ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

Факультет мореходный

Кафедра «Технологические машины и оборудование»

УТВЕРЖДАЮ

Декан мореходного факультета

/с.Ю.Труднев/

«13» декабря 2024г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Автоматизация низкотемпературных установок»

направление: 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» (уровень бакалавриата)

профиль: «Холодильная техника и технологии»

Составитель рабочей программы	Now S-	
Доцент кафедры ТМО		к.т.н., доц. А.В.Костенко
Рабочая программа рассмотрена на оборудование» «13» декабря 2024г.		Гехнологические машины и
Заведующий кафедрой «Технологич	ческие машины и обор	рудование», к.т.н., доцент
	les -	
«13 декабря 2024г.		А. В. Костенко

Рабочая программа составлена на основании $\Phi \Gamma OC$ ВО направления 16.03.03 «Холодильная, криогенная техника и стемы жизнеобеспечения».

1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

Целью дисциплины является подготовка специалистов, обладающих достаточным уровнем компетентности в области технических средств, алгоритмов и компьютерных программ, необходимых для автоматизации низкотемпературных установок.

Задачи дисциплины:

- -ознакомление с основами теории автоматического регулирования;
- -изучить устройство основных элементов и приборов автоматики;
- –изучить способы регулирования и защиты основных параметров;
- -изучение программируемых логических контроллеров;
- -ознакомление с языками программирования промышленных контроллеров;
- -ознакомление со средами для программирования контроллеров и SCADA системами.

В результате изучения дисциплины студенты должны знать:

- виды и задачи автоматического регулирования и управления;
- устройство ПЛК, среды для программирования ПЛК и их особенности;
- SCADA системы и их особенности;
- устройство и принцип работы приборов автоматики;
- оптимальные режимы работы узлов холодильных установок;
- схемы и средства управления и контроля режимов работы узлов холодильной установки,

уметь:

- разрабатывать схемы автоматизации технологических процессов в SCADA системах;
- осуществлять подбор, настройки и регулирования приборов автоматизации холодильных установок,

владеть:

- навыками программирования контроллеров и разработки SCADA систем;
- навыками разработки схем автоматизации холодильных установок.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование общепрофессиональной компетенции:

ПК-4 Способен формировать основные технические решения по проектированию и подбору оборудования систем холодоснабжения

Планируемые результаты обучения при изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы представлены в таблице.

Таблица – Планируемые результаты обучения при изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы

ſ	Код	Планируемые	Кол и наименование	Планируемый результат обучения	Код
- 1	тод	1151dillipy CMBiC	1 TOA II HUMMCHOBUIMC	Tistumpy chibin pesylibrat doy action	тод

компетенц ии	результаты освоения образовательной программы	индикатора достижения ПК	по дисциплине	показателя освоения
ПК-4	Способен формировать основные технические решения по проектированию и подбору оборудования систем холодоснабжения	ИД-1 _{ОПК-14} : Знает основы разработки алгоритмов и компьютерных программ для практического применения ИД-2 _{ОПК-14} : Умеет разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения ИД-3 _{ОПК-14} :Владеет навыками создания алгоритмов и компьютерных программ, пригодных для практического применения	Знать: — устройство ПЛК, среды для программирования ПЛК и их особенности; — оптимальные режимы работы узлов холодильных установок; — схемы и средства управления и контроля режимов работы узлов холодильной установки, Уметь: — разрабатывать схемы автоматизации технологических процессов в SCADA системах; — осуществлять подбор, настройки и регулирования приборов автоматизации холодильных установок, Владеть: — навыками программирования контроллеров и разработки SCADA систем; — навыками разработки схем автоматизации холодильных установок.	3(ПК-4)1 3(ПК-4)2 3(ПК-4)3 У(ПК-4)1 У(ПК-4)2 В(ПК-4)1 В(ПК-4)2

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина является дисциплиной части, формируемой участниками образовательных отношений в структуре образовательной программы.

