ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

Факультет Мореходный Кафедра «Технологические машины и оборудование»

УТВЕРЖДАЮ

Декан мореходного факультета

/С.Ю.Труднев/

«13» декабря 2024г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Механика жидкости и газа»

направление: 15.03.02 «Технологические машины и оборудование» (программа бакалавриата)

профиль: «Машины и аппараты пищевых производств»

> Петропавловск-Камчатский, 2024

Рабочая	программа	составлена н	a	основании	ΦΓΟС	ВО	направления	подготовки	15.03.02
«Технол	огические м	ашины и обор	уд	ование».			_		

Составитель рабочей прогр	раммы:	
доцент, к.т.н.	Alacket _	В. А. Иодис
Рабочая программа рассмо	отрена на заседании кафедры «Технол	погические машины и
оборудование» <u>13» декабр</u> я	<u>я 2024 г. протокол № 6.</u>	
Заведующий кафедрой «Те	ехнологические машины и оборудова	ние», к.т.н., доцент
	Jan S-	

А. В. Костенко

<u>«13 » декабря 2024 г.</u>

1. ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель курса Механики жидкости и газа — состоит в изучении основ гидростатики, кинематики, гидродинамики, газостатики и газодинамики, ознакомить с основными свойствами жидкостей и газов; получить представление о закономерностях равновесия и движения жидкости и газов; освоить методы расчета и анализа процессов течения, проектирования гидравлических и газовых систем, развитии навыков инженерных расчетов и овладении методикой решения основных задач механики жидкости и газа.

Знания и умения, полученные в процессе изучения данного курса, способствуют более глубокому освоению специальных дисциплин.

Задача изучения дисциплины:

- приобретение глубоких знаний о сущности и закономерности процессов гидро- и газостатики, а также процессов, протекающих в гидравлических и газодинамических системах;
 - овладение экспериментальными методиками с обработкой и анализом результатов;
- приобретение необходимых знания о назначении, устройстве и принципе действия гидравлических и компрессорных машин;
 - сформировать у студентов навыки расчета гидравлических и газовых систем;
- овладение современными основами моделирования различных гидравлических и газодинамических процессов.

В процессе изучения дисциплины студент должен:

Знать:

- основные понятия, законы и модели статики, кинематики и динамики жидкостей и газов;
- методы математического анализа и моделирования гидравлических и газодинамических процессов (теория подобия).

Уметь:

- применять основные понятия, законы и модели статики, кинематики и динамики жидкостей и газов;
- применять методы математического анализа и моделирования гидравлических и газодинамических процессов (теория подобия).

Владеть:

- основными понятиями, законами и моделями статики, кинематики и динамики жидкостей и газов;
- методами математического анализа и моделирования гидравлических и газодинамических процессов (теория подобия).

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование профессиональной компетенции:

ОПК-1 – способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности.

результатами освоения образовательной программы

Код	Планируемые	Код и	Планируемый результат	Код показателя
компетен	результаты освоения	наименование	обучения	освоения
ции	образовательной	индикатора	по дисциплине	
	программы	достижения ПК		
		ИД-1 _{ОПК-1} : Знает методы математического анализа и моделирования в профессиональной деятельности ИД-2 _{ОПК-1} : Умеет применять естественнонаучные общеинженерные знания	Знать: - основные понятия, законы и модели статики, кинематики и динамики жидкостей и газов; - методы математического анализа и моделирования гидравлических и газодинамических процессов (теория подобия). Уметь:	3 (ОПК-1)1 3 (ОПК-1)2 У (ОПК-1)1
ОПК-1	Способен применять естественнонаучные общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	ИД-З _{ОПК-1} : Владеет навыками применения естественнонаучн ых общеинженерных знаний, методов математического анализа и	- применять основные понятия, законы и модели статики, кинематики и динамики жидкостей и газов; - применять методы математического анализа и моделирования гидравлических и газодинамических процессов (теория подобия).	У (ОПК-1)1
		моделирования в профессиональной деятельности	Владеть: - основными понятиями,	В (ОПК-1)1
			законами и моделями статики, кинематики и динамики жидкостей и газов; - методами математического анализа и моделирования гидравлических и газодинамических процессов (теория подобия).	В (ОПК-1)2

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Механика жидкости и газа» - обязательная дисциплина в структуре образовательной программы. Дисциплина опирается на такие дисциплины: физика, химия, гидравлика.

