ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

Факультет мореходный

Кафедра «Технологические машины и оборудование»

УТВЕРЖДАЮ

Декан мореходного факультета

/с.Ю.Труднев/

«13» декабря 2024г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Теоретические основы холодильной техники»

направление:

16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» (уровень бакалавриата)

профиль «Холодильная техника и технологии»

Петропавловск-Камчатский, 2024 г.

Рабочая программа составлена на основании ФГОС ВО по направлению подготовки 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения».

Составитель рабочей программы

доцент кафедры «Технологические машины и оборудование»,

fal-

к.т.н., доц.

А. В. Костенко

_ fall -_

Рабочая программа рассмотрена на заседании кафедры «Технологические машины и оборудование» <u>13» декабря 2024 г. протокол № 6.</u>

Заведующий кафедрой «Технологические машины и оборудование», к.т.н., доцент

« 13 » декабря 2024 г.

А. В. Костенко

1. ЦЕЛЬ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ, ЕЕ МЕСТО В УЧЕБНОМ ПРОЦЕССЕ

Дисциплина «Теоретические основы холодильной техники» является одной из основных профильных дисциплин учебного плана подготовки бакалавров по направлению 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» профиль «Холодильная техника и технологии».

В результате реализации настоящей программы студенты получают знания, умения и опыт в области теоретических основ низкотемпературных систем, термодинамических основ охлаждения, низкотемпературных процессов, специфических свойств рабочих веществ при низких температурах, методов расчёта и анализа низкотемпературных циклов и их энергетических характеристик.

Цель преподавания дисциплины — формирование умения решать профессиональные задачи в области проектирования и эксплуатации теплотехнических устройств, работающих по обратному термодинамическому циклу и научно-исследовательской деятельности.

Задачей курса является формирование навыков и умения по следующим направлениям деятельности:

- 🛮 применение принципов термодинамики для расчета и анализа холодильных машин;
- 🛮 принципиальные схемы и термодинамические циклы холодильных машин;
- 🛮 расчёт параметров и характеристик циклов;
- 🛮 анализ и сопоставление циклов;
- 🛮 рабочие вещества холодильных машин, их свойства и подбор;
- определение путей совершенствования холодильных установок и нахождение возможностей снижения затрат энергии при создании новых типов установок;

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины «Теоретические основы холодильной техники» направлен на формирование общепрофессиональной компетенции (ОПК-1) категории «Теоретические и практические основы профессиональной деятельности» программы бакалавриата.

Перечень планируемых результатов обучения при изучении дисциплины приведен в таблице 2.1.

Таблица 2.1. – Планируемые результаты обучения при изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы

Код компете нции	Планируемые результаты освоения образовательной программы	Код и наименование индикатора достижения профессиональной компетенции	Планируемый результат обучения по дисциплине	Код показателя освоения
	Способен	ИД-1 _{ОПК-1} : Знает фундаментальные законы	Знать: - физические принципы	3(ОПК-1)1
	использовать	природы и основные законы	получения низких	
	фундаментальны	естественнонаучных	температур;	
	е законы	дисциплин	термодинамические основы	
ОПК-1	природы и	ИД- _{20ПК-1} : Умеет решать	холодильных машин;	3(ОПК-1)2
OTIK-1	основные законы	профессиональные задачи с	- характеристики и	
	естественнонауч	применением	показатели эффективности	
	ных дисциплин в	естественнонаучных и	циклов холодильных машин	
	профессиональн	общеинженерных знаний,	и тепловых насосов;	3(ОПК-1)3
	ой деятельности.	методов математического	- циклы паровых	
		анализа и моделирования	холодильных машин,	

ИД-З _{ОПК-1} : Владеет навыками решения стандартных профессиональных задач с применением естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования	газовых, абсорбционных, эжекторных и других типов холодильных машин; - рабочие тела холодильных машин, их теплофизические и эксплуатационные свойства; - сложные схемы и циклы холодильных машин; - порядок теплового расчета холодильных машин; - методику термодинамического анализа циклов	3(ОПК-1)4 3(ОПК-1)5 3(ОПК-1)6 3(ОПК-1)7
	холодильных машин. Уметь: - составлять схемы холодильных машин	У(ОПК-1)1
	различного типа и назначения; - изображать процессы и	У(ОПК-1)2
	циклы холодильных машин в диаграммах s-T, i-p; - анализировать циклы холодильных машин, оценивать их эффективность, выбирать	У(ОПК-1)3
	для них наиболее подходящий холодильный агент - составлять уравнения материального и теплового	У(ОПК-1)4
	баланса, определять из них расчётные величины и характерные параметры; - анализировать циклы холодильных машин, оценивать их эффективность, выбирать для них наиболее подходящий холодильный агент.	У(ОПК-1)5
	Владеть: - навыками чтения и составления схем холодильных установок;	В(ОПК-1)1
	- навыками использования тепловых диаграмм рабочих веществ, а также таблицами их термодинамических и физических свойств,	В(ОПК-1)2
	- навыками расчета и анализа характеристик конкретных холодильных установок;	В(ОПК-1)3
	- навыками использования ЭВМ в процессе проектирования, расчета и анализа схем и циклов	В(ОПК-1)4
	холодильных установок; - навыками проектирования, эксплуатации и рационального ведения технологических процессов в холодильных установках.	В(ОПК-1)5

Дисциплина «Теоретические основы холодильной техники» - обязательная дисциплина в структуре образовательной программы.

