ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

Факультет информационных технологий, экономики и управления

Кафедра «Системы управления»

УТВЕРЖДАЮ

Декан ФИТЭУ

рыже И.А. Рычка

« 24 » февраля 2025 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Вычислительные машины, системы и сети»

направление подготовки: 27.03.04 «Управление в технических системах» (уровень бакалавриата)

направленность (профиль): «Автоматика электроэнергетических систем»

Рабочая программа дисциплины разработана в соответствии с $\Phi\Gamma$ OC BO по направлению подготовки 27.03.04 «Управление в технических системах» студентов очной и заочной форм обучения, профиль «Управление и информатика в технических системах» и учебного плана $\Phi\Gamma$ БОУ BO «Камчат Γ ТУ».

Составитель рабочей программы:

старший преподаватель кафедры СУ

_Е.А. Лутцева

Рабочая программа рассмотрена на заседании кафедры «Системы управления»

Протокол №6 от « 24 » <u>февраля 2</u>025 года.

« 24 » февраля 2025 г

Заведующий кафедрой «Системы управления» А.А. Марченко

1. ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью дисциплины является изучения теоретических и практических основ построения, функционирования, архитектуры и структуры ЭВМ и систем, а также компьютерных сетей.

Задачи дисциплины:

- изучение физических основ вычислительных процессов;
- изучение основных принципов построения и функционирования вычислительных машин, а также отдельных устройств и программного обеспечения;
- изучение архитектурных особенностей и организации функционирования вычислительных систем различных классов и их программного обеспечения;
- изучение основ компьютерных сетей.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате изучения дисциплины у студента должны быть сформированы следующие профессиональные компетенции:

- способен выполнять наладку измерительных и управляющих средств и комплексов, осуществлять их регламентное обслуживание (ОПК-8).

Наименование компетенциипри изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы, представлены в таблице 1.

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установлен-

ными в программе бакалавриата индикаторами достижения компетенций										
Код компе- тенции	Наименование компетенции	Код и наименование индикатора достижения ПК	Планируемый результат обуче- ния по дисциплине	Код показа- теля освоения						
ОПК-8	способен выполнять наладку измерительных и управляющих средств и ком-	ИД-1 _{ОПК-8} Знает принци- пы настройки параметров измерительных и управ- ляющих средств и ком-	Знать: — виды обозначений в проектных и нормативных документациях элементов и устройств вычислительных машин и си-	3(ОПК-8)1						
	плексов, осуществлять их регламентное	плексов ИД-2 _{ОПК-8} Умеет осу-	стем; – принципы работы типовых элементов и устройств вычис-	3(ОПК-8)2						
	обслуживание щ об те	луживание ществлять регламентное обслуживание измери- тельных и управляющих	лительных машин и систем; — основные принципы построения ЭВМ, типы и архитектуру вычислительных систем;	3(ОПК-8)3						
		средств и комплексов. ИД-3 _{ОПК-8} Владеет навы- ками работы с измери-	– организацию и принцип работы основных логических блоков компьютерных систем.	3(ОПК-8)4						
		тельными и управляющими средствами, входящими в состав систем авто-	Уметь: ° пользоваться проектной и нормативной документацией вычислительной техники;	У(ОПК-8)1						
		матического управления	° разрабатывать проектную документацию для проектирования нестандартных элементов и устройств вычислительной техники;	У(ОПК-8)2						
			° проектировать нестандартные элементы и устройства вычислительной техники.	У(ОПК-8)3						
			Владеть: ° навыками разработки проектной документации устройств вычислительной техники в соответствии с имеющимися стандартами и техническими усло-	В(ОПК-8)1						

виями;	и чертежей гельной тех-	
эмулирующих систе ° навыками провер	ем; рки работо- работанного ства вычис-	

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Курс «Вычислительные машины, системы и сети» ориентирован на подготовку бакалавров по направлению 27.03.04 «Управление в технических системах». Данная дисциплина относится к блоку 51.0 – дисциплины обязательной части.