Знания, умения и навыки, полученные обучающимися в ходе изучения дисциплины «Механика жидкости и газа», необходимы для изучения таких дисциплин, как «Расчет и конструирование машин и оборудования пищевых производств», «Холодильная техника и кондиционирование», «Гидравлические машины и компрессоры» и др., а также для выполнения курсовых проектов и выпускной квалификационной работы.

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Тематический план дисциплины

Очная форма обучения

		анятия	Г вид	онтакт работа ам уче заняти	по бных	ьная	щего	троль иплине
Наименование разделов и тем	Всего часов	Аудиторные занятия	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	Формы текущего контроля	Итоговый контроль знаний по дисциплине
Раздел 1. Механика жидкости	91	46	18	18	10	45	Опрос, РЗ*, ЛБ*, РФ*, Тест*	
Тема 1: Введение в механику жидкости и газа	9	4	2	2	-	5	Опрос, Р3*	
Тема 2: Физические свойства жидкостей, применяемых в различных технологических процессах	9	4	2	2	-	5	Опрос, РЗ*	
Тема 3: Неньютоновские жидкости	9	4	2	2	_	5	Опрос, Р3*	
Тема 4: Растворимости газов в жидкостях, смеси	8	4	2	2	_	4	Опрос, Р3*	
Тема 5: Силы давления покоящейся среды на плоские и криволинейные стенки. Силовое воздействие потока на ограничивающие его стенки	8	4	2	2	-	4	Опрос, РЗ*	
Тема 6: Уравнение Бернулли. Истечение жидкости из отверстий и насадков	14	10	2	2	6	4	Опрос, Р3*, ЛБ*	
Тема 7: Расчет простых и сложных трубопроводов	8	4	2	2	-	4	Опрос, РФ*	
Тема 8: Гидравлический удар	8	4	2	2	-	4	Опрос, Р3*	
Тема 9 Насосы и гидравлические системы	18	8	2	2	4	10	Опрос, Р3*, ЛБ*, Тест №1	
Раздел 2. Механика газов	89	39	16	16	7	50	Опрос, РЗ*, ЛБ*, РФ*, Тест*	
Тема 1: Гидродинамическое подобие и моделирование потоков	10	4	2	2	-	6	Опрос, P3*	
Тема 2: Физические свойства газов. Газостатика и кинематика	10	4	2	2	-	6	Опрос, Р3*	
Тема 3: Газодинамика	10	4	2	2	-	6	Опрос, Р3*	
Тема 4: Потери давления на линейных и местных	14	8	2	2	4	6	Опрос, РЗ*, ЛБ*	

сопротивлениях в газоводах								
Тема 5: Аэродинамика инженерных сетей	13	7	2	2	3	6	Опрос, Р3*, ЛБ*	
Тема 6: Изопроцессы идеального газа	10	4	2	2	-	6	Опрос, P3*	
Тема 7: Истечение газов из отверстий	10	4	2	2	-	6	Опрос, Р3*, РФ*	
Тема 8: Вентиляторы и газовые компрессоры	12	4	2	2	-	8	Опрос, Р3*, Тест* №2	
Контроль								0
Зачет и оценкой								
Всего	180	85	34	34	17	95		0

^{*} РЗ – решение задач, ЛБ – подготовка лабораторной работы, РФ – подготовка реферата; Тест – подготовка к тестированию.

Заочная форма обучения

		занятия		Контактная работа по видам учебных занятий			ущего тя	нтроль циплине
Наименование разделов и тем	Всего часов	Аудиторные занятия	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	Формы текущего контроля	Итоговый контроль знаний по дисциплине
Модуль 1. Механика жидкости	85	10	4	4	2	75		
Тема 1: Введение в механику жидкости и газа Тема 2: Физические свойства жидкостей, применяемых в различных технологических процессах Тема 3: Неньютоновские жидкости Тема 4: Растворимости газов в жидкостях, смеси Тема 5: Силы давления покоящейся среды на плоские и криволинейные стенки. Силовое воздействие потока на ограничивающие его стенки	42	5	2	2	1	38	Опрос, РЗ*	
Тема 6: Уравнение Бернулли. Истечение жидкости из отверстий и насадков Тема 7: Расчет простых и сложных трубопроводов Тема 8: Гидравлический удар Тема 9: Насосы и гидравлические системы	43	5	2	2	1	38	Опрос, РЗ*, ЛБ*	
Модуль 2. Механика газов	86	10	4	4	2	76		
Тема 1: Гидродинамическое подобие и моделирование потоков	43	5	2	2	1	40	Опрос, Р3*, РФ*	

