ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

Факультет мореходный

Кафедра «Технологические машины и оборудование»

УТВЕРЖДАЮ

Декан мореходного факультета

/С.Ю.Труднев/

«13» декабря 2024г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Машины низкотемпературных установок»

направление:

16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» (уровень бакалавриата)

профиль «Холодильная техника и технологии»

Рабочая программа составлена на основании ФГОС ВО по направлению подготовки 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения».

Составитель рабочей программы

доцент кафедры «Технологиче	ские машины и оборудовани	ie»,
к.т.н., доц.	_ fal	А. В. Костенко
Рабочая программа рассмотрена на за «13» декабря 2024 г. протокол № 6.	седании кафедры «Технолог	тические машины и оборудование»
Заведующий кафедрой «Технологичес	ские машины и оборудовани	e», к.т.н., доцент
«13» декабря 2024 г.	for \-	А. В. Костенко

1. ЦЕЛЬ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ, ЕЕ МЕСТО В УЧЕБНОМ ПРОЦЕССЕ

Дисциплина «Машины низкотемпературных установок» является одной из основных профильных дисциплин учебного плана подготовки бакалавров по направлению 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» профиль «Холодильная техника и технологии».

Целью преподавания дисциплины является подготовка специалистов к эксплуатации и проектированию:

- компрессорных и расширительных машин низкотемпературной техники объемного принципа действия;
- компрессорных и расширительных турбомашин динамического принципа действия для холодильных, криогенных установок и систем кондиционирования различного назначения.

Задачей курса является формирование навыков и умений по следующим направлениям деятельности:

- термодинамический расчет основных типов компрессоров и детандеров объемного принципа действия;
- 🛮 анализ рабочих характеристик и особенностей объемных машин различного назначения;
- 🛮 термогазодинамические основы процессов расширения и сжатия в турбомашинах;
- термогазодинамические и конструкторские расчеты центробежных компрессорных машин и радиальных (центростремительных) турбодетандеров;
- Выбор оптимальных вариантов конструкции компрессорных и расширительных машин для заданных условий работы.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины «Низкотемпературные машины» направлен на формирование профессиональной компетенции (ПК-5) программы бакалавриата. Программа бакалавриата по направлению 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» профиль «Холодильная техника и технологии» устанавливает следующие профессиональные компетенции (ПК) и индикаторы их достижения (табл. 2.1).

Таблица 2.1. – Задачи профессиональной деятельности, профессиональные компетенции (ПК) и индикаторы их достижения

				Из п	роф. стандарта
Задача профессиона льной деятельности	Наименование профессиональ ной компетенции выпускника	Код и наименование индикатора достижения профессиональной компетенции	Основание (профессио нальный стандарт / анализ опыта)	Уровень квалификации	Обобщенные трудовые функции
Ти	п задач професси	ональной деятельности — производс	гвенно-технол	огичес	кий

Участие в работах по эксплуатации и рационально му ведению технологичес ких процессов в холодильных и криогенных установках, системах жизнеобеспе чения. Проведение тестирования , испытания холодильног о оборудовани я, технического сопровожден ия эксплуатации холодильных машин и систем жизнеобеспе чения.	ПК – 5 Способен настраивать параметры и испытывать холодильные машины и системы жизнеобеспече ния.	ИД _{1 ПК-5} Знает современные методики тестирования, виды испытаний холодильного оборудования, методы сбора, анализа и обработки полученных результатов. ИД _{2 ПК-5} Умеет применять специализированное оборудование для сборки, монтажа, испытаний, ремонта и утилизации деталей, узлов, агрегатов низкотемпературных систем. ИД _{3 ПК-5} Владеет навыками анализа полученных в ходе технического тестирования и испытаний данных, обобщения и систематизации.	25.023	7	Настройка параметров, испытание систем жизнеобеспеч ения, терморегулир ования, агрегатов пневмогидрав лических систем, устранение замечаний пользователей по результатам их экспертного тестирования на этапе опытной эксплуатации В/04.07
--	---	--	--------	---	--

Перечень планируемых результатов обучения при изучении дисциплины приведен в таблице 2.2.

Таблица 2.2. – Планируемые результаты обучения при изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы

Код компете нции	Планируемые результаты освоения образовательной программы	Код и наименование индикатора достижения профессиональной компетенции	Планируемый результат обучения по дисциплине	Код показател я освоения
ПК-5	Способен настраивать параметры и испытывать холодильные машины и системы жизнеобеспечен ия.	ИД _{1 пк-5} Знает современные методики тестирования, виды испытаний холодильного оборудования, методы сбора, анализа и обработки полученных результатов. ИД _{2 пк-5} Умеет применять специализированное оборудование для сборки, монтажа, испытаний, ремонта и утилизации деталей, узлов, агрегатов низкотемпературных систем. ИД _{3 пк-5} Владеет навыками анализа полученных в ходе технического тестирования и испытаний данных, обобщения и систематизации.	Знать: - современные методики тестирования, виды испытаний, методы сбора, анализа и обработки полученных результатов при эксплуатации машин низкотемпературных установок Уметь: - применять специализированное оборудование для сборки, монтажа, испытаний, ремонта и утилизации деталей, узлов, агрегатов машин низкотемпературных систем	3(ПК-5)1 У(ПК-5)1