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1.Тематический план дисциплины для студентов очной формы обучения

		ra _		Контактная работа по видам учебных занятий			бота		зна- не
Наименование разделов и тем	Всего часов	Контактная работа	Лекции	Практические заня- тия	Лабораторные рабо- ты	СРП	Самостоятельная работа	Формы теку- щего контроля	Итоговый контроль зна- ний по дисциплине
1	2	3	4	5	6	7	8	9	10
Того 1 Истории остания ЭВМ Полития		семес	гр		1	1		Varrage CDC	
Тема 1 . История создания ЭВМ. Понятие архитектуры ЭВМ	4	4	4	0	0	0	0	Контроль СРС, защита лабора-	
Тема 2 . Цифровой логический уровень. Основные цифровые логические схемы	24	18	6	6	6	0	6	торных работ, вопросы, выно-	
Тема 3 . Архитектура и структура процессора.	14	12	6	2	4	0	2	симые на рас- смотрение, прак-	
Тема 4. Память компьютера	30	20	2	10	8	0	10	тические зада- ния, выполнение заданий курсо- вой работы	
Зачет								Опрос	
Всего	72	54	18	18	18	0	18		
	3	семес	rn						
Тема 4. Память компьютера		CCIVICC	· P					Контроль СРС,	
	30	12	6	3	3	0	18	защита лабора- торных работ,	
Тема 5 . Периферийные устройства компьютера как часть вычислительной системы	21	4	4	0	0	0	17	вопросы, выно- симые на рас- смотрение, прак-	
Тема 6. Уровень ассемблера	83	29	5	14	14	0	54	тические зада- ния, выполнение заданий курсо-	
Тема 7. Компьютерные сети	6	2	2	0	0	0	4	вой работы	
Экзамен								Опрос	36
Всего	180	51	17	17	17	0	93		36

4.2. Тематический план дисциплины для студентов заочной формы обучения

į		та	Контактная работа по видам учебных заня- тий				oa60-		ль пине
Наименование разделов и тем	Всего часов	Контактная работа	Лекции	Практические за- нятия	Лабораторные ра- боты	СРП	Самостоятельная рабо- та	Формы теку- щего контро- ля	Итоговый контроль знаний по дисциплине
1	2	3	4	5	6	7	8	9	10
Тема 1 . История создания ЭВМ. Понятие архитектуры ЭВМ	10	0	0	0	0	0	10	Контроль СРС, защита лабо-	
Тема 2 . Цифровой логический уровень. Основные цифровые логические схемы	42	10	4	4	2	0	32	раторных ра- бот, вопросы,	
Тема 3. Архитектура и структура процессора.	50	6	2	2	2	0	44	выносимые на	
Тема 4. Память компьютера	52	8	2	2	4	0	44	рассмотрение,	
Тема 5 . Периферийные устройства компьютера как часть вычислительной системы	15	0	0	0	0	0	15	практические задания, вы-	
Тема 6. Уровень ассемблера	64	0	0	0	0	0	64	полнение за-	
Тема 7. Компьютерные сети	10	0	0	0	0	0	10	даний курсо- вой работы	
Экзамен								Опрос	
Всего	252	24	8	8	8	0	219		9

4.3. Содержание дисциплины

Тема 1. История создания ЭВМ. Понятие архитектуры ЭВМ

Лекция

Введение. Предмет дисциплины и ее задачи. Эволюция электронно-вычислительных машин. Классификация ЭВМ. Характеристики ЭВМ. Понятие архитектуры ЭВМ. Влияние элементарной базы и технологии производства интегральных схем на архитектуру и характеристики ЭВМ. Гарвардская архитектура. Архитектура фон Неймана. Современный подход к построению ЭВМ. Функциональная и структурная организация ЭВМ. Принципы разработки современных компьютеров. Основные понятия темы: архитектура ЭВМ, поколения ЭВМ, классификация ЭВМ, характеристики ЭВМ.

Вопросы для самоконтроля:

- 1. Из каких этапов состоит эволюция электронно-вычислительных машин?
- 2. Чем гарвардская архитектура отличается от архитектуры фон Неймана?
- 3. Что такое системная магистраль?
- 4. Опишите современный подход к построению ЭВМ.
- 5. Каким образом элементарная база и технологии производства интегральных схем влияют на архитектуру и характеристики ЭВМ?
- 6. Опишите основные виды классификации ЭВМ.
- 7. Назовите основные характеристики ЭВМ.

Самостоятельная работа студента

Изучение дополнительного теоретического материала, подготовка доклада.