Тема 2: Физические свойства газов. Газостатика и кинематика Тема 3: Газодинамика Тема 4: Потери давления на линейных и местных сопротивлениях в газоводах								
Тема 5: Аэродинамика инженерных сетей Тема 6: Изопроцессы идеального газа Тема 7: Истечение газов из отверстий Тема 8: Вентиляторы Тема 9: Газовые компрессора	43	5	2	2	1	40	Опрос, РЗ*, ЛБ*	
Контроль				•		•		4
Зачет с оценкой		,						
Всего	180	20	8	8	4	156		4

^{*} РЗ — решение задач, ЛБ — подготовка лабораторной работы, РФ — подготовка реферата; Тест — подготовка к тестированию.

4.2 Описание содержания дисциплины

Раздел 1. Механика жидкости

Тема 1.1. Введение в механику жидкости и газа

Предмет и методы механики жидкости и газа. Идеальная и реальная жидкость, одномерная жидкость. Идеальный и реальный газ. Основные отличия жидкостей от газов.

Тема 1.2. Физические свойства жидкостей, применяемых в различных технологических процессах

Жидкости, используемые в различных технологических процессах и гидравлических машинах. Плотность и удельный объем, удельный вес, вязкость, сжимаемость, температурное расширение жидкостей.

Тема 1.3. Неньютоновские жидкости

Неньтоновские жидкости (*cycneнзии*, *эмульсии*, *pacnлавы полимеров*). Поведение ньютоновских и неньютоновских жидкостей. Коэффициент вязкости как нелинейная функция от приложенной силы.

Тема 1.4. Растворимости газов в жидкостях, смеси

Зависимость растворимости газов в жидкостях от давления над поверхностью жидкостей. Зависимость растворимости от температуры (уравнение Клапейрона – Клаузиуса). Гомогенные и гетерогенные смеси.

Тема 1.5. Силы давления покоящейся среды на плоские и криволинейные стенки. Силовое воздействие потока на ограничивающие его стенки

Центр давления. Центр тяжести. Момент инерции относительно центральной оси. Мощность поверхностных и массовых сил. Закон о переносе энергии.

Тема 1.6. Уравнение Бернулли. Истечение жидкости из отверстий и насадков

Уравнение Бернулли. Класификация отверстий и насадков. Истечение жидкости через отверстия в тонкой стенке при постоянном уровне. Истечение жидкости через отверстия в тонкой стенке при переменном ее уровне. Истечение жидкости через насадки.

Тема 1.7. Расчет простых и сложных трубопроводов

Основные задачи при расчете трубопроводов. Расчет простого трубопровода. Расчет сложного трубопровода.

Тема 1.8. Гидравлический удар

Гидравлический удар (прямой гидравлический удар, не прямой). Фаза удара, скорость

распространения ударной волны, ударное повышение давления.

Тема 1.9. Насосы и гидравлические системы

Типы, виды насосов (центробежный, шестеренчатый, винтовой и др.). Особенности конструкции, работы. Основные параметры работы насосов и их характеристики: подача и напор, мощность и КПД, высота всасывания и кавитация в насосах. Виды и типы гидравлических систем. Расчет гидравлических систем (расчет потерь напора, подбор насоса).

Практическое занятие 1. Физические свойства жидкостей, применяемых в различных технологических процессах.

Практическое занятие 2. Неньютоновские жидкости.

Практическое занятие 3. Растворимости газов в жидкостях, смеси.

Практическое занятие 4. Силы давления покоящейся среды на плоские и криволинейные стенки. Силовое воздействие потока на ограничивающие его стенки.

Практическое занятие 5. Истечение жидкости из отверстий и насадков.

Практическое занятие 6. Расчет простых и сложных трубопроводов.

Практическое занятие 7. Гидравлический удар.

Практическое занятие 8. Насосы.

Практическое занятие 9. Гидравлические системы.

Лабораторная работа 1. Исследование процессов истечения жидкости через отверстия и насадки.

Экспериментальное исследование процесса истечения жидкости через малое круглое отверстие, насадок Вентури и насадок со скругленными входными кромками. Расчет коэффициентов расхода, скорости и сжатия для отверстия и каждого вида насадок. Сравнение экспериментальных коэффициентов с табличными данными из справочной литературы.