	Владеть:		
	- навыками	т анализа	В(ПК-5)1
	полученных	в ходе	, ,
	технического т	естирования и	
	испытаний	машин	
	низкотемперату	рных	
	установок	данных,	
	обобщения и си	стематизации	ľ

МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Машины низкотемпературных установок» является дисциплиной части, формируемой участниками образовательных отношений в структуре образовательной программы.

Изучение дисциплины базируется на знаниях, полученных при освоении дисциплин: «Высшая математика», «Физика», «Инженерная и компьютерная графика», «Теоретическая механика», «Теория механизмов и машин», «Сопротивление материалов», «Материаловедение», «Детали машин и основы конструирования», «Технология конструкционных материалов».

Знания, умения и навыки, приобретенные в результате изучения дисциплины, используются при изучении профильных дисциплин учебного плана: «Теоретические основы холодильной техники», «Холодильные машины и установки», «Монтаж эксплуатация и ремонт низкотемпературных установок» «Автоматизация низкотемпературных установок» и выполнении выпускной квалификационной работы.

3. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

В соответствии с учебным планом подготовки бакалавров по направлению 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» преподавание дисциплины реализуется в 5 семестре обучения.

Тематический план дисциплины по очной форме обучения представлен в таблице 3.1.

Таблица 3.1. – Тематический план дисциплины по очной форме обучения

		ИЯ		Контактная работа по видам учебных занятий			0	знаний e
Наименование разделов и тем	Всего часов	Аудиторные занятия	Лекции	Семинары (практические занятия)	Лабораторные работы	Самостоятельная работа	Формы текущего контроля	Итоговый контроль з по дисциплине
Раздел 1. Термодинамические процессы сжатия. Классификация компрессорных машин низкотемпературных установок	12	6	4		2	6	0	
Тема 1. Термодинамические процессы сжатия и расширения реального газа	8	4	2		2	4	О ЛР	
Тема 2. Классификация компрессорных машин низкотемпературных установок	4	2	2			2	ПО ЛР Т	
Раздел 2. Компрессоры объемного принципа действия	52	42	20		22	10	0	
Тема 3. Поршневые холодильные	28	26	12		14	2	ЛР	

		1	1	 1			·
компрессоры						КΠ	
						ПО	
						T	
						Рф	
Тема 4. Винтовые холодильные						ЛР	
компрессоры	1.4					ПО	
	14	8	4	4	2	Т	
						Рф	
Тема 5. Ротационные холодильные						ЛР	
компрессоры	10	4	2	2	2	O	
Компрессоры			_	_	_	Рф	
Тема 6. Спиральные холодильные						ЛР	
компрессоры.	8	4	2	2	4	O	
компрессоры.	"	4	_	_	4	Рф	
Раздел 3. Компрессоры						Ρψ	
Раздел 3. Компрессоры динамического принципа действия	18	8	4	4	10	0	
Тема 7. Проточные центробежный и						ЛР	
осевой компрессоры	18	8	4	4	10	O	
оссьой компрессоры	10		-	_	10	Рф	
Раздел 4. Расширительные машины –							
детандеры	22	12	6	6	10	O	
Тема 8. Турбодетандеры						ЛР	
теми от туроодетиндеры	11	6	4	2	5	O	
	11		-	_		Рф	
Тома 9. Порициори ю дотандори и						ЛР	
Тема 9. Поршневые детандеры	11	6	2	4	5	0	
	11	0	~	4	ر	_	
Курсорой просу	40		-		40	Рф	
Хурсовой проект	40				40		
Зачет с оценкой	111	CO	24	24	7.0		
Всего	144	68	34	34	76		

Примечание: О — опрос; ; Π O — письменный опрос; Π P — лабораторная работа; KП — курсовой проект; T — тестирование; Pф — реферат (доклад).

Раздел 1. Термодинамические процессы сжатия и расширения реального газа. Классификация компрессорных машин низкотемпературных установок

Тема 1. Термодинамические процессы сжатия и расширения реального газа

Лекция. Процессы расширения и сжатия.

Рассматриваемые вопросы. Изучение процессов сжатия газов и паров холодильного агента и расширения с совершением внешней работы. Т-s и i-lgp диаграммы чистых веществ. Построение и расчет процессов адиабатного и изотермического сжатия и адиабатного расширения в детандере. Сущность термодинамического анализа процессов сжатия и расширения.

Лабораторная работа. Построение и расчет процессов сжатия и расширения в термодинамических диаграммах хладагентов и криоагентов. Содержание. Изучение термодинамических процессов сжатия и расширения газов.

