессии и авторегрессии-скользящего среднего.
- Рассчитать импульсные характеристики фильтров AP(p), CC(q) и APCC(p,q).
- Получить уравнения дискретных аналогов дифференцирующего и интегрирующего звеньев.

Лекция 1.4. Стационарные случайные сигналы. Случайный сигнал. Ансамбль реализаций и сечение. Конечномерные распределения. Гауссовский сигнал. Средне значение и средний квадрат. Дисперсия и стандартное отклонение. Автокорреляционная функция. Стационарные и стационарно связанные сигналы. Кросс-корреляции. Дискретные сигналы, их корреляционные свойства.

Практическое занятие 1.4 Корреляционные свойства случайных сигналов. Расчет корреляционных функций стационарных сигналов и кросс-корреляций стационарно связанных сигналов.

Примерные задания:

- Получить выражения для АКФ заданных сигналов, убедится в их стационарности.
- Получить выражения для кросс-корреляции заданных пар сигналов.

Лекция 1.5. Спектры стационарных случайных сигналов. Теорема Винера-Хинчина. Спектральная плотность, ее физический смысл. Спектральное каноническое разложение. Кросс-спектры. Функция когерентности. Спектральные свойства дискретных случайных сигналов.

Практическое занятие 1.5 Спектральный анализ случайных сигналов. Расчет спектральных плотностей стационарных сигналов и кросс-спектров стационарно связанных сигналов.

Примерные задания:

- 1. Получить выражения для спектральной плотности заданных сигналов.
- 2. Получить выражения для кросс-корреляции заданных пар сигналов.
 - 3. Рассчитать функцию когерентности заданных пар сигналов.

Лабораторная работа 1.3 Программная реализация линейных цифровых фильтров

Цель работы: формирование умений по разработке программных приложений линейной фильтрации цифровых сигналов.

Задания:

- По заданным нулям передаточной функции рассчитать временную форму линейного нерекурсивного фильтра.
- Разработать приложение, выполняющее фильтрацию сигнала с помощью временной формы, полученной в предыдущем задании.
- Выполнить фильтрацию дискретного дельта-импульса, гармонического сигнала, затухающего гармонического сигнала. Построить графики входа и выхода фильтра.

СРС. Составление отчетов по лабораторным работам:

- Генерация последовательностей непрерывных случайных величин на ЭВМ [1,3,4]
- Генерация последовательностей дискретных случайных величин на ЭВМ [1,3,4]

• Программная реализация линейных цифровых фильтров [1,3,4]

Тема 3. Линейные стохастические модели систем

Лекция 2.1. Линейные стохастические системы. Отклик ЛИВ-системы на стационарный случайный вход. Связи между АКФ и спектрами входа и выхода. Кросскорреляции и кросс-спектры входа и выхода. Оценивание диапазона линейности системы по функции когерентности входа и выхода. Идентификация передаточной функции системы по стохастическим входам.

Практическое занятие 2.1. Преобразование случайных сигналов ЛИВсистемами. Расчет статистических свойств выходов линейных систем

Примерные задания:

- Для системы с данной передаточной функцией рассчитать корреляционные и спектральные функции отклика на белый шум
- Для системы с данной передаточной функцией рассчитать корреляционные и спектральные функции отклика на импульсный процесс пуассоновского типа.

Лабораторная работа 2.1. Моделирование процессов скользящего среднего.

Цель работы: формирование умений по разработке программных приложений нерекурсивной линейной фильтрации дискретного белого шума.

Задания:

- По заданным нулям передаточной функции рассчитать временную форму линейного нерекурсивного фильтра.
- Разработать приложение, выполняющее генерацию дискретного белого шума и его фильтрацию с помощью временной формы фильтра, полученной в предыдущем задании.
- Рассчитать кросс-корреляцию входа и выхода фильтра и оценить по ней частотную характеристику. Построить графики кросс-корреляции, оценок АЧХ и ФЧХ. Сравнить их с графиками АЧХ и ФЧХ, построенным по аналитическим выражениям.