Изучение дисциплины базируется на знаниях, полученных при изучении дисциплин: «Высшая математика», «Физика», «Термодинамика и тепломассообмен», «Машины низкотемпературных установок», «Гидрогазодинамика низкотемпературных установок».

Знания, умения и навыки, приобретенные в результате изучения дисциплины, используются при изучении профильных дисциплин учебного плана: «Холодильные машины и установки», «Тепломассообменные аппараты низкотемпературных установок», «Монтаж эксплуатация и ремонт низкотемпературных установок», «Системы динамического охлаждения и отопления» «Автоматизация низкотемпературных установок» и выполнении выпускной квалификационной работы.

3. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

В соответствии с учебным планом подготовки бакалавров по направлению 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» преподавание дисциплины реализуется в течение 6 семестра обучения.

Тематический план дисциплины по очной форме обучения представлен в таблице 3.1.

Таблица 3.1. – Тематический план дисциплины по очной форме обучения

		ИЯ	Контактная работа по видам учебных занятий			н	0	знаний е
Наименование разделов и тем		Аудиторные занятия	Лекции	Семинары (практические занятия)	Лабораторные работы	Самостоятельная работа	Формы текущего контроля	Итоговый контроль з по дисциплине
Раздел 1. Общие сведения	33	16	8	6		17	О	
Тема 1. Машинное охлаждение. Классификация холодильных машин.	7	2	2			5	О Кл	
Тема 2. Термодинамические основы холодильной техники.	14	8	4	2		6	О П3 Т Кл	
Тема 3. Базовый цикл парокомпрессионных холодильных машин	12	6	2	4		6	О П3 Т Кл	

Раздел 2. Принципиальные схемы и циклы парокомпрессионных холодильных машин	62	32	8	24	30	0	
Тема 4. Циклы одноступенчатых паровых компрессионных холодильных машин	20	10	2	8	10	О ПЗ Т Кл	
Тема 5. Сложные циклы паровых компрессионных холодильных машин	26	16	4	12	10	О ПЗ РГР Т Кл	
Тема 6. Теплоиспользующие паровые холодильные машины	16	6	2	4	10	О П3	
Раздел 3. Принципиальные схемы и циклы газовых холодильных машин	15	5	1	4	10	0	
Тема 7. Воздушные холодильные машины	15	5	1	2	10	О П3	
Зачет с оценкой Всего	108	51	17	34	57		

Примечание: О — опрос; ПЗ — практические задания; Т — тестирование; Кл — коллоквиум, РГР — расчетно-графическая работа (контрольная работа для студентов ЗФО)

Раздел 1. Общие сведения

Тема 1. Машинное охлаждение. Классификация холодильных машин.

Лекция. Машинное охлаждение. Классификация холодильных машин.

Рассматриваемые вопросы. Естественное и искусственное охлаждение. Машинное охлаждение, необходимость затраты энергии. Классификация холодильных машин, простейшие схемы, пределы холодопроизводительности и достигаемых температур. Области применения холодильных машин, краткий обзор развития их, современное состояние холодильного машиностроения.

Основные понятия темы: Искусственное охлаждение. Паровые и газовые холодильные машины. Холодопроизводительность. Затрачиваемая работа.

Тема 2. Термодинамические основы холодильной техники.

Лекция. Термодинамические основы техники низких температур. Холодильный коэффициент.

Рассматриваемые вопросы. Способы достижения низких температур. Прямые и обратные термодинамические циклы. Обратный цикл Карно термотрансформаторов. Основные характеристики циклов холодильных машин и тепловых насосов. Анализ эффективности циклов холодильных машин и тепловых насосов. Холодильный коэффициент.

Практическое занятие. Обратные термодинамические циклы и оценка их эффективности

Семинар. Сравнительный анализ теоретических циклов холодильных машин и тепловых насосов. Назначение и характеристики обратных термодинамических циклов. Термодинамическая эффективность циклов холодильной машины и теплового насоса. Идеальный обратимый обратный термодинамический цикл. Энтропийный анализ.

- 1) Как записывается уравнение первого закона термодинамики для обратного термодинамического цикла?
- 2) Как оценивается эффективность обратного цикла холодильной машины?
- 3) Как оценивается эффективность обратного цикла теплового насоса?
- 4) Какой обратный цикл является самым эффективным в заданном интервале температур?
- 5) Как изменяется энтропия в замкнутой изолированной системе при протекании в ней необратимых термодинамических процессов?
- 6) В чем заключается существо энергетического метода анализа термодинамической эффективности циклов холодильных машин?
- 7) Что такое холодильный коэффициент?
- 8) Какие характеристики учитываются при анализе обратных термодинамических циклов?
- 9) Как определить коэффициент трансформации теплоты обратного термодинамического цикла теплового насоса?
- 10) Как соотносятся холодильный коэффициент и коэффициент трансформации теплоты обратного термодинамического цикла.

Основные понятия темы: Принципиальная схема. Адиабатное расширение с совершением внешней работы. Дросселирование. Кипение. Сжатие газов и паров в компрессоре. Обратный термодинамический цикл холодильной машины и теплового насоса. Идеальный и реальный термодинамические циклы. Удельная холодопроизводительность. Затрачиваемая работа. Холодильный коэффициент. Коэффициент трансформации тепла. Степень термодинамического совершенства.