Литература: [1], [5]

Тема 2. Цифровой логический уровень. Основные цифровые логические схемы

Лекиия

Логические элементы. Вентили. Булева алгебра. Реализация логических элементов на схемах. Алгоритм построения логических схем. Интегральные схемы. Основные цифровые логические схемы: комбинационные схемы, арифметические схемы. Компоненты памяти: защелки, триггеры, регистры.

Основные понятия темы: транзистор, вентиль, булева алгебра, цифровой логический уровень, комбинационная схема, схема с памятью.

Вопросы для самоконтроля:

- 1. Что происходит на цифровом логическом уровне компьютера?
- 2. Что такое вентиль?
- 3. Сколько транзисторов используется для построения вентилей И-НЕ, ИЛИ-НЕ?
- 4. Сколько транзисторов используется для построения вентилей И, ИЛИ?
- 5. Для чего используется булева алгебра?
- б. Для чего необходимо минимизировать логические функции?Что такое интегральная схема?
- 8. Назовите примеры комбинационных схем.
- 9. Назовите примеры схем с памятью.
- 10. Чем комбинационные схемы отличаются от схем с памятью?

Практические занятия

Практические занятия на темы:

- 1. Исследование базовых логических элементов ЭВМ.
- 2. Временные диаграммы. Динамические параметры комбинационных схем.
- 3. Назначение шифратора, дешифратора, мультиплексора и демультиплексора.

Лабораторные работы

Лабораторная работа № 1. Базовые логические элементы ЭВМ. Синтез комбинационных схем.

Лабораторная работа № 2. Знакомство с симулятором цифровых схем Digit.

Лабораторная работа № 3. Разработка принципиальной схемы дешифратора.

Лабораторная работа № 4. Разработка принципиальной схемы компаратора.

Самостоятельная работа студента

Изучение литературы, подготовка теоретического материала и данных для выполнения лабораторных работ и практических заданий.

Литература: [4]

Тема 3. Архитектура и структура процессора

Лекция

История развития процессоров. Компания Intel. Архитектура процессора. Арифметико-логическое устройство. Понятие тракта данных. Выполнение команд процессором. Характеристики процессоров. Закон Мура. CISC и RISC архитектуры. Параллелизм на уровне команд и на уровне процессоров.

Основные понятия темы: процессор, тракт данных, АЛУ.

Вопросы для самоконтроля:

- 1. Назовите самый первый микропроцессор. В каком году он появился? Какое количество транзисторов содержал?
- 2. Опишите архитектуру процессора.
- 3. Что такое тракт данных?4. Что такое счетчик команд?
- 5. Опишите алгоритм выполнения команд процессором.
- 6. Перечислите основные характеристики процессоров.
- 7. Опишите историю возникновения CISC и RISC архитектур.
- 8. В чем отличие между CISC и RISC архитектурами? Какая из архитектур используется на сегодняшний день?
- 9. Перечислите существующие режимы работы процессора.
- 10. Используют ли современные процессоры реальный режим работы?
- 11. Опишите как работают кольца защиты процессора.

Практические занятия

Практические занятия на тему «Арифметико-логическое устройство».

Лабораторные работы

Лабораторная работа № 5. Исследование работы полусумматоров и сумматоров.

Лабораторная работа № 6. Исследование работы АЛУ.

Самостоятельная работа студента

Изучение литературы, подготовка теоретического материала и данных для выполнения лабораторных работ и практических заданий.

Литература: [1], [3], [5]

Тема 4. Память компьютера

Лекиия

Классификация памяти. Регистры. Кэш память L1, L2, L3. Организация кэш памяти. Оперативная память. SRAM и DRAM подходы к построению памяти. Модули оперативной памяти. Магнитные диски (жесткие диски). Твердотелые накопители. Код исправления ошибок и его использование в памяти. Алгоритм Хэмминга.

Основные понятия темы: регистр, кэш память, оперативная память, жесткие диски, твердотелые накопители, виртуализация памяти, организация памяти, код исправления ошибок.