Основные понятия темы: Адиабатное и изотермическое сжатие рабочих тел низкотемпературных установок. Адиабатное расширение газа с совершением внешней работы.

Тема 2. Классификация компрессорных машин низкотемпературных установок

Лекция. Условия работы и классификация компрессоров низкотемпературных установок.

Рассматриваемые вопросы. Назначение компрессора в холодильной машине. Внешние условия работы компрессора в составе холодильной установки. Основные особенности

работы холодильных компрессоров по сравнению с компрессорами общего назначения. Принцип действия различных типов компрессоров. Классификация. Тенденции развития современного компрессоростроения.

Основные понятия темы: Назначение компрессора в холодильной машине. Особенности работы компрессора низкотемпературной установки. Классификация холодильных компрессоров. Холодопроизводительность и объемная производительность холодильного компрессора.

Раздел 2. Компрессоры объемного принципа действия

Тема 3. Поршневые холодильные компрессоры

Лекция. Поршневые холодильные компрессоры (ПХК).

Рассматриваемые вопросы. Классификация ПХК. Достоинства и недостатки. Основные характеристики. Области применения. Объемы производства. Тенденции развития ХК. Теоретический ПХК. Индикаторная диаграмма. Объемная и массовая производительность. Холодопроизводительность. Потребляемая мощность. Оценка эффективности.

Лабораторная работа. Определение относительной величины мертвого объема поршневого компрессора.

Codeржание. Определение абсолютной и относительной величины мертвого пространства поршневого холодильного компрессора, анализ влияния мертвого пространства на потери объемной производительности.

Лабораторная работа. Изучение конструкции малых сальниковых поршневых холодильных компрессоров.

Содержание. Изучение конструкцию и принцип работы поршневых холодильных компрессоров малой производительности, их системы газораспределения, охлаждения и смазки.

Лекция. Действительный поршневой холодильный компрессор.

Рассматриваемые вопросы. Действительные процессы ПХК. Индикаторная диаграмма действительного ПХК. Коэффициент подачи. Частные объемные коэффициенты. Экспериментальное определение объемных коэффициентов и коэффициента подачи. Индицирование ПХК. Методы повышения объемной эффективности ПХК. Потребляемая мощность. Энергетические потери. Индикаторный, механический, эффективный и электрический КПД. Методы снижения энергозатрат. Оценка эффективности ПХК.

Лабораторная работа. Изучение конструкции поршневых холодильных компрессоров средней производительности.

Codeржание. Изучение конструкции и принципа работы поршневых холодильных компрессоров средней производительности, их системы газораспределения, охлаждения и смазки.

Лекция. Характеристики действительного поршневого холодильного компрессора.

Рассматриваемые вопросы. Характеристики ПХК. Экспериментальные и теоретические методы построения. Сравнительные режимы. Влияние свойств холодильных агентов на основные характеристики поршневого холодильного компрессора.

Лабораторная работа. Расчет и построение основных характеристик поршневого холодильного компрессора.

Содержание: Изучение влияния режима работы холодильной машины на эффективность работы холодильного компрессора.

Лекция. Тепловой и конструктивный расчет поршневого холодильного компрессора.

Рассматриваемые вопросы. Порядок теплового и конструктивного расчета ПХК. Выбор частоты вращения, числа цилиндров, хода поршня и диаметра цилиндров. Средняя скорость поршня. Расчет газового тракта компрессора и проходных сечений клапанов.

Лекция. Динамический расчет поршневого холодильного компрессора.

Рассматриваемые вопросы. Основные кинематические уравнения. Силы и моменты сил, действующие в кривошипно-шатунном механизме. Расчет маховых масс. Уравновешивание. Схемы ПХК. Выбор схемы. Определение нагрузки на опоры. Выбор опор.

Лабораторная работа. Изучение конструкции бессальниковых поршневых холодильных компрессоров.

Содержание. Изучение конструкции и принципа работы бессальниковых поршневых холодильных компрессоров средней и малой производительности, их системы газораспределения, охлаждения и смазки

Лекция. Конструкции поршневых холодильных компрессоров.

Рассматриваемые вопросы. Конструкции ПХК. Градации и ряды. Методы унификации и стандартизации в холодильном компрессоростроении. Особенности конструкций ПХК малой, средней и крупной производительности. ПХК транспортной и бытовой холодильной техники. Выбор ПХК для заданных условий. Многоступенчатые ПХК. Особенности многоступенчатого сжатия. Выбор промежуточных давлений. Особенности конструирования и расчета. Системы смазки и регулирования производительности поршневых холодильных компрессоров. Основные элементы системы смазки. Выбор смазочных материалов. Регулирование производительности ПХК. Способы регулирования. Защита ПХК. Автоматизация ПХК.

Лабораторная работа. Изучение конструкции герметичных поршневых холодильных компрессоров.

