ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

Факультет информационных технологий, экономики и управления

Кафедра «Системы управления»

УТВЕРЖДАЮ Декан ФИТЭУ

> ____/И.А. Рычка/

« 29 » января 2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Цифровая обработка сигналов»

направление подготовки 09.04.01 «Информатика и вычислительная техника» (уровень бакалавриата)

направленность (профиль)
«Программное обеспечение автоматизированных систем
(в рыбохозяйственном комплексе)»
для очной и заочной форм обучения

Петропавловск-Камчатский 2025

Рабочая программа разработана в соответствии с $\Phi\Gamma$ OC BO по направлению подготовки 09.04.01 «Информатика и вычислительная техника», профиль «Программное обеспечение автоматизированных систем (в рыбохозяйственном комплексе)», и учебного плана $\Phi\Gamma$ БОУ BO «Камчат Γ ТУ».

Bogerands

Составитель рабочей программы: доцент кафедры СУ, к.ф.-м.н., доцент

Водинчар Г.М.

Рабочая программа рассмотрена на заседании кафедры «Системы управления»

Протокол № 6 от « 29 » января 2025 года.

« 29 » января 2025 г.

Заведующий кафедрой «Системы управления» А.А. Марченко

1. Цели и задачи учебной дисциплины

Целью дисциплины является теоретическое и практическое освоение методов и средств цифровой обработки сигналов (ЦОС), позволяющее выпускнику успешно вести научно-исследовательскую деятельность, направленную на создание и обеспечение функционирования систем различного назначения.

Задачи изучения дисциплины:

- ° изучение в требуемом объеме соответствующего математического аппарата цифровой обработки сигналов;
- изучение способов реализации эффективных методов и алгоритмов цифрового анализа информационных данных на современных персональных компьютерах.

2. Требования к результатам освоения дисциплины

Дисциплина «Цифровая обработка сигналов» направлена на освоение следующих компетенций основной образовательной программы подготовки бакалавра по направлению подготовки 09.04.01 «Информатика и вычислительная техника» федерального государственного образовательного стандарта высшего образования:

- Способен применять на практике новые научные принципы и методы исследований (ОПК-4).

Планируемые результаты обучения при изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы, представлены в таблице.

Таблица - Планируемые результаты обучения при изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы

Код компете нции	Планируемые результаты освоения образовательной программы	Код и наименование индикатора достижения	Планируемый результат обучения по дисциплине	Код показателя освоения
ОПК-4	Способен применять на практике новые научные принципы и методы исследований	методов исследований	знать: методы и алгоритмы решения задач цифровой обработки сигналов Уметь: применять современный методы цифровой обработки сигналов в научных исследованиях Владеть: навыками применения методов и алгоритмов решения задач цифровой обработки сигналов	3(ОПК-4)1 У(ОПК-4)1 В(ОПК-4)1

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к блоку обязательных дисциплин образовательной программы. Индекс дисциплины Б1.О.06

4. Содержание дисциплины

4.1. Тематический план дисциплины

заочная форма обучения

заочная форма обучения										
	часов	работа	Контактная работа по видам учебных занятий		гельная та	кущего 0ля	й контроль дисциплине			
Наименование разделов и тем		Контактная	Лекции	Практичес кие занятия	Лаборатор ные работы	Самостоятельная работа	Формы текущего контроля	Итоговый знаний по д		
Тема 1: Цифровые сигналы и их	35	5	2	-	3	30				
математическое описание							Опрос,			
Тема 2: Цифровая фильтрация	35	5	2	-	3	30	контроль			
Тема 3: Корреляционный и спектральный анализ	36	6	2	-	4	30	CPC			
Тема 4: Основы вейвлет-анализа	34	-	-	-	-	34				
Зачет дифференцированный				•		4	Опрос			
Bcero	144	16	6	-	10	124				

4.2. Описание содержания дисциплины

Тема 1. Цифровые сигналы и их математическое описание

Общая схема ЦОС. Типы сигналов и способы их описания. Типовые дискретные сигналы и их аналоги. Основная полоса частот. Ряд Фурье. Интегральное преобразование

Фурье. Обратное преобразование Фурье. Свойства преобразования Фурье. Понятие спектра. Дискретное преобразование Фурье. Обратное дискретное преобразование Фурье. Свойства ДПФ. БПФ с прореживанием по времени, по частоте. Преобразование Лапласа и Z-преобразование. Соответствие р- и z- областей. Свойства Z-преобразования. Таблица соответствий. Обратное Z-преобразование. Вычисление обратного Z-преобразования методом разложения в степенной ряд. Вычисление обратного Z-преобразования методом разложения на простые дроби. Вычисление обратного Z-преобразования с использованием теоремы Коши о вычетах.