Лабораторная работа 2. Изучение конструкции и принципа действия шестеренчатых насосов с внутренним зацеплением.

Изучение принципа действия шестеренчатых насосов и особенностей их устройства. Расчет основных параметров работы насоса.

Темы рефератов (объем 7 - 8 листов).

- 1. Приборы для измерения плотности жидкостей, используемых в различных технологических процессах (принцип действия, отличия).
- 2. Приборы для измерения вязкости жидкостей, используемых в различных технологических процессах (принцип действия, отличия).
 - 3. Построение эпюр весового давления на плоскую стенку.
 - 4. Построение эпюр весового давления на криволинейную стенку.
- 5. Относительный покой неньютоновских жидкостей (сравнении с относительным покоем ньютоновских жидкостей).
- 6. Зависимость коэффициентов истечения от числа Рейнольдса для малого круглого отверстия с острой кромкой.
 - 7. Работа насосов на сеть.
 - 8. Принцип действия, конструкция дискового насоса.
 - 9. Принцип действия, конструкция струйного насоса.
 - 10. Принцип действия, конструкция шнекового насоса.
 - 11. Принцип действия, конструкция кулачкового насоса.
 - 12. Принцип действия, конструкция поршневого плунжерного насоса.
 - 13. Принцип действия, конструкция аксиально-поршневого насоса.
 - 14. Принцип действия, конструкция радиально-поршневого насоса.
 - 15. Принцип действия, конструкция кривошипного насоса.

Раздел 2. Механика газов

Тема 2.1. Гидродинамическое подобие и моделирование потоков Виды подобия и моделирования. Критерии подобия.

Тема 2.2. Физические свойства газов. Газостатика и кинематика

Плотность, удельный объем, удельный вес, вязкость температурное расширение, сжатие газов. Статическое давление. Основное уравнение газостатики. Приведенное давление газа. Основные понятия кинематики газов. Уравнение неразрывности газов.

Тема 2.3. Газодинамика

Уравнение Бернулли для идеального газа. Уравнение Бернулли для реального газа. Энергетический смысл уравнения Бернулли для газа. Статическое, динамическое давления газа. Режимы течения газа. Общая характеристика ламинарного и турбулентного течений. Особенности смены режимов течения, верхнее и нижнее критические числа Рейнольдса.

Тема 2.4. Потери давления на линейных и местных сопротивлениях в газоводах

Потери давления на линейных сопротивлениях (ламинарный режим). Формулы Дарси-Вейсбаха, Дарси (ламинарный режим). Виды местных сопротивлений. Формула Вейсбаха. Определение коэффициента местного сопротивления для вентилей, конусов, сужений, расширений и т.д.

Тема 2.5. Аэродинамика инженерных сетей

Суммарные потери давления газа. Примеры и расчет вентиляционных систем с естественной тягой. Пример и расчет систем с естественной и искусственной циркуляцией.

Тема 2.6. Изопроцессы идеального газа

Изотермический (Закон Бойля – Мариотта). Изобарный (Закон Гей-Люссака). Изохорный (Закон Шарля). Адиабатный процесс. Политропный процесс.

Тема 2.7. Истечение газов из отверстий

Скорость истечения газов (формула Сен-Венана). Сверхзвуковые сопла (сопла Лаваля). Истечение газа из отверстий с острой кромкой;

Тема 2.8. Вентиляторы и газовые компрессора

Типы, виды вентиляторов (центробежный, осевой, диаметральный и др.). Особенности конструкции, работы. Основные параметры работы вентиляторов и их характеристики: объемный расход и давление, мощность и КПД. Типы, виды компрессоров (газовый, воздушный, поршневые, роторно-винтовые и др.). Особенности конструкции, работы. Основные параметры работы компрессоров и их характеристики: нагнетаемое давление, температура нагнетания, объемный и массовый расход, мощность и КПД.

Практическое занятие 10. Гидродинамическое подобие и моделирование потоков.

Практическое занятие 11. Физические свойства газов. Газостатика. Кинематика газа.

Практическое занятие 12. Газодинамика. Режимы течения газа.

Практическое занятие 13. Потери давления на линейных и местных сопротивлениях в газоводах.

Практическое занятие 14. Аэродинамика инженерных сетей.

Практическое занятие 15. Изопроцессы идеального газа.

Практическое занятие 16. Истечение газов из отверстий.