Лекция 2.2. Модели класса АРПСС. Процессы АР. Условие обратимости и стационарности. Корреляционная функция и спектр АР-процесса. Уравнения Юла-Уокера. Процессы СС. Условие обратимости. Корреляционная функция и спектр СС-процесса. АРСС-процессы. Идентификация процессов типа АРСС. Операторы дискретного дифференцирования и интегрирования. АРПСС-модели.

Практическое занятие 2.2 АРПСС-модели линейных стохастических систем. Расчет формирующих фильтров для случайных сигналов с заданными спектральными свойствами.

Примерные задания:

- Для сигнала с заданной дробно рациональной спектральной плотностью составить уравнение формирующего АРСС-фильтра.
- Аппроксимировать фильтр из предыдущего задания фильтрами АР и СС высокого порядка.

Лабораторная работа 2.2. Моделирование процессов АРСС.

Цель работы: формирование умений по разработке программных приложений рекурсивной линейной фильтрации дискретного белого шума.

Задания:

- По заданным нулям и полюсам передаточной функции рассчитать временную форму линейного рекурсивного фильтра.
- Разработать приложение, выполняющее генерацию дискретного белого шума и его фильтрацию с помощью временной формы фильтра, полученной в предыдущем задании.

• Рассчитать кросс-корреляцию входа и выхода фильтра и оценить по ней частотную характеристику. Построить графики кросс-корреляции, оценок АЧХ и ФЧХ. Сравнить их с графиками АЧХ и ФЧХ, построенным по аналитическим выражениям.

Лабораторная работа 2.3. Идентификация процессов АРСС.

Цель работы: формирование навыков идентификации случайного сигнала как процесса APCC с помощью пакета gretl

Задания:

- Построить график АКФ и ЧАКФ выходного процесса филтра из предыдущей лабораторной работы.
- По графикам выдвинуть гипотезу о порядках АРСС-модели, описывающей этот сигнал.
- Провести идентификацию сигнала, как APCC-процесса, используя стандартные средства gretl.
- Провести сравнение коэффициентов, полученных в результате идентификации с коэффициентами, использовавшимися при генерации.

Тема 4. Динамические системы. Нелинейные модели систем.

Лекция 2.3. Динамические системы. Уравнения состояния и уравнения наблюдения для систем управления. Сведение уравнений состояния к динамической системе. Фазовое пространство и фазовые траектории. Точки покоя. Устойчивость по первому приближению. Асимптотическая устойчивость.

Практическое занятие 2.3 Устойчивость траекторий динамических систем. Расчет устойчивости траекторий динамических систем по первому приближению Примерные задания:

- Выяснить тип устойчивости точки покоя линейной системы.
- Выяснить тип устойчивости точки покоя нелинейной системы по первому приближению.
- Выяснить тип устойчивости траектории нелинейной системы по первому приближению.
- Рассчитать показатели Ляпунова для фазовой траектории.

Лекция 2.4. Детерминированнный хаос. Эргодичность и перемешивание. Эргодические отображения. Классические аттракторы динамических систем: точки покоя, предельные циклы, торы. Странный аттрактор. Система Лоренца. Хаос в генераторе Анищенко-Астахова. Синхронизация хаотических колебаний.

Лекция 2.5. Схемы моделирования. Общая модель объекта управления. Основные подходы к построению математических моделей систем. Непрерывнодетерминированные модели. Дискретно-детерминированные модели. Дискретностохастические модели. Сетевые модели. Агрегативные системы.

СРС. Составление отчетов по лабораторным работам:

- Моделирование процессов скользящего среднего.
- Моделирование процессов АРСС.
- Идентификация процессов АРСС.

5. Учебно-методическое обеспечение для самостоятельной работы обучающихся

В целом внеаудиторная самостоятельная работа обучающегося при изучении курса включает в себя следующие виды работ:

- 1. проработка (изучение) материалов лекций;
- 2. чтение и проработка рекомендованной основной и дополнительной литературы;
- 3. подготовка к лабораторным работам;
- 4. поиск и проработка материалов из Интернет-ресурсов, периодической печати;
- 5. выполнение домашних заданий в форме творческих (проблемно-поисковых, групповых) заданий, докладов;
- 6. подготовка к текущему и итоговому (промежуточная аттестация) контролю знаний по дисциплине.