Содержание. Изучение конструкции и принципа работы герметичных поршневых холодильных компрессоров, их системы газораспределения, охлаждения и смазки.

Основные понятия темы: Принцип действия, конструкция и классификация ПХК. Область применения, достоинства и недостатки. Индикаторная диаграмма идеального компрессора объемного принципа действия. Индикаторная диаграмма действительного ПХК. Объемные и энергетические коэффициенты. Тепловой и конструктивный расчет ПХК. Динамический расчет поршневого компрессора.

Тема 4. Винтовые холодильные компрессоры

Лекция. Винтовые холодильные компрессоры (ВХК).

Рассматриваемые вопросы. Принцип работы и геометрические параметры винтового холодильного компрессора. Классификация. Преимущества ВХК. Конструкции ВХК. Рабочие процессы в маслозаполненном винтовом компрессоре. Геометрические параметры. Профили зубьев роторов, их влияние на эффективность ВХК. Профилирование окон всасывания и нагнетания. Объемные потери в ВХК; коэффициент подачи. Индикаторная диаграмма ВХК. Энергетические потери в ВХК. КПД винтового компрессора. Влияние на КПД ВХК окружной скорости роторов свойств хладагента и масла, температура газа и масла, расхода масла. Холодопроизводительность и потребляемая мощность ВХК. Характеристики ВХК.

Лабораторная работа. Изучение конструкции винтового холодильного компрессора и определение его геометрических характеристик.

Содержание. Изучение устройства, конструкции и принципа действия винтового холодильного компрессора.

Лекция. Устройство, расчет и конструирование винтового холодильного компрессора и его элементов.

Рассматриваемые вопросы. Силы и моменты сил, действующие на роторы в ВХК. Система смазки. Рабочие вещества, схемы и циклы. Определение количества масла, подаваемого в компрессор. Регулирование производительности. Повышение эффективности работы ВХК за счет регулирования геометрической степени сжатия. Конструкции ВХК и основных элементов. Тенденции развития.

Лабораторная работа. Тепловой расчет и подбор винтового холодильного компрессора.

Содержание. Освоение методики теплового расчета и подбора винтового холодильногокомпрессра.

Основные понятия темы: Принцип работы, конструкция и основные геометрические параметры ВХК. Преимущества и недостатки винтовых маслозаполненных холодильных

компрессоров. Индикаторная диаграмма и режимы работы ВХК. Объемные и энергетические коэффициенты ВХК. Тепловой и конструктивный расчет ВХК.

Тема 5. Ротационные холодильные компрессоры

Лекция. Ротационные компрессоры.

Рассматриваемые вопросы. Общие положения. Разновидности, классификация, преимущества и недостатки, области применения ротационных холодильных компрессоров (РХК). РХК с катящимся поршнем и пластинчатые. Принцип действия, устройство, конструкция. Теоретические характеристики. Действительные характеристики, объемные и энергетические коэффициенты.

Лабораторная работа. Изучение конструкции ротационного холодильного компрессора с катящимся ротором.

Содержание. Изучение конструкции и принципа работы ротационного холодильного компрессора

Основные понятия темы: Принцип действия и конструкция ротационного компрессора с катящимся ротором и пластинчатого ротационного компрессора. Достоинства и недостатки. Индикаторная диаграмма и технические характеристики.

Тема 6. Спиральные холодильные компрессоры

Лекция. Спиральные компрессоры.

Рассматриваемые вопросы. Ротационные холодильные компрессоры спирального типа (СХК). Принцип действия, устройство, конструкции. Теоретические характеристики. Действительные характеристики, объемные и энергетические коэффициенты. Сопоставление характеристик СХК и ПХК.

Лабораторная работа. Изучение конструкции спирального холодильного компрессора.

Содержание. Изучение конструкции и принципа работы спирального холодильного компрессора.

Основные понятия темы: Принцип действия и конструкция спирального компрессора. Теоретические и действительные характеристики. Объемные и энергетические коэффициенты. Достоинства и недостатки СХК.

Раздел 3. Компрессоры динамического принципа действия

Тема 5. Газовые (воздушные) и парокомпрессионные холодильные машины.

Лекция. Компрессоры динамического принципа действия.

Рассматриваемые вопросы. Турбомашины и процессы в их проточной части, особенности расчета и проектирования. Значение, место, область применения центробежных и осевых холодильных компрессоров в холодильной технике. Устройство и принцип действия. Диапазон рабочих параметров. Преимущества и недостатки в сравнении с другими типами холодильных компрессоров.

Лабораторная работа. Изучение конструкции и принципа действия центробежного компрессора.

Содержание. Ознакомление с принципом действия, и конструкцией центробежного компрессора, и его основными геометрическими характеристиками.

Лекция. Ступени центробежного и осевого компрессоров.

Рассматриваемые вопросы. Степень повышения давления в ступени. Типы рабочих колес и их характерные параметры. Неподвижные элементы проточной части ступени и их характерные параметры.