Тема 3. Базовый цикл парокомпрессионных холодильных машин

Лекция. Рабочие тела холодильных машин.

Рассматриваемые вопросы. Принцип работы и рабочие вещества парокомпрессионных холодильных машини. Холодильная машина с детандером в области влажного пара. Холодильная машина с дроссельным вентилем и всасыванием сухого насыщенного пара и ее энтропийный анализ.

Практическое занятие. Энтропийный анализ базового цикла перокомпрессионной холодильной машины

Рассматриваемые вопросы, задания, задачи и т.п. Построение цикла в T-s и i-lgp диаграммах хладагентов. Определение термодинамических параметров в узловых точках цикла помощью диаграмм и таблиц насыщенных паров холодильных агентов. Определение теоретического холодильного коэффициента и степени термодинамического совершенства цикла.

- 1) Какие холодильные агенты используются в парокомпрессионных холодильных машинах, какие требования предъявляются к хладагентам?
- 2) Из каких основных элементов состоит принципиальная схема паркомпрессионной холодильной машины?
- 3) Как обеспечивается изотермичность подвода и отвода теплоты в цикле паркомпрессионной холодильной машины?
- 4) Из каких процессов состоит базовый цикл паркомпрессионной холодильной машины?
- 5) Почему детандер невыгодно использовать в качестве расширительного устройства в паркомпрессионной холодильной машине7
- 6) В чем преимущество и недостатки использование дроссельного устройства по сравнению с детандером в паркомпрессионной холодильной машине?
- 7) Чем вызвана необходимость переноса процесса адиабатного сжатия в область перегретого пара в паркомпрессионной холодильной машине?
- 8) В чем выражается внутренняя необратимость процесса дросселиравния в паркомпрессионной холодильной машине?
- 9) Как влияет замена адиабатного расширения на процесс дросселирования на эффективность работы паркомпрессионной холодильной машины?

10) С какой целью проводится энтропийный анализ цикла паркомпрессионной холодильной машины?

Основные понятия темы: Парокомпрессионная холодильная машина. Принципиальная схема. Цикл. Холодопроизводительность. Работа цикла. Холодильный коэффициент. Степень термодинамического совершенства.

Раздел 2. Принципиальные схемы и циклы паровых холодильных машин

Тема 4. Циклы одноступенчатых паровых компрессионных холодильных машин

Лекция. Циклы одноступенчатых паровых компрессионных холодильных машин Рассматриваемые вопросы. Обратный термодинамический цикл в области влажного пара. Цикл паровой компрессионной холодильной машины (ПКХМ) со сжатием пара по адиабате и изотерме. Теоретический и действительный циклы ПКХМ. Цикл ПКХМ с переохлаждением жидкого холодильного агента перед дроссельным вентилем и перегревом на всасывании. Регенеративный цикл ПКХМ.

Практическое занятие. Тепловой расчет и термодинамический анализ аммиачной одноступенчатой парокомпрессионной холодильной машины.

Рассматриваемые вопросы, задания, задачи и т.п. Построение цикла одноступенчатой холодильной машины по заданным расчетным параметрам. Определение расхода холодильного агента, тепловой нагрузки на конденсатор, действительной объемной производительности компрессора, затрачиваемой мощности и холодильного коэффициента.

Практическое занятие. Тепловой расчёт и термодинамический анализ фреоновой одноступенчатой парокомпрессионной холодильной машины с регенеративным теплообменником.

Рассматриваемые вопросы, задания, задачи и т.п. Построение цикла одноступенчатых холодильных машин по заданным расчетным параметрам. Определение расхода холодильного агента, тепловой нагрузки на конденсатор и регенеративный теплообменник, действительной объемной производительности компрессора, затрачиваемой мощности и холодильного коэффициента.

Практическое занятие. Построение характеристик одноступенчатых парокомпрессионных холодильных машин.

Рассматриваемые вопросы, задания, задачи и т.п. Расчет основных характеристик циклов одноступенчатых холодильных машин (холодопроизводительности, затрачиваемой мощности, тепловой нагрузки на конденсатор, холодильного коэффициента) и графическое построение их зависимости от изменения температур кипения и конденсации.

Практическое занятие. Определение энергетических потерь в элементах ПКХМ.

Рассматриваемые вопросы, задания, задачи и т.п. Построение рабочих циклов и циклов минимальной работы в тепловых диаграммах, определение термодинамических параметров узловых точек цикла, расчет параметров и потерь в циклах.

- 1) Каково устройство и принцип действия одноступенчатой парокомпрессионной холодильной машины (ПКХМ)?
- 2) Из каких термодинамических процессов состоит цикл идеальной ПКХМ?
- 3) В чем отличие теоретического цикла работы ПКХМ от действительного?
- 4) Каким показателем определяется энергетическая эффективность холодильной машины?
- 5) Чем определяется величина давления кипения и конденсации в ПКХМ?
- 6) С какой целью переохлаждают хладагент перед дроссельным устройством?
- 7) Как влияет процесс переохлаждения жидкого холодильного агента на эффективность цикла ПКХМ?
- 8) Как влияет повышение температуры конденсации на холодопроизводительность холодильной машины?
- 9) Как влияет понижение температуры конденсации на холодильный коэффициент ПКХМ?
- 10) В каких устройствах осуществляется дросселирование хладагента?