Вопросы для самоконтроля:

- 1. Опишите иерхическую организацию памяти.
- 2. Что такое регистр процессора? Какое количество регистров имеют современные процессоры?
- 3. Для чего предназначена кэш память?
- 4. Опишите чем отличаются разные уровни кэш памяти.
- 5. Чем отличаются SRAM и DRAM подходы к построению памяти?6. Опишите стурктуру жесткого диска.
- 7. Назовите основные достоинства и недостатки твердотелых накопителей.
- 8. Что такое своппинг и виртуальная память?
- 9. Что такое адресное пространство процесса?
- 10. Опишите сегментную модель распределения памяти.
- 11. Опишите страничную модель распреления памяти.
- 12. Что такое код исправления ошибок?
- 13. Опишите алгоритм Хэмминга.

Практические занятия

Практические занятия на тему «Триггеры, регистры и счетчики».

Практические занятия на тему «Регистр-аккумулятор».

Практические занятия на тему «Тракт данных процессора».

Лабораторные работы

Лабораторная работа № 7. Исследование работы триггеров.

Лабораторная работа № 8. Исследование работы регистров.

Лабораторная работа № 9. Исследование работы счетчиков.

Лабораторная работа № 10. Исследование работы ОЗУ на ИМС.

Лабораторная работа № 11. Регистры процессора. Реализация регистра-аккумулятора микропроцессорной памяти.

Лабораторная работа № 12. Разработка внутреннего устройства тракта данных типичного фон Неймановского процессора.

Лабораторная работа № 13. Расчет мощности и надежности разработанного устройства.

Самостоятельная работа студента

Изучение литературы, подготовка теоретического материала и данных для выполнения лабораторных работ и практических заданий.

Литература: [1], [3], [5]

3 семестр

Тема 5. Периферийные устройства компьютера как часть вычислительной системы

Классификация периферийных устройств. Типы и основные принципы построения периферийных устройств. Понятие интерфейса. Подсистема ввода-вывода. Прерывания программы. Прерывания с программным опросом. Векторная система прерываний. Контроллер прерываний. Организация внутримашинных обменов. Понятие шины. Виды шин. Классификация шин. Синхронные и асинхронные шины. Принципы работы шины. Понятие арбитра шины. Шины РСІ и РСІе.

Основные понятия темы: диспетчер прерываний, периферийное устройство, шина, арбитр шины. Вопросы для самоконтроля:

- Приведите классификацию шин.
 Что такое арбитр шины?
- 3. Чем отличаются централизованные и децентрализованный арбитраж?
- 4. Чем отличаются РСІ и РСІе?
- 5. Чем лотличаются синхронные и асинхронные шины?

- 6. Для чего предназначен контроллер прерываний?
- 7. Опишите векторную систему прерываний.

Самостоятельная работа студента

Изучение литературы, выполнение заданий курсовой работы.

Литература: [2], [3]

Тема 6. Уровень ассемблера

Лекция

Понятие языка программирования. Развитие языков. Классификация языков: машинный язык, низкоуровневый язык, высокоуровневый язык. Парадигмы программирования: императивная, функциональная, логическая, объектно-ориентированная. Понятие трансляции. Трансляция и интерпретация. Виды трансляторов. Этапы трансляции программ. Ассемблеры. Понятие программной модели процессора. Программная модель IA-32. Классификация регистров. Достоинства и недостатки ассемблеров. Базовый синтаксис NASM. Логические и арифметические операции в NASM.Условые и безусловные переходы. Реализация циклов. Создание подпрограмм

Настройка среды рарзработки. Компиляция NASM программ.

Основные понятия темы: трансляция, ассемблеры, NASM.

Вопросы для самоконтроля:

- 1. Назовите основные классы языков программирования.
- 2. Что такое парадигма программирования?
- 3. Что такое объектно-ориентированное программирование?
- 4. В чем отличие существующих парадигм программирования?
- 5. Перечислите этапы трансляции программ.
- 6. Перечислите достоинства и недостатки ассемблеров.
- 7. Опишите базовый синтаксис NASM.

Практические занятия

Практические занятия на темы:

- <u>1.</u> Изучение базового синтаксиса NASM.
- 2. Ввод-вывод числовых значений в ассемблере.
- 3. Ветвление и циклы в NASM.

Лабораторные работы

Лабораторная работа № 14. Язык программирования Ассемблер. Программная модель процессора.

Лабораторная работа № 15. Базовый синтаксис NASM.

Лабораторная работа № 16. Арифметические и логические операции.

Лабораторная работа № 17. Условные и безусловные переходы. Циклы. Подпрограммы.