Основные понятия темы: Принцип действия, конструкция, индикаторная диаграмма, основные характеристики, объемные и энергетические коэффициенты поршневых и винтовых холодильных компрессоров.

Лабораторная работа. Письменный опрос

Содержание. Принцип действия, конструкция, индикаторная диаграмма, основные

характеристики, объемные и энергетические коэффициенты холодильных компрессоров.

Раздел 3. Расширительные машины – детандеры

Тема 6. Турбодетандеры

Лекция. Расширительная машина – детандер.

Рассматриваемые вопросы. Понятие расширительной машины – детандера. Процесс детандирования в тепловых диаграммах. Детандеры турбинного и объемного действия. Применение детандеров в криогенных системах и установках. Особенности конструктивного исполнения современных криогенных детандеров.

Лабораторная работа. Изучение конструкции и принципа действия турбодетандера. Содержание. Ознакомление с принципом действия, и конструкцией турбодетандера и его основными геометрическими характеристиками

Лекция. Устройство и принцип действия турбодетандера.

Рассматриваемые вопросы. Устройство и принцип действия турбодетандера. Классификация турбодетандеров по параметрам рабочего газа и способу торможения. Устройство и рабочий процесс в ступени турбодетандера: Элементы ступени. Входные устройства. Направляющие аппараты. Рабочие колеса. Выходные устройства. Переднее и заднее уплотнения. Рабочий процесс в элементах ступени и в *i-s* диаграмме. Располагаемые перепады энтальпий. Составляющие гидравлических потерь. Внутренние и внешние потери мощности. Гидравлический и изоэнтропический КПД. Холодопроизводительность ступени. Энергетические уравнения ступени. Режимные и геометрические параметры направляющего аппарата

Основные понятия темы: Детандеры турбинного и объемного типа. Криогенные детандеры. Принцип действия и конструкция турбодетандера. Рабочий процесс в ступени турбодетандера. Гидравлический и изоэнтропный коэффициенты полезного действия турбодетандера. Холодопризводительность ступени. Индикаторная диаграмма поршневого детандера. Принцип действия и конструкция поршневого детандера. Коэффициент полезного действия поршневого детандера.

Тема 7. Поршневые детандеры

Лекция. Расширительные машины объемного типа.

Рассматриваемые вопросы. Поршневые детандеры. Рабочие процессы в поршневом детандере, его индикаторная диаграмма, отсечки впуска и выпуска газа. Температура газа в расчетных точках процесса. Определение потерь холода, расчет КПД детандера. Основные конструктивные схемы поршневых детандеров, конструкции элементов и устройств.

Лабораторная работа. Изучение конструкции и принципа действии поршневого детандера.

Содержание. Ознакомление с принципом действия, и конструкцией поршневого детандера и его основными геометрическими характеристиками

Основные понятия темы: Рабочие процессы и индикаторная диаграмма поршневого детандера. Принцип действия и конструкция поршневого детандера. Коэффициент полезного действия поршневого детандера.

Лабораторная работа. Итоговое занятие.

Содержание. Заслушивание и обсуждение докладов и материалов рефератов студентов. Тестирование по дисциплине.

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа студентов (СРС) включает следующие виды работ:

- проработка (углубленное изучение) лекционного материала, работа с конспектами лекций;
- 🛮 подготовка к выполнению и защите лабораторных работ;

- 🛮 чтение и проработка рекомендованной основной и дополнительной литературы;
- 🛮 поиск и проработка материалов из Интернет-ресурсов, периодической печати;
- 🛮 подготовка рефератов (докладов);
- 🛮 подготовка презентаций для иллюстрации докладов;
- 🛮 подготовка к текущему (опрос, тестирование) и итоговому контролю знаний по дисциплине (зачет с оценкой).

Темы 3 - 9:

Подготовка рефератов (докладов), тематика, которых отвечает следующим направлениям:

- особенности использования поршневых компрессоров в холодильной и криогенной технике;
- анализ конструкций узлов и деталей поршневых холодильных компрессоров, выпускаемых ведущими фирмами по производству холодильной техники;
- 🛮 перспективные направления развития современного компрессоростроения;
- 🛮 опыт эксплуатации поршневых холодильных компрессоров;
- особенности использования ротативных компрессоров объемного принципа действия и динамического принципа действия в холодильной и криогенной технике;
- анализ конструкций узлов и деталей винтовых, ротационных и спиральных, центробежных и осевых холодильных компрессоров, выпускаемых ведущими фирмами по производству низкотемпературной техники;
- 🛮 перспективные направления развития современного компрессоростроения;
- опыт эксплуатации винтовых, ротационных, спиральных, центробежных и осевых холодильных компрессоров;
- 🛮 особенности использования расширительных машин в холодильной и криогенной технике:
- анализ конструкций узлов и деталей детандеров, выпускаемых ведущими фирмами по производству низкотемпературной техники;
- 🛮 перспективные направления развития современного машиностроения;
- 🛚 опыт эксплуатации турбодетандеров и поршневых детандеров.