- 11) Как зависит холодопроизводительность ПКХМ от разности давлений кипения и конденсации?
- 12) Чем вызвана необходимость перегрева паров холодильного агента на всасывании в компрессор?
- 13) Назначение и принцип работы регенеративного теплообменника во фреоновых холодильных машинах?
- 14) Как режим работы ПКХМ влияет на ее холодильный коэффициент?
- 15) Как влияет изменение температур кипения и конденсации на величину тепловой нагрузки на конденсатор и затрачиваемую мощность в компрессоре.

Основные понятия темы: Испаритель, конденсатор, компрессор и дроссельное устройство. Теоретический и действительный циклы ПКХМ. Переохлаждение жидкого холодильного агента. Перегрев паров холодильного агента. Холодопроизводительность. Затрачиваемая мощность. Теплота конденсации. Регенеративный теплообменник.

Тема 5. Сложные циклы паровых компрессионных холодильных машин

Лекция. Причины и критерии перехода к многоступенчатому сжатию. Принципиальные схемы и циклы аммиачных двухступенчатых ПКХМ.

Рассматриваемые вопросы. Причины перехода к многоступенчатому сжатию. Обоснование выбора промежуточного давления. Схемы и циклы двухступенчатых аммиачных холодильных машин. Термодинамический анализ циклов.

Практическое занятие. Тепловой расчет и сравнительный анализ двухступенчатых аммиачных парокомпрессионных холодильных машин с полным промежуточным охлаждением холодильного агента между ступенями сжатия, однократным и двукратным дросселированием.

Рассматриваемые вопросы, задания, задачи и т.п. Построение циклов двухступенчатых холодильных машин с промежуточным сосудом и однократным и двукратным дросселированием. Определение расхода холодильного агента в нижней и верхней ступенях, тепловой нагрузки на конденсатор, затрачиваемой мощности и действительной объемной производительности компрессоров ступеней низкого и высокого давления, холодильного коэффициента.

Контрольные вопросы

- 1) В каких случаях используют двухступенчатые ПКХМ?
- 2) Каковы причины перехода к двухступенчатому сжатию?
- 3) Каково устройство и принцип действия двухступенчатой ПКХМ?
- 4) Как определяется промежуточное давление в двухступенчатой ПКХМ?
- 5) В чем заключается отличие полного и неполного промежуточного охлаждения?
- 6) Как осуществляется полное промежуточное охлаждение в аммиачных двухступенчатых ПКХМ?
- 7) Назначение и принцип работы промежуточного сосуда в аммиачных двухступенчатых ПКХМ.
- 8) Какой недостаток цикла с двухступенчатым дросселированием по сравнению с одноступенчатым?
- 9) Как влияет промежуточное охлаждение между ступенями сжатия на затрачиваемую мощность?
- 10) Как определяется расход холодильного агента в компрессорах ступеней высокого и низкого давления?

Лекция. Принципиальные схемы и циклы фреоновых двухступенчатых ПКХМ. Каскадные и многоступенчатые холодильные машины.

Рассматриваемые вопросы. Схемы и циклы двухступенчатых фреоновых холодильных машин. Термодинамический анализ циклов. Схема и цикл трёхступенчатого сжатия, варианты схем. Цикл производства твёрдой углекислоты, удельный расход энергии в цикле. Схема и цикл каскадной холодильной машины, варианты схем. Выбор холодильных агентов и промежуточных температур каскада. Сравнительная оценка многоступенчатых и каскадных холодильных машин.

Практическое занятие. Тепловой расчет двухступенчатой фреоновой

парокомпрессионной холодильной машины с переохлаждением жидкого холодильного агента перед регулирующим вентилем и неполным промежуточным охлаждением между ступенями сжатия.

Рассматриваемые вопросы, задания, задачи и т.п. Построение цикла двухступенчатой парокомпрессионной холодильной машины с теплообменником-«экономайзером», по заданным рачетным параметрам. Определение расхода холодильного агента в нижней и верхней ступенях, тепловой нагрузки на конденсатор и «экономайзер», затрачиваемой мощности и действительной объемной производительности компрессоров ступеней низкого и высокого давления, холодильного коэффициента.

Контрольные вопросы

- 1) Почему в двухступенчатых фреоновых ПКХМ не используют промежуточные сосуды?
- 2) Как осуществляется неполное промежуточное охлаждение в двухступенчатой фреоновой ПКХМ
- 3) Назначение парожидкостного теплообменника «экономайзера»?
- 4) Как влияет переход к двухступенчатому сжатию в ПКХМ на объемные и энергетические коэффициенты компрессора?
- 5) Каково соотношение объемной производительности компрессоров ступеней высокого и низкого давления в двухступенчатой ПКХМ?

Практическое занятие. Тепловой расчет каскадной холодильной машины.

Рассматриваемые вопросы, задания, задачи и т.п. Построение цикла каскадной парокомпрессионной холодильной машины, по заданным рачетным параметрам. Определение расхода холодильного агента в верхней и нижней ветвях каскада, тепловой нагрузки на конденсатор-испаритель, затрачиваемой мощности и действительной объемной производительности компрессоров ветвей каскада, холодильного коэффициента.

Контрольные вопросы

- 1) В каких случаях используют каскадные холодильные машины?
- 2) Каково устройство и принцип действия каскадной холодильной машины?
- 3) В чем заключается отличие нижнего и верхнего каскадов холодильной машины?
- 4) Какие хладагенты используют в каскадах установки?
- 5) Как строится цикл работы каскадной холодильной машины?