Практическое занятие 17. Вентиляторы и газовые компрессора.

Лабораторная работа 3. Изучение потерь давления на местных сопротивлениях в воздуховодах.

Изучение потерь давления на местных сопротивлениях в воздуховодах. Расчет коэффициентов местного сопротивления при внезапном расширении потока газа, при его внезапном сужении, при прохождении потоком воздуха вентиля. Расчет скоростей воздуха на различных участках аэродинамической трубы. Замер и расчет потери давления при течении воздуха на местных сопротивлениях.

Лабораторная работа 4. Изучение потерь давления на линейных сопротивлениях в воздуховодах.

Изучение потерь давления на линейных сопротивлениях в воздуховодах. Расчет коэффициентов линейных сопротивлений при внезапном расширении потока газа, при его внезапном сужении, при прохождении потоком воздуха вентиля. Расчет скоростей воздуха на

различных участках аэродинамической трубы. Замер и расчет потерь давления при течении воздуха на линейных сопротивлениях.

Темы рефератов (объем 6 - 7 листов).

- 1. Законы гидродинамического подобия потоков
- 2. Геометрическое подобие напорных потоков.
- 3. Кинематическое подобие напорных потоков.
- 4. Динамическое подобие напорных потоков.
- 5. Критерий Ньютона.
- 6. Критерий Фруда.
- 7. Критерий Вебера.
- 8. Эмпирические зависимости для определения физических свойств газов.
- 9. Зависимость плотности газов от давления и температуры.
- 10. Зависимость вязкости газов от давления и температуры.
- 11. Зависимость коэффициента температурного расширения газов от температуры.
- 12. Приборы для измерения плотности газов (принцип действия, отличия).
- 13. Приборы для измерения вязкости газов (принцип действия, отличия).
- 14. Совершенствование методики определения чисел Рейнольдса газа.
- 15. Отличия уравнения Бернулли для газов от уравнения Бернулли для жидкостей.
- 16. Молекулярный режим газового потока.
- 17. Влияние шероховатости стенок газовода на потери давления газа.
- 18. Влияние резкого расширения газовода на потери давления газа.
- 19. Влияние резкого сужения газовода на потери давления газа.
- 20. Влияние подогрева газа на энергозатраты при транспортировке газов.
- 21. Физическая сущность коэффициента сжатия струи газа.
- 22. Физическая сущность коэффициента скорости.
- 23. Физическая сущность коэффициента расхода
- 24. Применение пневмопривода в различных областях техники.
- 25. Движение газа в сложных газоводах.
- 26. Построение эпюров давления газов.
- 27. Примеры изотермического, изобарного и изохорного процессов в промышленности.
- 28. Примеры адиабатных процессов в промышленности.
- 29. Примеры политропных процессов в промышленности.

5. ЎЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

В целом внеаудиторная самостоятельная работа обучающегося при изучении курса включает в себя следующие виды работ:

🛮 проработка (изучение) материалов лекций;

🛮 чтение и проработка рекомендованной основной и дополнительной литературы;

□подготовка к практическим и лабораторным занятиям;

□поиск и проработка материалов из Интернет-ресурсов, периодической печати;

🛮 выполнение домашних заданий в форме рефератов;

2подготовка к тестированию;

Подготовка к текущему и итоговому (промежуточная аттестация) контролю знаний по дисциплине.

Основная доля самостоятельной работы обучающихся приходится на подготовку к практическим занятиям, тематика которых полностью охватывает содержание курса, подготовку к тестированию, подготовку рефератов.

Для проведения практических занятий, для самостоятельной работы используются: учебно-методическое пособие — *Иодис В.А.* Механика жидкости и газа: учебное пособие для студентов направлений 15.03.02 «Технологические машины и оборудование», 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» вузов региона / Петропавловск-Камчатский: КамчатГТУ, 2019. — 213 с., конспект лекций — *Иодис В.А.* Механика жидкости и газа: конспект лекций для студентов направления 15.03.02 «Технологические машины и оборудование», 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» очной и заочной форм обучения / Петропавловск-Камчатский: КамчатГТУ, 2020. — 87 с., методическое указание — *Иодис В.А.* Механика жидкости и газа. Методические указания по выполнению лабораторных работ для студентов направления