Самостоятельная работа студента

Изучение литературы, подготовка теоретического материала и данных для выполнения лабораторных работ и практических заданий, выполнение заданий курсовой работы.

Литература: [6]

Тема 7. Компьютерные сети

Лекция

Эволюция компьютерных сетей. Возникновение глобальных и локальных сетей. Сближение локальных и глобальных сетей. Общие принципы построения сетей. Совместное использование ресурсов компьютеров. Топология локальных вычислительных сетей. Проблема адресации. Сетевые протоколы. Сетевое оборудованиее.

Основные понятия темы: локальные сети, глобальные сети, коммутатор, маршрутизатор, сетевой протокол.

Вопросы для самоконтроля:

- 1. Перечислите этапы эволюции компьютерных сетей.
- 2. Сформулируйте закон Гроша.
- 3. Чем локальная сеть отличается от глобальной?
- 4. Что такое сетевая служба?
- 5. Что такое сетевая операционная система?
- 6. Перечислите существующие топологии.
- 7. Для чего используется коммутатор?

8. Для чего используется маршрутизатор?

Самостоятельная работа студента

Изучение дополнительного теоретического материала, выполнение заданий курсовой работы, подготовка к сдаче экзамена.

Литература: [5]

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа студентов по дисциплине «Вычислительные машины, системы и сети» является важной составляющей частью подготовки студентов по направлению подготовки 27.03.04 «Управление в технических системах» и выполняется в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) и учебным планом КамчатГТУ.

Самостоятельная работа студентов ставит своей целью:

- 1. Развитие навыков ведения самостоятельной работы;
- 2. Приобретение опыта систематизации полученных результатов исследований, формулировку новых выводов и предложений как результатов выполнения работы;
- 3. Развитие умения использовать научно-техническую литературу и нормативно-методические материалы в практической деятельности;
 - 4. Приобретение опыта публичной защиты результатов самостоятельной работы.

Внеаудиторная самостоятельная работа при изучении курса включает в себя следующие виды работ:

- ° проработка (изучение) материалов лекций;
- ° чтение и проработка рекомендованной основной и дополнительной литературы;
- ° подготовка к практическим занятиям и лабораторным работам;
- поиск и проработка материалов из Интернет-ресурсов, периодической печати;
- ° подготовка к текущему и итоговому (промежуточная аттестация) контролю знаний по дисциплине.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине «Вычислительные машины, системы и сети» представлен в приложении к рабочей программе дисциплины и включает в себя:

- перечень компетенций, с указанием этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- [°] типовые контрольные задания или материалы, необходимые для оценки знаний, умений и наывков и (или) опыта деятельности, характеризующих этапы формирования компетенций;
- методические материалы, определяющие процедуры оценивания знаний, умений и навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Перечень вопросов для проведения промежуточной аттестации по дисциплине Вопросы на зачет.

- 1. Принципы построения вычислительных машин.
- 2. Логическая организация и порядок выполнения программ.
- 3. Аппаратные и программные средства ПЭВМ.
- 4. Понятие о архитектуры ЭВМ.
- 5. Поколения ЭВМ.
- 6. Влияние технологии производства интегральных схем на архитектуру и характеристики.

- 7. Классификационные признаки и классификация вычислительной техники.
- 8. Основные блоки ПЭВМ и их назначение.
- 9. Функциональные характеристики
- 10. ПЭВМ. Методы оценки и критерии эффективности ПЭВМ.
- 11. Организация управления, адресация, система команд, производительность процессора.
- 12. Современные микропроцессоры, микроконтроллеры и их тенденции развития.
- 13. RISC и CISC процессоры.
- 14. Тракт данных.

Вопросы на экзамен.

- 1. Принципы построения вычислительных машин. Многоуровневая организация вычислительных процессов.
- 2. Влияние технологии производства интегральных схем на архитектуру и характеристики ЭВМ. Классификационные признаки и классификация вычислительной техники.
- 3. Основные блоки ПЭВМ и их назначение Функциональные характеристики ПЭВМ.
- 4. Организация управления, адресация, система команд, производительность процессора.
- 5. RISC и CISC процессоры. Тракт данных микропроцессора. Микропроцессорная память.
- 6. Параллелизм на уровне команд. Суперскалярная архитектура. Параллелизм на уровне процессоров: многоядерность и мультипроцессоры.
- 7. Система памяти и средства реализации. Иерархическая организация памяти. Основные характеристики системы памяти.
- 8. Регистры. Кэш память. Постоянные запоминающие устройства. Внешние запоминающие устройства.
- 9. Цифровой логический уровень. Вентили. Комбинационные схемы и схемы с памятью.
- 10. Код с исправлением ошибок и его использование в памяти.
- 11. Организация ввода вывода в ПЭВМ. Типы и основные принципы построения периферийных устройств.
- 12. Шины, системный контроллер и контроллер шин. Организация внутримашинных обменов.
- 13. Принципы разработки современных компьютеров.

7. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

7.1. Основная литература

- 1. Архитектура ЭВМ и систем в 2 ч. Часть 1 : Учебное пособие для вузов / Новожилов О. П. Москва : Юрайт, 2021. 276 с. (Высшее образование). Режим доступа: Электронно-библиотечная система Юрайт, для авториз. пользователей. URL: https://urait.ru/bcode/474545. ISBN 978-5-534-07717-9.
- 2. Архитектура ЭВМ и систем в 2 ч. Часть 2 : Учебное пособие для вузов / Новожилов О. П. Москва : Юрайт, 2022. 246 с. (Высшее образование). Режим доступа: Электронно-библиотечная система Юрайт, для авториз. пользователей. URL: https://urait.ru/bcode/474546. ISBN 978-5-534-07718-6.

7.2. Дополнительная литература

- 3. ЭВМ и периферийные устройства [Электронный ресурс] : учебное пособие / Сычев А. Н. Москва : ТУСУР, 2017. 131 с. ISBN 978-5-86889-744-3.
- 4. Архитектура ЭВМ: Учебное пособие Для СПО / Толстобров А. П. 2-е изд.; испр. и доп. Москва: Юрайт, 2022. 154 с. (Профессиональное образование). Режим доступа: Электронно-библиотечная система Юрайт, для авториз. пользователей. URL: https://urait.ru/bcode/496216. ISBN 978-5-534-13398-1.
- 5. Вычислительные машины, системы и сети [Электронный ресурс] : учебное пособие / Хабаров С. П., Шилкина М. Л. Санкт-Петербург : СПбГЛТУ, 2017. 240 с. ISBN 978-5-9239-0888-6.
- 6. Микропроцессорные устройства и системы [Электронный ресурс] / Русанов В. В.,

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ»

- 1. Электронно-библиотечная система «eLibrary»: [Электронный ресурс]. Режим доступа: http://www.elibrary.ru.
- 2. Электронная библиотечная система «IPRbooks» [Электронный ресурс]. Электронные данные Режим доступа: http://www.iprbookshop.ru/.
- 3. Электронная информационная образовательная среда LMS Moodle [Электронный ресурс]. Режим доступа: https://lk.kstu.su.
- 4. Онлайн-компилятор NASM [Электронный ресурс]. Режим доступа: https://www.jdoodle.com/compile-assembler-nasm-online/.

9. КУРСОВОЙ ПРОЕКТ (РАБОТА)

Выполнение курсовой работы предусмотрено учебным планом. Рекомендуется следующая тематика курсовых работ:

- 1. Разработка 4-х разрядного АЛУ с 10-тичной коррекцией
- 2. Разработка 4-х разрядного АЛУ с 8-ричной коррекцией
- 3. Разработка 8-ми разрядного АЛУ
- 4. Разработка сумматора для сложения в байтовом формате
- 5. Разработка устройства вычитания чисел в байтовом формате
- 6. Разработка устройства умножения чисел со сдвигом влево
- 7. Разработка устройства умножения чисел со сдвигом вправо
- 8. Разработка буферной памяти контроллера шины
- 9. Разработка буферной памяти адаптера связи ОП
- 11. Разработка буферной памяти USB-порта
- 12. Разработка буферной памяти адаптера клавиатуры
- 13. Разработка буферной памяти адаптера внешней памяти
- 14. Разработка буферной памяти сетевого адаптера
- 15. Разработка буферной памяти видеоадаптера

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИС-ЦИПЛИНЫ

Методика преподавания данной дисциплины предполагает чтение лекций, проведение практических и лабораторных занятий, групповых и индивидуальных консультаций по отдельным (наиболее сложным) специфическим проблемам дисциплины. Предусмотрена самостоятельная работа студентов, прохождение аттестационных испытаний промежуточной аттестации (зачет, экзамен).