Аудиторная и внеаудиторная СРС выполняется в соответствии с методическими указаниями

- В Низкотемпературные машины: Методические указания по выполнению лабораторных работ / И. П. Сарайкина. Петропавловск-Камчатский: КамчатСТУ, 2018. 141 с.
- Низкотемпературные машины: Методические рекомендации по выполнению курсового проекта «Проектирование поршневого холодильного компрессора» / И. П. Сарайкина. Петропавловск-Камчатский: КамчатГТУ, 2018. 103 с.

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (ЗАЧЕТ С ОЦЕНКОЙ)

- 1. Построение и расчет процессов адиабатного и изотермического сжатия. Сущность термодинамического анализа процессов сжатия.
- 2. Классификация холодильных компрессоров.
- 3. Классификация поршневых холодильных компрессоров.
- 4. Конструкция узлов и деталей поршневого компрессора: картер и блоккартер, цилиндры всасывающий и нагнетательный клапаны.
- 5. Конструкция узлов и деталей поршневого компрессора: шатунно-поршневая группа, шатун, поршень, поршневые и маслосъемные кольца.
- 6. Конструкция узлов и деталей поршневого компрессора: вал компрессора, система смазки.
- 7. Конструкция узлов и деталей поршневого компрессора: вал компрессора, сальник.
- 8. Рабочие процессы и индикаторная диаграмма теоретического компрессора объемного принципа действия.
- 9. Работа теоретического компрессора объемного принципа действия
- 10. Термодинамические процессы сжатия теоретического компрессора объемного принципа действия и их влияние на работу теоретического компрессора.

- 11. Производительность и мощность теоретического компрессора.
- 12. Среднее индикаторное давление поршневого компрессора.
- 13. Режим максимальной мощности поршневого компрессора.
- 14. Расчетные режимы работы компрессора.
- 15. Отличие рабочих процессов действительного поршневого компрессора от теоретического.
- 16. Влияние мертвого объема на работу поршневого компрессора.
- 17. Индикаторная диаграмма действительного поршневого компрессора.
- 18. Коэффициент подачи поршневого компрессора.
- 19. Объемная производительность и холодопроизводительность действительного поршневого компрессора.
- 20. Мощность действительного поршневого компрессора.
- 21. Подбор электродвигателя.
- 22. Характеристики поршневого компрессора.
- 23. Газодинамический расчет всасывающего клапана компрессора.
- 24. Газодинамический расчет нагнетательного клапана компрессора.
- 25. Расчетная и стандартная холодопроизводительности компрессора.
- 26. Винтовые холодильные компрессоры: принцип действия, конструкция.
- 27. Рабочий цикл винтового холодильного компрессора, его преимущества и недостатки.
- 28. Основные геометрические параметры винтового холодильного компрессора и его объемная теоретическая производительность.
- 29. Действительный процесс работы винтового холодильного компрессора, постоянная геометрическая степень сжатия.
- 30. Холодопроизводительность действительного винтового холодильного компрессора и его коэффициент подачи.
- 31. Работа, потребляемая мощность и к.п.д. компрессора винтового холодильного компрессора.
- 32. Тепловой расчет винтового холодильного компрессора.
- 33. Технологическая схема и условия работы винтового холодильного маслозаполненного компрессора.
- 34. Конструкция и принцип действия ротационного компрессора с катящимся ротором.
- 35. Производительность и коэффициент подачи ротационного компрессора с катящимся ротором.
- 36. Конструкция и принцип действия много пластинчатого ротационного компрессора.
- 37. Производительность и коэффициент подачи многопластинчатого ротационного компрессора.
- 38. Достоинства и недостатки ротационных компрессоров.
- 39. Спиральные компрессоры. Принцип действия. Достоинства и недостатки.
- 40. Принцип действия и конструкция проточной части центробежного компрессора
- 41. Работа ступени центробежного компрессора. Степень повышения давления в ступени.
- 42. Влияние различных факторов на КПД центробежного компрессора. Достоинства и недостатки центробежного компрессора.
- 43. Принцип действия и конструкция проточной части осевого компрессора
- 44. Работа ступени осевого компрессора. Степень повышения давления в ступени.
- 45. Влияние различных факторов на КПД центробежного компрессора. Достоинства и недостатки центробежного компрессора.
- 46. Построение и расчет процесса адиабатного расширения в детандере. Сущность термодинамического анализа процесса расширения в детандере.
- 47. Устройство и принцип действия турбодетандера.
- 48. Классификация турбодетандеров по параметрам рабочего газа и способу торможения.
- 49. Устройство и рабочий процесс в ступени турбодетандера: Элементы ступени. Входные устройства. Направляющие аппараты. Рабочие колеса. Выходные устройства. Переднее и заднее уплотнения.
- 50. Рабочий процесс в элементах ступени и в i-s диаграмме. Располагаемые перепады энтальпий.