Основная доля самостоятельной работы обучающихся приходится на подготовку к лабораторным работам, тематика которых полностью охватывает содержание курса. Самостоятельная работа по подготовке к лабораторным работам предполагает умение работать с первичной информацией.

6. Фонд оценочных средств

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине «Моделирование систем управления» представлен в приложении к рабочей программе дисциплины и включает в себя:

- 4. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- 5. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- 6. Типовые контрольные задания или материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций;
- 7. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Примерный перечень вопросов к промежуточной аттестации

- 4. Метод обратных функций для генерации случайных величин на ЭВМ.
- 5. Общий алгоритм генерации дискретной величины на ЭВМ.
- 6. Генерация нормального распределения на ЭВМ.
- 7. Линейные системы во временной области: определение, импульсная характеристика, устойчивость.
- 8. Линейные системы в частотной области: частотная характеристика, АЧХ, ФЧХ, устойчивность.
- 9. Передаточная функция линейной системы, ее связь с частотной чарактеристикой.
- 10. Z-преобразование, его свойства.
- 11. Стационарные случанйые процессы.
- 12. АКФ стационарного процесса, ее свойства.
- 13. АР-процессы.
- 14. СС-процессы.
- 15. АРСС-процессы.
- 16. АРПСС-процессы.
- 17. АКФ и ЧКФ процессов типа АРСС.
- 18. Идентификация модели типа АРПСС по оценкам АКФ и ЧКФ.
- 19. Кросс-корреляционная функция случайного процесса.
- 20. Спектральная плотность стационарного процесса, ее свойства и смысл.

- 21. Кросс-спектральная плотность двух случайных процессов.
- 22. Функция когерентности.
- 23. Кросс-корреляция входа и выхода линейной системы.
- 24. Кросс-спектр и функция когерентности входа и выхода линейной системы.
- 25. Расчет передаточных функций линейных систем через случайные возмущения на входе.
- 26. Расчет передаточных функций линейных систем через детерминированные воздествия на входе.
- 27. Дискретные регуляторы.
- 28. Общая модель объекта управления.
- 29. Стандартные схемы моделирования систем.
- 30. Преобразование кодирования.
- 31. Динамические системы: фазовое пространство, стационарные режимы.
- 32. Аттракторы динамических систем.
- 33. Детерминированный хаос.

7. Рекомендуемая литература

7.1. Основная литература

8. Советов Б.Я., Яковлев С.А. Моделирование систем: учебник для вузов. М. — Высшая школа, 2007.

7.2 Дополнительная литература

- 2. Математическое моделирование в технике / Под ред. В.С.Зарубина, А.П.Крищенко. М. Изд-во МГТУ, 2001
- 3. Дьяконов В.П., Круглов В.С. МАТLAB. Анализ, идентификация и моделирование систем: специальный справочник. Спб.: Питер, 2002.
- 4. Дьяконов В.П. МАТLAВ 6: Учебный курс. Спб.:Питер. 2001.
- 5. Самарский А.А., Михайлов А.П. Математическое моделирование: Идеи. Методы. Примеры. М. Физматлит, 2002.
- 6. Введение в математическое моделирование / Под ред. П. В. Трусова. М.: Логос, 2004.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. Научная эдектронная библиотека Elibrary https://elibrary.ru
- 2. Справочная система «Мир http://eqworld.ibmnet.ru математических уравнений»
- 3. Справочная система SciLab http://scilab.org

9. Методические указания для обучающихся по освоению дисциплины

Подготовка к лекционным занятиям

Лекции составляют основу теоретического обучения и дают систематизированные основы научных знаний по дисциплине, концентрируют внимание обучающихся на наиболее сложных и узловых вопросах, стимулируют их активную познавательную деятельность и способствуют формированию творческого мышления.

При подготовке к лекции следует предварительно ознакомиться с учебным материалом по теме занятия и при конспектировании лекции акцентировать внимание на новых теоретических положениях и иных данных, не нашедших отражения в учебной литературе.

Для успешного изучения дисциплины студенту рекомендуется систематически готовиться к каждому занятию по следующей схеме:

- повторить материал предыдущей лекции, используя конспекты, учебную и специальную литературу
- ответить на контрольные вопросы по изучаемой теме.