Лабораторная работа 1.1. *Генерация дискретных сигналов.*

Лабораторная работа 1.2. Спектры сигналов.

Лабораторная работа 1.3. *Z-преобразование*.

CPC

1.

- 2. Подготовка отчетов по лабораторным работам 1.1-1.3.
- 3. Подготовка к зачету по перечню примерных вопросов.

Тема 2. Цифровая фильтрация

Понятие ЛДС. Описание ЛДС во временной области. Описание ЛДС в z-области области. Описание ЛДС в частотной области. Цифровые фильтры. КИХ- и БИХ-фильтры. Частотные характеристики фильтров. Устойчивость. Критерии устойчивости. Фильтры дискретного дифференцирования и интегрирования. Синтез фильтров. Аналоговый фильтр-прототип. Типовые классы фильтров. Функции для синтеза КИХ-фильтров в MATLAB. FDATool. Анализ фильтра.

Лабораторная работа 2.1. Описание линейных дискретных систем.

Лабораторная работа 2.2. Синтез КИХ-фильтров.

CPC

- 1. Подготовка отчетов по лабораторным работам 2.1-2.2.
- 2. Подготовка к зачету по перечню примерных вопросов.

Тема 3. Корреляционный и спектральный анализ

Дискретная свертка и ее свойства. Линейные и круговая свертки. АКФ и ВКФ детерминированных сигналов, их свойства и применение. Случайные дискретные сигналы. АКФ и ВКФ случайного сигнала. Стационарные сигналы. Дискретный белый шум. Спектральная плотность и ее свойства. Кросс-спектры. Оценка спектральной плотности мощности методом БПФ. Метод периодограмм. Оконные функции и их характеристики. Спектр сигнала, ограниченного по времени. Спектр дискретного сигнала. Изучение эффекта подмены частот. Метод Бартлетта-Уэлча. Метод Юла-Уокера. Использование sptool.

Лабораторная работа 3.1. Свертка и корреляция детерминированных сигналов. Лабораторная работа 3.2. Спектральный анализ сигналов. CPC

- 3. Подготовка отчетов по лабораторным работам 3.1-3.2.
- 4. Подготовка к зачету по перечню примерных вопросов.

Тема 4. Основы вейвлет-анализа

Положение и ширина сигнала во временной и частотной областях. Частотновременная неопределенность. Ящики Гейзенберга. Частотное и временное разрешение. Экстремальное частотно-временное свойство гармонического сигнала, модулированного гауссовским импульсом. Частотно-временные атомы. Вещественное вейвлет-преобразование. Требование на равенство нулю моментов и его смысл. Условия допустимости — терема Кальдерона-Гроссмана-Морле. Воспроизводящее ядро и масштабирующая функция. Вейвлеты Наара, МНАТ- и WAVE-вейвлеты, их частотно-

временная локализация. Частотно-временное разрешение вейвлетов. Вейвлеты Габора и Добеши.

5. Учебно-методическое обеспечение для самостоятельной работы обучающихся

В целом внеаудиторная самостоятельная работа обучающегося при изучении курса включает в себя следующие виды работ:

- ° проработка (изучение) материалов лекций; чтение и проработка рекомендованной основной и дополнительной литературы;
- подготовка к лабораторным работам; поиск и проработка материалов из Интернет-ресурсов, периодической печати; выполнение домашних заданий в форме творческих (проблемно-поисковых, групповых) заданий, докладов;
- подготовка к текущему и итоговому (промежуточная аттестация) контролю знаний по дисциплине.

Основная доля самостоятельной работы обучающихся приходится на подготовку к лабораторным работам, тематика которых полностью охватывает содержание курса. Самостоятельная работа по подготовке к лабораторным работам предполагает умение работать с первичной информацией.