- 51. Составляющие гидравлических потерь. в ступени турбодетандера. Внутренние и внешние потери мощности. Гидравлический и изоэнтропический КПД. Холодопроизводительность ступени.
- 52. Энергетические уравнения ступени турбодетандера.
- 53. Режимные и геометрические параметры направляющего аппарата турбодетандера.
- 54. Рабочие процессы в поршневом детандере, его индикаторная диаграмма, отсечки впуска и выпуска газа.
- 55. Температура газа в расчетных точках процесса. Определение потерь холода, расчет КПД детандера.

6. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная литература

- 1. Холодильные машины: Учебник для студентов втузов специальности Техника и физика низких температур» / А.В. Бараненко, Н.Н. Бухарин, В.И. Пекарев, Л.С. Тимофеевский; Под общ. ред. Л.С. Тимофеевского. СПб.: Политехника, 2006. 944 с. (40 экз.)
- 2. Балыкова Л.И., Сарайкина И.П. Кондиционирование воздуха. Компрессорные машины. Курсовое проектирование поршневого холодильного компрессора на судах, — Нижний Новгород: Вектор-ТиС, 2007. — 244 с. (87 экз.)

Дополнительная литература

- 1. Холодильные компрессоры: Справочник / Под ред. А.В. Быкова. 2-е изд., перераб. и доп.— М.: Колос, 1992. 303 с.
- 2. Бабакин Б.С., Выгодин В.А. Спиральные компрессоры в холодильных системах: Монография. Рязань: «Узорочье», 2003. 379 с.
- 3. Тепловые и конструктивные расчеты холодильных машин: Учеб. пособие для вузов по специальности «Холодильные и компрессорные машины и установки» / Е. М. Бамбушек, Н.Н. Бухарин, Е.Д. Герасимов и др.; Под общ. ред. И.А. Сакуна. Л.: Машиностроение. Ленингр. отд-ние, 1987. 423 с.
- 4. Пластинин П.И. Теория и расчет поршневых компрессоров: Учеб. пособие для вузов по специальности «Холодильные и компрессорные машины и установки». М.: ВО «Агропромиздат», 1987. 271 с.
- 5. Зеликовский И.Х., Каплан Л.Г. Малые холодильные машины и установки: Справочник. 3-у изд., перераб и доп. М.: Агропрмиздат, 1989. 672 с.
- 6. Епифанова В.И. «Компрессорные и расширительные турбомашины», учебник. М.: Машиностроение, 1984, 365 с.
- 7. Технология компрессоростроения: Учебник для студентов вузов, обучающихся по специальности «Холодильные и компрессорные машины и установки» / Н.А. Ястребова, А.И. Кондаков, В.Д. Лубенец, А.Н. Виноградов. М.: Машиностроение, 1987. 336 с.
- 8. Криогенные системы: Учебник для студентов вузов: В 2 т. Т.1. Основы теории и расчета / А.М. Архаров, И.В. Марфенина, Е.И. Микулин. 3-е изд., перераб. и доп. М.: Машиностроение, 1996. 576 с.
- 9. Материалы для низких и криогенных температур: Энциклопедический справочник / Ю.П. Солнцев, Б.С. Ермаков, О.И. Слепцов. СПб.: ХИМИЗДАТ, 2008. 768 с.
- 10. Гаврилов С.В. Учебные работы. Разработка и оформление: Методическое пособие для инженерно-технических специальностей. 3-е изд., перераб. и доп. Петропавловск-Камчатский: Изд-во КГТУ, 2005. 76 с
- 11. Журнал «Холодильная техника».
- 12. Журнал "Холодильная техника".
- 13. Журнал «Холодильный бизнес».

Ресурсы информационно-телекоммуникационной сети «Интернет»

- 1. Научная электронная библиотека eLIBRARY.RU: [сайт]. URL: http://www.elibrary.ru;
- 2. Камчатский государственный университет: [сайт]. URL: http://www.kamchatgtu.ru;
- 3. http://www.holodilshchik.ru;
- 4. http://www.bitzer.ru;
- 5. http://www.danfoss.com/ru-ru.

Методические указания

- 1. Низкотемпературные машины: Методические указания по выполнению лабораторных работ / И. П. Сарайкина. Петропавловск-Камчатский: КамчатГТУ, 2018. 141 с.
- 2. Низкотемпературные машины: Методические рекомендации по выполнению курсового проекта «Проектирование поршневого холодильного компрессора» / И. П. Сарайкина. Петропавловск-Камчатский: КамчатГТУ, 2018. 103 с.

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

При изучении дисциплины и выполнении курсового проекта рекомендуется использовать учебно-наглядное пособие — Низкотемпературные машины: Конструкции поршневых холодильных компрессоров / И. П. Сарайкина. — Петропавловск-Камчатский: КамчатГТУ, 2020. — 108 с.