Основные понятия темы: Многоступенчатое сжатие. Промежуточное давление. Полное и неполное промежуточное охлаждение между ступенями сжатия. Промежуточный сосуд. Парожидкостной теплообменник. Каскадная ПКХМ.

Практическое занятие. Коллоквиум.

а) регенеративного теплообменника;

Семинар. Устный опрос с целью выяснения уровня знаний студентов группы по материалу тем 4 и 5. Тестирование.

- 1) Укажите причины и критерии перехода к двухступенчатому сжатию. На чем основан принцип определения промежуточного давления в двухступенчатой холодильной машине (приведите формулу).
- 2) Докажите с помощью *s-T* диаграммы состояния холодильного агента термодинамическую эффективность использования в двухступенчатых холодильных машинах:
 - а) промежуточного охлаждения между ступенями сжатия;
 - б) переохлаждения жидкого холодильного агента перед дросселированием.
- 3) Расходы холодильного агента через низкую и высокую ступени двухступенчатой холодильной машины в большинстве случаев различны. Приведите схемы и циклы (в i- lgp и
 - s-T диаграммах состояния холодильного агента) двухступенчатых холодильных машин, в которых эти расходы равны? В чем заключается эффективность использования двухступенчатого сжатия в этих случаях?
- 4) Изобразите варианты схем и соответствующие им циклы (в *i-lgp* и *s-T* диаграммах состояния холодильного агента) для двухступенчатой холодильной машины без промежуточного охлаждения и с однократным дросселированием при использовании:

- б) бессальниковых (герметичных) компрессоров.
- 5) Как влияет на величину холодильного коэффициента двухступенчатой холодильной машины введение:
 - а) промежуточного охлаждения между ступенями сжатия;
 - б) двукратное дросселирование;
 - в) переохлаждение жидкого холодильного агента перед дросселированием?
- 6) Известно, что величина холодильного коэффициента двухступенчатой холодильной машины увеличивается при введении промежуточного охлаждения. Какой вид промежуточного охлаждения (полное или неполное) оказывается эффективнее? Для ответа необходимо использовать s-T диаграмму состояния холодильного агента.
- 7) Приведите схему и цикл (в *i-lgp* и *s-T* диаграммах состояния холодильного агента) двухступенчатой холодильной машины (холодильный агент R717) работающей по схеме с полным промежуточным охлаждением и переохлаждением жидкого холодильного агента перед дросселированием.
- 8) Приведите схему и цикл (в *i-lgp* и *s-T* диаграммах состояния холодильного агента) двухступенчатой холодильной машины (холодильный агент R22) работающей по схеме с неполным промежуточным охлаждением и переохлаждением жидкого холодильного агента перед дросселированием.
- 9) Для схемы двухступенчатой холодильной машины (холодильный агент R717) работающей по схеме с полным промежуточным охлаждением и переохлаждением жидкого холодильного агента перед дросселированием привести формулы для определения массового расхода холодильного агента в ступенях сжатия.
- 10) Для схемы двухступенчатой холодильной машины (холодильный агент R22) работающей по схеме с неполным промежуточным охлаждением и переохлаждением жидкого холодильного агента перед дросселированием привести формулы для определения массового расхода холодильного агента в ступенях сжатия.
- 11) Для схемы двухступенчатой холодильной машины (холодильный агент R717) работающей по схеме с полным промежуточным охлаждением и переохлаждением и двукратным дросселированием привести формулы для определения массового расхода холодильного агента в ступенях сжатия.
- 12) Возможно ли во фреоновой двухступенчатой холодильной машине использовать полное промежуточное охлаждение и почему?
- 13) Можно ли повысить эффективность работы фреоновой двухступенчатой холодильной машины путем включения в схему экономайзера. Ответ проиллюстрировать с помощью схемы и цикла в s-T диаграмме состояния холодильного агента.
- 14) Докажите термодинамическое и эксплуатационное преимущества использования экономайзера в совокупности с винтовым компрессором для осуществления цикла двухступенчатой холодильной машины с неполным промежуточным охлаждением и переохлаждением жидкого холодильного агента перед дросселированием.
- 15) Чем обусловлен выбор схемы и системы промежуточного охлаждения в различных трехступенчатых холодильных машинах. Чем обусловлена сложность конструкции оборудования, предназначенного для работы в трехступенчатых холодильных машинах.
- 16) Приведите схему и цикл (в *i-lgp* и *s-T* диаграммах состояния холодильного агента) трехступенчатой холодильной машины (холодильный агент R717).
- 17) Приведите схему и цикл (в *i-lgp* и *s-T* диаграммах состояния холодильного агента) трехступенчатой фреоновой холодильной машины.
- 18) Приведите схему и цикл (в *i-lgp* и *s-T* диаграммах состояния холодильного агента) трехступенчатой холодильной машины (холодильный агент R717).
- 19) Приведите схему и цикл (в *i-lgp* и *s-T* диаграммах состояния холодильного агента) трехступенчатой холодильной машины (холодильный агент R744). Назначение «открытого» и «закрытого» циклов трехступенчатой холодильной машины, работающей на R744.
- 20) Особенности s-T диаграммы состояния холодильного агента R744. Чем руководствуются при выборе нижнего промежуточного давления в цикле трехступенчатой холодильной машине для получения твердой углекислоты.