6. Фонд оценочных средств

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине представлен в приложении к рабочей программе дисциплины и включает в себя:

- 1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- 2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- 3. Типовые контрольные задания или материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций;
- 4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Примерный перечень вопросов к промежуточной аттестации

Обобщенная схема ЦОС. Классификация сигналов. Алгоритмы корреляции и свертки.

- 1. Ряд Фурье. Непрерывное преобразование Фурье. Свойства преобразования Фурье (с доказательствами).
- 2. ДПФ. Соотношение ДПФ и непрерывного преобразования Фурье. Свойства ДПФ (с доказательствами).
- 3. Спектр гармонического сигнала. Спектр сигнала, ограниченного во времени. Спектр дискретного сигнала. Наложение частот. Теорема Котельникова.
- 4. Алгоритмы $Б\Pi\Phi$ с прореживанием по времени и частоте.
- 5. Спектральный анализ. Суть параметрических и непараметрических методов. «Подводные камни» непараметрических методов и пути их обхода.
- 6. Параметрические методы спектрального анализа: методы Бартлета и Уэлша, метод Блэкмена-Тьюки. Непараметрические методы: AP-модель сигнала, оценка спектральной плотности мощности.
- 7. Преобразование Лапласа. Z-преобразование и его свойства (с доказательствами). Обратное z-преобразование.

- 8. Преобразование Лапласа. Z-преобразование. Отображение z-плоскости на р-плоскость.
- 9. Методы вычисления обратного Z-преобразования.
- 10. Определение ЛДС. Свойства ЛДС. Описание ЛДС во временной области. Типы ЛДС. Критерий устойчивости ЛДС во временной области.
- 11. Определение ЛДС. Свойства ЛДС. Описание ЛДС в z-области и в частотной области. Карта нулей и полюсов. Критерий устойчивости ЛДС в z-области.
- 12. Алгоритмы синтеза КИХ-фильтров. Метод взвешивания. Метод частотной выборки.
- 13. Метод синтеза оптимальных по Чебышеву КИХ-фильтров.
- 14. Алгоритмы синтеза БИХ-фильтров.
- 15. Положение и ширина сигнала во временной и частотной областях.
- 16. Частотно-временная неопределенность.
- 17. Частотное и временное разрешение.
- 18. Экстремальное частотно-временное свойство гармонического сигнала, модулированного гауссовским импульсом.
- 19. Частотно-временные атомы.
- 20. Вещественное вейвлет-преобразование.
- 21. Условия допустимости терема Кальдерона-Гроссмана-Морле.
- 22. Воспроизводящее ядро и масштабирующая функция.
- 23. Вейвлеты Наара, МНАТ- и WAVE-вейвлеты
- 24. Частотно-временное разрешение вейвлетов.
- 25. Вейвлеты Габора и Добеши.

7. Рекомендуемая литература

5.1. Основная литература

- 1. Баскаков С. И. Радиотехнические цепи и сигналы: Учеб. для вузов по спец. "Радиотехника". 2016.
- 2. Иванов М.Т., Сергиенко А. Б., Ушаков В. Н. Теоретические основы радиотехники. Учебное пособие / под ред. В. Н. Ушакова СПб.: Питер, 2014.
- 3. Сергиенко А. Б. Цифровая обработка сигналов. СПб.: BHV, 2013.
- 4. Мандрикова О. В. Теория применения вейвлет-преобразования: учеб. пособие. Петропавловск-Камчатский: Изд-во КамчатГТУ, 2019. 130 с.

5.2. Дополнительная литература

- 1. Введение в цифровую фильтрацию / Под ред. Р. Богнера и А. Константинидиса. М.: Мир, 1976.
- 2. Голд Б., Рэйдер Ч. Цифровая обработка сигналов / Пер. с англ., под ред. А. М. Трахтмана. М., "Сов. радио", 1973, 368 с.
- 3. Гоноровский И. С., Демин М. П. Радиотехнические цепи и сигналы: Учеб. пособие для вузов. М.: Радио и связь, 1994.
- 4. Каппелини В., Константинидис А. Дк., Эмилиани П. Цифровые фильтры и их применение. М.: Энергоатомиздат, 1983.
- 5. Карташев В. Г. Основы теории дискретных сигналов и цифровых фильтров. М.: Высш. шк., 1982.
- 6. Куприянов М. С., Матюшкин Б. Д. Цифровая обработка сигналов: процессоры, алгоритмы, средства проектирования. СПб.: Политехника, 1999.
- 7. Марпл-мл. С. Л. Цифровой спектральный анализ и его приложения / Пер. с англ. М.: Мир, 1990.
- 8. Оппенгейм А. В., Шафер Р. В. Цифровая обработка сигналов: Пер. с англ. / Под ред. С. Я. Шаца. М.: Связь, 1979.