Лекции проводятся, как правило, в интерактивной форме с элементами дискуссий, и спорных посылов и утверждений. На лекцияхпреподаватель знакомит слушателей с основными понятиями и положениями по текущей теме. При проведении лекций используются современные информационные технологии, демонстрационные материалы

Практическое занятие – целенаправленная форма организации педагогического процесса, направленная на углубление научно-теоретических знаний и овладение определенными методами работы, в процессе которых вырабатываются умения и навыки выполнения тех или иных учебных действий в данной сфере науки.

Практические занятия предназначены для углубленного изучения учебных дисциплин и играют важную роль в выработке у студентов умений и навыков применения полученных знаний для решения практических задач совместно с педагогом. Кроме того, они развивают научное мышление и речь, позволяют проверить знания студентов и выступают как средства оперативной обратной связи. Цель практических занятий – углублять, расширять, детализировать знания, полу-

ченные на лекции, в обобщенной форме и содействовать выработке навыков профессиональной деятельности.

Лабораторная работа — это выполнение студентами под руководством преподавателя или по инструкции заданий с применением персонального компьютера.

Лабораторные работы составляют важную часть теоретической и профессиональной практической подготовки обучающихся. Они направлены на формирование учебных и профессиональных практических умений. Лабораторные занятия носят систематический характер, регулярно следуя за лекционными занятиями. Лабораторные работы выполняются согласно графику, при этом соблюдается принцип индивидуального выполнения работ (в некоторых случаях – группового).

Проведение лабораторных/практических работ (занятий) включает в себя следующие этапы:

- ° постановку темы занятия и определение задач лабораторной/практической работы;
- ° определение порядка лабораторной/практической работы или отдельных ее этапов;
- ° непосредственное выполнение лабораторной/практической работы студентами с соблюдением техники безопасности;
- ° подведение итогов лабораторной/практической работы и формулирование основных выводов.

При подготовке к занятию необходимо обратить внимание на цель занятия, на основные вопросы для подготовки к занятию, на содержание темы занятия. Этапы подготовки к практическому занятию:

- ° освежить в памяти теоретические сведения, полученные на лекциях и в процессе самостоятельной работы,
- подобрать необходимую учебную и справочную литературу.

В течение лабораторной/практической работы студенту необходимо выполнить индивидуальные или групповые задания, выданные преподавателем, а затем оформить получившиеся результаты в виде отчёта, который выполняется в соответствии с нижеизложенными указаниями по оформлению письменных отчётов. Помимо этого, студенту необходимо подготовить ответы на примерный перечень вопросов по теме работы.

11. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

11.1 Перечень информационных технологий, используемых при осуществлении образовательного процесса:

- электронные образовательные ресурсы, представленные в п.8 рабочей программы;
- использование слайд-презентаций;
- интерактивное общение с обучающимися и консультирование в электронной информационной образовательной среде ФГБОУ ВО «КамчатГТУ».

11.2 Перечень программного обеспечения, используемого при осуществлении образовательного процесса:

- операционные системы Astra Linux (или иная операционная система, включенная в реестр отечественного программного обеспечения);
- комплект офисных программ Р-7 Офис (в составе текстового процессора, программы работы с электронными таблицами, программные средства редактирования и демонстрации презентаций);
- программа проверки текстов на предмет заимствования «Антиплагиат»;
- компилятор для C++;
- система схемотехнического моделирования;
- браузер.

11.3 Перечень информационно-справочных систем:

- справочно-правовая система «Гарант»;
- портал Федеральных государственных образовательных стандартов высшего образования (https://fgosvo.ru).

12. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- для проведения занятий лекционного типа, практических (семинарских) занятий, лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации; для самостоятельной работы обучающихся учебная аудитория № 7-510 («Лаборатория разработки программного обеспечения микропроцессорной техники», «Кабинет самостоятельной работы студентов»), оборудованная 9 рабочими станциями с доступом к сети «Интернет» и к электронной информационной образовательной среде, с комплектом учебной мебели на 12 посадочных мест (согласно паспорту кабинета);
- доска аудиторная;
- интерактивная доска;
- презентации по темам курса «Вычислительные машины, системы и сети».