8. КУРСОВОЙ ПРОЕКТ (РАБОТА)

Курсовой проект по дисциплине «Низкотемпературные машины» призван закрепить теоретический материал курса, показать практическое приложение методов расчета и дать навыки конструирования узлов и деталей холодильного компрессора, а также компоновки и разработки конструкции компрессора в целом.

Цель курсового проектирования — дать студентам навыки в области инженерных расчетов и конструирования механизма компрессора, а также его отдельных узлов и деталей с увязкой их взаимодействия. При выполнении курсового проекта студент знакомится с основным содержанием работы по проектированию нового холодильного компрессора.

В процессе курсового проектирования студент должен научиться самостоятельно выбирать различные параметры, необходимые для конструирования и расчета. Он также должен при этом оценивать технологичность конструкции, для чего необходимо хорошо знать технологию холодильного машиностроения и в полной мере использовать полученные знания по общепрофессиональным дисциплинам. Разработка курсового проекта и грамотное проектирование компрессора возможны только при хорошем знании всех особенностей данной конструкции, условий работы отдельных деталей и возникающих в них усилий.

Курсовой проект состоит из комплекта чертежей и расчетно-пояснительной записки (РПЗ). Объем графической части проекта – 2÷3 листа формата A1 – общий вид компрессора (продольный и поперечный разрез) – 1÷2 листа;

Задачей выполнение курсового проекта является расчет и проектирование холодильного одноступенчатого поршневого компрессора согласно исходным данным:

- $-Q_0$ холодопроизводительность компрессора, кВт;
- t_o температура кипения холодильного агента, °C;
- t_{κ} температура конденсации холодильного агента, °C;
- Тип компрессора: сальниковый, бессальниковый, герметичный.

Задания и исходные данные для выполнения курсового проекта содержатся в фонде оценочных средств.

9. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАМНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННО-СПРАВОЧНЫХ СИСТЕМ

Перечень программного обеспечения, используемого при осуществлении образовательного процесса:

- 🛛 Пакет Р7-офис (Р7-Документ, Р7-Таблица, Р7-Презентация)
- Система автоматизированного проектирования «Компас-График».

Перечень информационно-справочных систем:

- единая информационная образовательная среда университета «ЭИОС КамчатГТУ»;
- 🛮 электронная библиотечная система;
- 🛮 научная электронная библиотека eLIBRARY.RU;
- 🛛 электронный каталог научно-технической библиотеки КамчатГТУ.

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Материально-техническая база для осуществления образовательного процесса по дисциплине, имеющаяся в распоряжении КамчатГТУ для проведения лабораторных работ, лекций, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации:

- © специализированнаяе учебная аудитория, оборудованная комплектом учебной мебели, 3-202 (лаборатория «Компрессорные машины») с лабораторными стендами для изучения конструкции холодильных компрессоров:
 - компрессор винтовой S-6,
 - компрессоры поршневые ФВ-6, ФВБС-6, ФВ- 2,5/3; ФВБС-2,5/3; А-24; АУ-45, ФУ-12, ФУУ-80, SMC6-100 (Sabroe);
 - компрессорыгерметичные SRM4-0150-CFG; GL80DA, CS21G (Danfoss);
 - компрессоры спиральные ZR12M3-TWD-570;
 - компрессорно-конденсаторный агрегат FR8.5GXN0 Condensing unit (Danfoss);
 - отдельные узлы и детали компрессоров;
 - агрегат холодильный ФАК-07 1 шт.;
 - плакаты, схемы компрессоров, авт
- специализированная учебная аудитория 3-201 (лаборатория «Холодильные машины и установки») с лабораторной установкой, включающей холодильный фреоновый агрегат ФВ5С5-11 и холодильную камеру ХКС-2-65;
- для самостоятельной работы обучающихся аудитория 3-208, оборудованная комплектом учебной мебели;
- 🛮 читальный зал и библиотечные каталоги научно-технической библиотеки КамчатГТУ;
- 🛮 мультимедийное оборудование (ноутбук, проектор).

Перечень программных продуктов, используемых при проведении различных видов занятий

Презентации по темам курса «Спиральные холодильные компрессоры».

Дополнения и изменения в ј	рабочей пр	ограмме за	/	учебный год
В рабочую программу по дис	циплине _	Машины низко	температурі	ных установок
для направления (ний) специальности (тей)	16.03.0	3 «Холодильная, к _І жизнео	риогенная те. беспечения»	хника и системы
вносятся следующие дополнен	ия и измен	ения:		
Дополнения и изменения вне	2			
		(должность, Ф.И.	О., подпись)	
Рабочая программа пересмотр	рена и одоб	рена на заседании		ТМО
Протокол № от «	»	20 г.	(наименование кафедры)
Заведующий кафедрой				
«»20 г.				
		(подпись)		(Ф.И.О.)