- 21) Приведите принципиальную схему и цикл работы каскадной холодильной машины (в *i-lgp* и *s-T* диаграммах состояния холодильного агента). В чем заключается принцип выбора холодильного агента для каждой ветви каскадной холодильной машины.
- 22) Если заданы условия работы каскадной холодильной машины (T_o нижнее ветви каскада, T_{κ} верхней ветви каскада, Q_o холодильной машины), запишите формулы для определения:
 - а) промежуточной температуры в конденсаторе-испарителе;
 - б) массового расхода холодильного агента в нижней ветви каскада;
 - в) тепловой нагрузки на конденсатор-испаритель;
 - г) массового расхода холодильного агента в верхнее ветви каскада.
- 23) Изобразите схему фреоновой каскадной холодильной машины с полным набором вспомогательных элементов с указанием их назначения.
- 24) Назначение каскадных холодильных машин. Основное уравнение каскадной холодильной машины.
- 25) Формула для определения холодильного коэффициента каскадной холодильной машины. Какие значения принимает холодильный коэффициент низкотемпературных холодильных машин.

Тема 6. Теплоиспользующие паровые холодильные машины

Лекция. Абсорбционные и пароэжекторные холодильные машины.

Рассматриваемые вопросы. Схема и цикл в диаграмме *X-i* простейшей водоаммиачной холодильной машины. Тепловой коэффициент. Схема и цикл работы абсорционной холодильной машины (AXM) с теплообменником, ректификатором и дефлегматором. Схемы и процессы в аппаратах бромистолитиевых AXM. Схема и цикл пароэжекторной холодильной машины. Совмещение силового и холодильного циклов. Характеристики цикла.

Практическое занятие. Тепловой расчет водоаммиачной холодильной машины. Рассматриваемые вопросы. Построение цикла простейшей водоаммиачной холодильной машины в диаграмме *X-i*. Определение характеристик цикла и теплового коэффициента.

Практическое занятие. Изучение схем теплоиспользующих паровых холодильных машин

Рассматриваемые вопросы. Схема абсорционной холодильной машины (AXM) с теплообменником, ректификатором и дефлегматором. Схема бромистолитиевой AXM. Схема пароэжекторной холодильной машины.

Контрольные вопросы

- 1) Как происходит совмещение обратного и прямого циклов в теплоиспользующих холодильных машинах?
- 2) Каково устройство и принцип действия пароэжекторной холодильной машины?
- 3) Какое вещество является рабочим телом пароэжекторной холодильной машины?
- 4) Объясните процессы, происходящие в сопловом аппарате.
- 5) В чем отличие теоретического и действительного циклов пароэжекторной холодильной машины.
- 6) Каково устройство и принцип действия абсорбционной холодильной машины.
- 7) Опишите принципиальную схему бромистолитиевой холодильной машины.
- 8) Опишите принципиальные схему водоаммиачной холодильной машины.
- 9) Область применения, достоинства и недостатки абсорбционных холодильных машин.
- 10) Область применения достоинства и недостатки пароэжекторных холодильных машин.

Основные понятия темы: Абсорбционная водоаммиачная и бромистолитиевая холодильная машина. Тепловой коэффициент. Абсорбер. Генератор. Ректификатор. Дефлегматор. Пароэжекторная холодильная машина.

Раздел 3. Принципиальные схемы и циклы газовых холодильных машин

Тема 7. Воздушные холодильные машины

Лекция. Принципиальные схемы и циклы воздушных (газовых) холодильных машин.

Рассматриваемые вопросы. Схема, теоретический и действительный циклы газовой холодильной машины без регенерации. Расчёт и характеристики цикла. Влияние отношения работ расширения и сжатия на эффективность цикла. Влияние потерь от недоохлаждения и

потерь давления эффективность цикла. Схема, теоретический и действительный циклы с регенерацией теплоты. Варианты регенеративных циклов — замкнутых и разомкнутых. Характеристики циклов. Сопоставление парокомпрессионных и газовых холодильных машин. Области применения газовых холодильных машин.

Практическое занятие. Тепловой расчет воздушной холодильной машины

Рассматриваемые вопросы, задания, задачи и т.п. Построение цикла воздушной холодильной машины, по заданным расчётным параметрам. Определение расхода воздуха, тепловой нагрузки на теплообменник, затрачиваемой мощности и действительной объемной производительности компрессора, холодильного коэффициента.

Контрольные вопросы

- 1) Каким путем можно осуществить действительный цикл газовой холодильной машины с холодопроизводительностью, соответствующей теоретической?
- 2) Как влияет на действительный холодильный коэффициент соотношение работ детандера и цикла в целом?
- 3) В чем заключается сущность практической целесообразности регенеративного цикла газовой холодильной машины?
- 4) Какой режим работы газовой холодильной машины называется оптимальным?
- 5) Какова причина низкой энергетической эффективности газовых холодильных машин с вихревыми трубами?

Основные понятия темы: Газовая (воздушная) холодильная машина. Замкнутые и разомкнутые циклы газовых холодильных машин. Циклы газовой холодильной машины с регенерацией теплоты.