15.03.02 «Технологические машины и оборудование» очной формы обучения. — Петропавловск-Камчатский: КамчатГТУ, 2019. – 38 с.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Фонд оценочных средств для проведения промежуточной аттестации обучающихся представлен в приложении к рабочей программе дисциплины и включает в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- 🛮 описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Вопросы для проведения промежуточной аттестации по дисциплине (зачет с оценкой)

- 1. Введение в Механику жидкости и газа (предмет и ее метод).
- 2. Основные свойства жидкостей.
- 3. Свойства гидростатического давления. Основное уравнение гидростатики.
- 4. Закон Архимеда (плавание тел, остойчивость). Закон Паскаля (гидравлические машины).
- 5. Основные понятия кинематики жидкости (линия тока, трубка тока, струйка тока, поток, гидравлический радиус).
 - 6. Расход жидкости. Уравнение неразрывности потока жидкости.
 - 7. Уравнение Бернулли для элементарной струйки тока идеальной жидкости.
 - 8. Уравнение Бернулли для потока вязкой (реальной жидкости) жидкости.
- 9. Линейные и местные потери напора. Геометрическая интерпретация уравнения Бернулли.
 - 10. Измерение расхода и скорости движения жидкостей. Типы расходомеров.
 - 11. Режимы движения жидкости (число Рейнольдса).
- 12. Общая характеристика ламинарного и турбулентного течений. Особенности смены режимов течения, критические значения критерия Рейнольдса.
 - 13. Ламинарный режим течения.
 - 14. Турбулентный режим течения. Механизм турбулентного потока.
 - 15. Потери напора при ламинарном, турбулентном режиме течения.
 - 16. Коэффициент линейного сопротивления, шероховатость.
 - 17. Определение потерь напора для труб некруглого сечения.
 - 18. Местные потери напора.
 - 19. Гидродинамическое подобие и моделирование потоков. Критерии подобия.
 - 20. Истечение жидкости из отверстий и насадок.
 - 21. Прямой и непрямой гидравлический удар.
 - 22. Кавитация.
 - 23. Гидравлические машины. Насосы. Гидравлические системы.
 - 24. Приборы для измерения плотности и вязкости жидкости.
 - 25. Основные свойства газов.
- 26. Основные величины статики газа, их свойства и определения. Основное уравнение газостатики.
 - 27. Основные понятия кинематики газов. Уравнение неразрывности газов.
 - 28. Уравнение Бернулли для реального идеального газа, отличия.
 - 29. Энергетический смысл уравнения Бернулли для газа.
- 30. Режимы течения газа. Особенности смены режимов течения, верхнее и нижнее критические числа Рейнольдса.
 - 31. Общая характеристика ламинарного и турбулентного течений.
 - 32. Основные закономерности ламинарного режима течения газа. Энергетические потери при

ламинарном режиме течения газа.

- 33. Основные закономерности турбулентного режима течения. Энергетические потери при турбулентном режиме течения газа.
 - 34. Потери давления на линейных сопротивлениях (ламинарный режим);
 - 35. Потери напора на линейных сопротивлениях (турбулентный режим);
- 36. Виды местных сопротивлений. Определение коэффициента местного сопротивления для вентилей, конусов, сужений, расширений и т.д.
 - 37. Истечение газа из отверстий. Скорость истечения газов (формула Сен-Венана).
- 38. Суммарные потери давления газа. Пример расчета вентиляционных систем с естественной тягой и систем с естественной циркуляцией.
- 39. Виды и типы систем вентиляции и кондиционирования воздуха. Основные задачи расчета систем кондиционирования.
 - 40. Изопроцессы идеального газа.
 - 41. Адиабатный и политропный процессы.
 - 42. Типы, виды вентиляторов (центробежный, осевой, диаметральный и др.);
 - 43. Особенности конструкции, работы вентиляторов;
 - 44. Основные параметры работы вентиляторов и их характеристики.
- 45. Типы, виды компрессоров (газовый, воздушный, поршневые, роторно-винтовые и др.);
 - 46. Особенности конструкции, работы;
 - 47. Основные параметры работы компрессоров и их характеристики.

7. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

7.1. Основная литература

- 1. Брюханов О.Н. Основы гидравлики и теплотехники: учебник, 2006г.
- 2. Иодис В.А. Механика жидкости и газа: учебное пособие для студентов направлений 15.03.02 «Технологические машины и оборудование», 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» вузов региона / Петропавловск-Камчатский: КамчатГТУ, 2019. 213 с.