- 9. Рабинер Л, Гоулд Б. Теория и применение цифровой обработки сигналов / Пер. с англ.; Под ред. Ю. И. Александрова. М.: Мир, 1978.
- 10. Сиберт У. М. Цепи, сигналы, системы: В 2-х ч. / Пер. с англ. М.: Мир, 1988.
- 11. Френкс Л. Теория сигналов. / Пер. с англ., под ред. Д. Е. Вакмана. М.: Сов. радио, 1974.
- 12. Хемминг Р. В. Цифровые фильтры: Пер. с англ. / Под ред. А. М. Трахтмана. М.: Сов. радио, 1980.
- 13. Прокис Дж. Цифровая связь. Пер. с англ. / Под ред. Д. Д. Кловского. М.: Радио и связь, 2000.
- 14. Скляр Б. Цифровая связь. Теоретические основы и практическое применение: Пер. с англ. М.: Издательский дом "Вильямс", 2003. 1104 с.
- 15. Феер К. Беспроводная цифровая связь. Методы модуляции и расширения спектра. Пер. с англ. М.: Радио и связь, 2000.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- 1. Научная эдектронная библиотека Elibrary https://elibrary.ru
- 2. Справочная система «Мир http://eqworld.ibmnet.ru математических уравнений»
- 3. Справочная система SciLab http://scilab.org

9. Методические указания для обучающихся по освоению дисциплины

Подготовка к лабораторным занятиям

Лабораторная работа — это выполнение студентами под руководством преподавателя или по инструкции заданий (решение задач, написание программ) с применением персонального компьютера.

В ходе лабораторных работ студенты воспринимают и осмысливают новый учебный материал. Лабораторные занятия носят систематический характер, регулярно следуя за лекционными занятиями. Лабораторные работы выполняются согласно графику, при этом соблюдается принцип индивидуального выполнения работ.

Обучающийся должен подготовить отчет к каждой лабораторной работе, предусмотренной планом.

При подготовке к лабораторным занятиям необходимо заранее изучить методические рекомендации по его проведению. Обратить внимание на цель занятия, на основные вопросы для подготовки к занятию, на содержание темы занятия.

10. Курсовой проект (работа)

В соответствии с учебным планом курсовое проектирование по дисциплине не предусмотрено.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

11.1 Перечень информационных технологий, используемых при осуществлении образовательного процесса

° электронные образовательные ресурсы, представленные в п. 8 данной рабочей программы;

- ° интерактивное общение с обучающимися и консультирование посредством электронной почты;
- ° работа с обучающимися в ЭИОС ФГБОУ ВО «КамчатГТУ».

11.2 Перечень программного обеспечения, используемого при осуществлении образовательного процесса

При освоении дисциплины используется программное обеспечение:

- ° операционная система Astra Linux;
- [°] комплект офисных программ P-7 в составе текстового процессора, программы работы с электронными таблицами, программные средства редактирования и демонстрации презентаций.
- ° математические пакеты Scilab и Matlab.

11.3 Перечень информационно-справочных систем

° справочная математическая система Мир математических уравнений https://eqworld.ipmnet.ru/

12. Материально-техническое обеспечение дисциплины

Для проведения групповых и индивидуальных консультации, текущего контроля и промежуточной аттестации используется учебная аудитория 7-518 на 32 посадочных места с комплектом учебной мебели и аудиторной меловой доской. Лабораторные занятия проводятся в лаборатории моделирования систем управления 7-517 (9 учебных персональных компьютеров, 12 посадочных мест, маркерная аудиторная доска, учебная мебель). Самостоятельная работа осуществляется в кабинете самостоятельной работы студентов 7-517 (9 учебных персональных компьютеров, 12 посадочных мест, маркерная аудиторная доска, учебная мебель).