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа студентов (СРС) включает следующие виды работ:

- проработка (углубленное изучение) лекционного материала, работа с конспектами лекций:
- 🛮 подготовка к практическим занятиям;
- чтение и проработка рекомендованной основной и дополнительной литературы;
- □ подготовка к текущему (коллоквиум, тестирование) и итоговому (промежуточной аттестации) контролю знаний по дисциплине (зачет)

Тема 5:

Выполнение и защита расчетно-графической работы (контрольной работы – для студентов заочной формы обучения) «Расчет и подбор основного оборудования двухступенчатой парокомпрессионной холодильной машины».

Аудиторная и внеаудиторная СРС выполняется в соответствии с методическими указаниями – Сарайкина И.П. Теоретические основы холодильной техники: Методические указания по изучению дисциплины / И. П. Сарайкина. – Петропавловск-Камчатский: КамчатГТУ, 2019. – 76 с.

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (ЗАЧЕТ)

- 1. Области применения и классификация холодильных машин.
- 2. Основные понятия и определения, применяемые в холодильной технике. Холодильные машины и второй закон термодинамики.
- 3. Физические принципы понижения температуры в обратных термодинамических циклах.
- 4. Взаимодействие хладагентов с окружающей средой. Проблема озонобезопасности при использовании фреонов.
- 5. Озоноразрушающий потенциал и потенциал парникового эффекта применяемых фреонов. Озонобезопасные хладагенты
- 6. Теплофизические, физико-химические и физиологические свойства рабочих веществ парокомпрессионных холодильных машин.

- 7. Физические, химические и термодинамические свойства аммиака.
- 8. Физические, химические и термодинамические свойства фреона.
- 9. Физические, химические и термодинамические свойства хладоносителей.
- 10. Диаграммы состояния рабочих веществ парокомпрессионных холодильных машин. Определение термодинамических параметров холодильных агентов.
- 11. Выбор рабочих веществ и их влияние на показатели и характеристики холодильных машин.
- 12. Объемная холодопроизводительность холодильных агентов, зависимость ее от режима работы холодильной машины и влияние на рабочий объем холодильного компрессора.
- 13. Цикл Карно как образцовый обратимый цикл холодильной машины. Термодинамический анализ.
- 14. Принцип термо-механического охлаждения в холодильных машинах, его особенности.
- 15. Дифференциальный и интегральный дроссель-эффект. Дросселирование пара, идеального газа, жидкости.
- 16. Необратимые процессы и циклы, источники необратимости. Закон Гюи-Стодолы.
- 17. Отличие теоретического и идеального циклов одноступенчатой парокомпрессионной холодильной машины (ПКХМ).
- 18. Отклонения от цикла Карно, связанное с заменой детандера, регулирующим вентилем.
- 19. Расчет реального цикла одноступенчатой холодильной машины.
- 20. Термодинамический анализ холодильной машины, использующей механическую энергию для получения холода.
- 21. Отклонение от цикла Карно, связанное со всасывание компрессором перегретого пара.
- 22. Схема, цикл и принцип действия ПКХМ с регенеративным теплообменником.
- 23. Тепловой баланс одноступенчатой холодильной машины, анализ его применения.
- 24. Причины и критерии перехода к двухступенчатым холодильным циклам. Сущность многоступенчатого сжатия.
- 25. Обоснование выбора промежуточного давления при двухступенчатом сжатии.
- 26. Схема двухступенчатой холодильной машины с полным промежуточным охлаждением и однократным дросселированием.
- 27. Простейшая схема и цикл двухступенчатой холодильной машины (без промежуточного отбора пара).
- 28. Схема и цикл двухступенчатой холодильной машины с двойным дросселированием и полным промежуточным охлаждением.
- 29. Схема и цикл двухступенчатой холодильной машины с двумя испарителями.
- 30. Схема и цикл двухступенчатой холодильной машины с однократным дросселированием и змеевиковым промежуточным сосудом.
- 31. Схема и цикл двухступенчатой холодильной машины с двойным дросселированием неполным промежуточным охлаждением.
- 32. Расчет каскадной холодильной машины.
- 33. Теоретические и действительные циклы, принципиальные схемы каскадных холодильных машин.
- 34. Цикл производства твёрдой углекислоты, удельный расход энергии в цикле
- 35. Термодинамические характеристики теплоиспользующих холодильных машин.
- 36. Схема и цикл пароэжекторной холодильной машины. Совмещение силового и холодильного циклов. Расчёт цикла. Характеристики цикла.
- 37. Принцип работы абсорбционных холодильных машин (АХМ).
- 38. Схемы и процессы в аппаратах бромистолитиевых АХМ.
- 39. Схема и цикл в диаграмме х-і простейшей водоаммиачной АХМ. Расчёт цикла и определение теплового коэффициента.
- 40. Схема и цикл работы АХМ с теплообменником, ректификатором и дефлегматором.
- 41. Получение холода при расширении холодильного агента с совершением внешней работы.
- 42. Схема, теоретический и действительный циклы с регенерацией теплоты. Варианты регенеративных циклов замкнутых и разомкнутых.
- 43. Сопоставление парокомпрессионных и газовых холодильных машин. Области применения газовых холодильных машин.
- 44. Схема, теоретический и действительный циклы газовой холодильной машины без регенерации. Расчёт и характеристики цикла. Влияние отношения работ расширения и

6. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная литература

- 1. Теоретические основы холодильной техники: Курс лекций / И.П. Сарайкина. Петропавловск-Камчатский: КамчатГТУ, 2020. 103 с.
- 2. Холодильные машины: Учебник для студентов втузов специальности Техника и физика низких температур» / А.В. Бараненко, Н.Н. Бухарин, В.И. Пекарев, Л.С. Тимофеевский; Под общ.ред. Л.С. Тимофеевского. СПб.: Политехника, 2006. 944 с.