Подготовка к лабораторным занятиям

Лабораторная работа — это выполнение студентами под руководством преподавателя или по инструкции заданий (решение задач, написание программ) с применением персонального компьютера.

В ходе лабораторных работ студенты воспринимают и осмысливают новый учебный материал. Лабораторные занятия носят систематический характер, регулярно следуя за лекционными занятиями. Лабораторные работы выполняются согласно графику, при этом соблюдается принцип индивидуального выполнения работ.

Обучающийся должен подготовить отчет к каждой лабораторной работе, предусмотренной планом.

При подготовке к лабораторным занятиям необходимо заранее изучить методические рекомендации по его проведению. Обратить внимание на цель занятия, на основные вопросы для подготовки к занятию, на содержание темы занятия.

10. Курсовая работа.

Курсовая работа по дисциплине выполняется студентами по единой теме «Идентификация модели линейной дискретной системы на основе класса АРПСС-систем». Всем студентам выдаются различные файлы цифровых сигналов, которые необходимо идентифицировать как выходы системы, относящейся к классу АРПСС-систем.

Критерии оценки курсовой работы

Примерный перечень критериев оценки	Максимальное	
курсовой работы (проекта)	количество баллов	
Постановка проблемы. Определение целей, задач, методов решения, объекта исследования.	6	
Корректное изложение смысла основных научных идей, их теоретическое обоснование и объяснение, использование навыков научного обобщения.	6	

Логичность и последовательность в изложении материала.	5
Навыки планирования и управления временем при выполнении работы. Представление работы в срок.	6
Текстовая часть (соответствие стандарту, структурная упорядоченность, ссылки, цитаты, таблицы и т.д.)	10
Графическая часть (соответствие стандартам, ВНТП и т.д.)	10
Правильность расчетов. Применение физико-математического аппарата.	5
Технико-экономическое обоснование по теме курсового проекта (работы)	6
Выводы и предложения по модернизации, реконструкции. Обоснованность выводов.	6
Количество и степень новизны использованных литературных источников. Способность к работе с литературными источниками, Интернет-ресурсами, справочной и энциклопедической литературой, периодической литературой.	10
Презентабельность проекта (иллюстрированность, презентации с использованием ПК и т.д.)	5
Степень самостоятельности при работе над проектом (работой).	10
Выполнение специального задания.	5
Защита курсового проекта (работы)	10
Итого	100

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

11.1 Перечень информационных технологий, используемых при осуществлении образовательного процесса

- 1. электронные образовательные ресурсы, представленные в п. 8 данной рабочей программы;
- 2. интерактивное общение с обучающимися и консультирование посредством электронной почты;
- 3. работа с обучающимися в ЭИОС ФГБОУ ВО «КамчатГТУ».

11.2 Перечень программного обеспечения, используемого при осуществлении образовательного процесса

При освоении дисциплины используется лицензионное программное обеспечение:

- операционная системы Astra Linux;
- комплект офисных программ P-7 Офис (в составе текстового процессора, программы работы с электронными таблицами, программные средства редактирования и демонстрации презентаций);
- среда разработки Eclipce и DevC++;.
- пакет прикладных математических программ пакет SciLab.

11.3 Перечень информационно-справочных систем

- 7. справочная математическая система Мир математических уравнений https://eqworld.ipmnet.ru/
- 8. Справочник программиста на С и С++ http://www.c-cpp.ru/
- 9. Официальный сайт пакета SciLab https://www.scilab.org

12. Материально-техническое обеспечение дисциплины

Для проведения лекционных занятий, групповых и индивидуальных консультации, текущего контроля и промежуточной аттестации используется учебная аудитория 7-518 на 32 посадочных места с комплектом учебной мебели и аудиторной меловой доской. Лабораторные занятия проводятся в лаборатории моделирования систем управления 7-517 (9 учебных персональных компьютеров, 12 посадочных мест, маркерная аудиторная доска, учебная мебель). Самостоятельной работа осуществляется в кабинете самостоятельной работы студентов 7-517 (9 учебных персональных компьютеров, 12 посадочных мест, маркерная аудиторная доска, учебная мебель).