7.2. Дополнительная литература

- 1. Лепешкин А.В., Шейнак А.А., Михайлин А.А. Гидравлика и гидропневмопривод: учеб. пособие. 3-е изд., М.: МГИУ, 2005 г. 352 с. (3 шт)
- 2. Кудинов В.А., Карташов Э.М. Гидравлика. 3-е изд., М.: Высшая школа, 2008 г. 199 с. (3 шт)
- 3. Иодис В.А. Механика жидкости и газа: конспект лекций для студентов направления 15.03.02 «Технологические машины и оборудование», 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» очной и заочной форм обучения / Петропавловск-Камчатский: КамчатСТУ, 2020. 87 с.

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ»

Для повышения эффективности самостоятельной работы студентам рекомендуется использовать:

- 1. http://www.techgidravlika.ru/
- 2. http://www.gidrostanok.ru
- 3. http:// hydmarket.ru
- 4. http://www.hydromehanika.ru
- 5. Сайт ЭБС ООО «Издательство ЛАНЬ»: [Электронный ресурс]. Режим доступа: http://e.lanbook.com;
- 6. Сайт Российской государственной библиотеки: [Электронный ресурс]. Режим доступа: http://www.rsl.ru/.

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ

дисциплины

Методика преподавания данной дисциплины предполагает чтение лекций, проведение практических, лабораторных занятий, групповых и индивидуальных консультаций по отдельным (наиболее сложным) специфическим проблемам дисциплины. Предусмотрена самостоятельная работа студентов, а также прохождение аттестационных испытаний (зачет с оценкой).

Лекции посвящаются рассмотрению наиболее важных концептуальных вопросов: о свойствах жидкостей и газов, законах гидростатики, кинематики, гидродинамики, газодинамики, о потерях напора и давления при движении сред, о расчетах и подборе гидравлического и компрессионного оборудования, гидравлических и газовых систем. В ходе лекций обучающимся следует подготовить конспекты лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины; проверять термины, понятия с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь; обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на лабораторном или на практическом занятии.

Целью проведения практических занятий является закрепление знаний обучающихся, полученных ими в ходе изучения дисциплины на лекциях и самостоятельно. Практические занятия проводятся в форме решения типовых задач дисциплины.

Целью проведения лабораторных занятий является приобретение обучающимися опыта решения учебно-исследовательских и реальных практических задач на основе изученного теоретического материала; экспериментальное подтверждение и проверка существенных теоретических положений, умение решать практические задачи.

10. КУРСОВОЙ ПРОЕКТ (РАБОТА)

Выполнение курсового проекта (работы) не предусмотрено учебным планом

11. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННО-СПРАВОЧНЫХ СИСТЕМ

11.1 Перечень информационных технологий, используемых при осуществлении образовательного процесса:

- 🛮 использование слайд-презентаций;
- изучение нормативных документов на официальном сайте федерального органа исполнительной власти, а также в справочно-правовой системе, проработка документов;
- интерактивное общение с обучающимися и консультирование в электронной информационной образовательной среде.

11.2 Перечень программного обеспечения, используемого при осуществлении образовательного процесса

При освоении дисциплины используется лицензионное программное обеспечение:

- ② операционные системы Astra Linux (или иная операционная система, включенная в реестр отечественного программного обеспечения);
- комплект офисных программ Р-7 Офис (в составе текстового процессора, программы работы с электронными таблицами, программные средства редактирования и демонстрации презентаций);
- Программа проверки текстов на предмет заимствования «Антиплагиат».

11.3 Перечень информационно-справочных систем

- 2 справочно-правовая система Консультант-плюс http://www.consultant.ru/online;
- I научная электронная библиотека «eLIBRARY.RU» (обеспечивающая доступ к профессиональным базам данных, информационным справочным и поисковым системам) http://elibrary.ru/.

12. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для проведения занятий лекционного типа, практических занятий, лабораторных

занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации - учебные аудитории № 3-203, 3-204 с комплектом учебной мебели, лабораторными установками, лабораторными стендами. Аудитории может быть использованы и для самостоятельной работы обучающихся.

🛚 доски аудиторные;

Пмультимедийное оборудование (ноутбук, проектор);

Презентации по темам курса;

- Установка для исследования процессов истечения жидкости через отверстия и насадки;
- Лабораторный стенд для изучения конструкции и принципа действия шестеренчатых насосов с внутренним зацеплением;
- Установка для изучения потерь давления на местных и линейных сопротивлениях в воздуховодах.