Дополнительная литература

- 1. Холодильные машины. Под общ. ред. И.А. Сакуна. Л.: Машиностроение. Ленингр. отде, 1985.-510 с.
- 2. Тепловые и конструктивные расчеты холодильных машин. Под общ. ред. И.А. Сакуна.- Л.: Маш-е. Ленингр. отд-е, 1987. 423 с.
- 3. Холодильные машины и установки, их эксплуатация: Учебное пособие / Абдульманов Х.А., Балыкова Л.И., Сарайкина И.П. М.: Колос, 2006. 238 с.
- 4. Перльштейн И.И., Парушин Е.Б. Термодинамические и теплофизические свойства рабочих веществ холодильных машин и тепловых насосов. М.: Легкая и пищевая промсть, 1984. 232 с.
- 5. Теплофизические основы получения искусственного холода. Справочник. Под ред А.В. Быкова. М.: Пищевая промышленность, 1980. 231 с.
- 6. Холодильные машины. Справочник. Под ред. А.В. Быкова. М.: Легкая и пищевая промышленность, 1982. 223 с.
- 7. Различные области применения холода: Справочник. Под ред. А.В.Быкова. М.: Агропромиздат, 1985. 272 с.
- 8. Журнал «Холодильная техника».

Ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. Научная электронная библиотека eLIBRARY.RU: [сайт]. URL: http://www.elibrary.ru;
- 2. Камчатский государственный университет: [сайт]. URL: http://www.kamchatgtu.ru;
- 3. http://www.holodilshchik.ru.
- 4. http://www.himholod.ru
- 5. http://www.ostrov.ru
- 6. http://www.promholod.com
- 7. http://bitzer.ru

Методические указания

1. Теоретические основы холодильной техники: Методические указания по изучению дисциплины / И. П. Сарайкина. – Петропавловск-Камчатский: КамчатГТУ, 2019. – 76 с.

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

При изучении дисциплины рекомендуется использовать методические указания (Сарайкина И.П. Теоретические основы холодильной техники: Методические указания по изучению дисциплины / И. П. Сарайкина. – Петропавловск-Камчатский: КамчатГТУ, 2019. – 76 с.), которые содержат:

- 🛮 краткую характеристику дисциплины;
- 🛮 цели и задачи изучения дисциплины;
- 🛚 содержание дисциплины;
- содержание, варианты заданий и методические рекомендации по выполнению расчетнографической работы (контрольной работы для студентов заочной формы обучения);
- 🛮 перечень вопросов к промежуточной аттестации (экзамену);
- 🛚 рекомендуемую литературу.

Содержание практических занятий и методические рекомендации по выполнению практических заданий по изучаемым темам также содержатся в методических указаниях по изучению дисциплины.

8. КУРСОВОЙ ПРОЕКТ (РАБОТА)

Не предусмотрено.

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАМНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННО-СПРАВОЧНЫХ СИСТЕМ

Перечень программного обеспечения, используемого при осуществлении образовательного процесса:

- Пакет Р7-офис (Р7-Документ, Р7-Таблица, Р7-Презентация)
 Перечень информационно-справочных систем:
- единая информационная образовательная среда университета «ЭИОС КамчатГТУ»;
- 🛮 электронная библиотечная система;
- Паучная электронная библиотека eLIBRARY.RU;
- 🛚 электронный каталог научно-технической библиотеки КамчатГТУ.

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническая база для осуществления образовательного процесса по дисциплине, имеющаяся в распоряжении КамчатГТУ:

- Для проведения занятий лекционного типа, практических (семинарских) занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, специализированная учебная аудитория 3-213 с комплектом учебной мебели;
- \Box T-s диаграммы рабочих веществ холодильной машины.
- 2 i-1qp диаграммы рабочих веществ холодильной машины.
- 🛮 плакаты термодинамических диаграмм, схем и циклов холодильных машин.
- 🛮 лабораторные установки кафедры холодильных машин и установок.
- для самостоятельной работы обучающихся аудитория 3-208, оборудованная комплектом учебной мебели;
- 🛛 читальный зал и библиотечные каталоги научно-технической библиотеки КамчатГТУ;
- 🛮 мультимедийное оборудование (ноутбук, проектор).

Перечень программных продуктов, используемых при проведении различных видов занятий

🛚 презентации по темам курса.

Дополнения и изменения в ра	бочей программе за	учебный год				
В рабочую программу по дисци	плинеТеоретические осн	овы холодильной техники				
для направления (ний) специальности (тей)		ная, криогенная техника и системы сизнеобеспечения»				
вносятся следующие дополнения	и изменения:					
						
Дополнения и изменения внес	(должность, Ф.И.О., п	одпись)				
Рабочая программа пересмотрен	на и одобрена на заседании кас	редры <u>ТМО</u> (наименование кафедры)				
Протокол № от «» _	20 г.					
Заведующий кафедрой						
«»20 г.	(TOTHWAY)	(Ф.И.О.)				
	(подпись)	(Ф.И.О.)				