Дисциплина опирается на дисциплины: детали машин и основы конструирования, машины низкотемпературных установок, холодильные машины и установки.

Дисциплина важна для более глубокого и всестороннего изучения и понимания последующих дисциплин учебного плана данного направления. К таким курсам можно отнести «Монтаж, эксплуатация и ремонт низкотемпературных установок», выполнения курсовых проектов и выпускной квалификационной работы.

В соответствии с учебным планом изучение дисциплины осуществляется в седьмом (зачет) и в восьмом семестре, завершается экзаменом.

4.1 Тематический план дисциплины

Очная форма обучения

7 семестр								
		нятия		актная р идам уче(занятий	бных	ьная	Формы контроля	
Наименование разделов и тем	Всего часов	Аудиторные занятия	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа		
Раздел 1. Автоматические системы управления	32	12	4	8		20		
Тема 1.1. Основы теории автоматического регулирования	8	3	1	2		5	Практикум, Собеседование Зачет, экзамен	
Teма 1.2. Технические средства автоматических систем управления	8	3	1	2		5	Практикум, Собеседование Зачет, экзамен	
Тема 1.3. Основы теории автоматического регулирования	8	3	1	2		5	Практикум, Собеседование Зачет, экзамен	
Тема 1.4. Виды автоматизации и основные параметры регулирования работы холодильной установки	8	3	1	2		5	Практикум, Собеседование Зачет, экзамен	
Раздел 2. Приборы и средства автоматизации	80	40	9	18	13	40		
Тема 2.1. Индикация, контроль и регулирование давления	13	8	2	4	2	5	Практикум, Собеседование Зачет, экзамен	
Тема 2.2. Индикация, контроль и регулирование температуры	13	8	2	4	2	5	Практикум, Собеседование Зачет, экзамен	
Teмa 2.3. Индикация, контроль и регулирование уровня	10	4	1	2	1	6	Практикум, Собеседование Зачет, экзамен	
Тема 2.4. Регулирование перегрева пара, выходящего из испарителя	11	5	1	2	2	6	Практикум, Собеседование Зачет, экзамен	
Тема 2.5. Регулирование уровня жидкого холодильного агента в испарителях	11	5	1	2	2	6	Практикум, Собеседование Зачет, экзамен	
Тема 2.6. Регулирование температуры охлаждаемого объекта	11	5	1	2	2	6	Практикум, Собеседование Зачет, экзамен	
Тема 2.7. Регулирование температуры конденсации	11	5	1	2	2	6	Практикум, Собеседование Зачет, экзамен	
Раздел 3. Автоматизация машин и аппаратов холодильной установки	32	16	4	8	4	16		
Тема 3.1. Автоматическая защита машин и аппаратов холодильных установок	16	8	2	4	2	8	Практикум, Собеседование Зачет, экзамен	
Тема 3.2. Управление компрессорами и насосами	16	8	2	4	2	8	Практикум, Собеседование Зачет, экзамен	
Зачет	144	CO	17	24	17	70	Зачет	
Всего	144 8 cen	<u> 68</u> 1естр	17	34	17	76		
Раздел 4. Программируемые логические					1.	20		
контроллеры Тема 4.1.Контроллеры	48 9	18 3	1		14 2	30	Практикум, Собеседование Экзамен	

Тема 4.2. Языки программирования промышленных контроллеров	9	3	1		2	6	Практикум, Собеседование Экзамен
Тема 4.3.Пакет CoDeSys	13	5	1		4	8	Практикум, Собеседование Экзамен
Тема 4.4. Основы работы в CoDeSys	17	7	1		6	10	Практикум, Собеседование Экзамен
Раздел 5. SCADA-системы	60	22	6		16	38	
Тема 5.1. Диспетчерское управление и сбор данных	8	4	2		2	4	Практикум, Собеседование Экзамен
Тема 5.2. SCADA-система MasterSCADA 4D	14	8	2		6	16	Практикум, Собеседование Экзамен
Тема 5.3. Создание проекта в MasterSCADA 4D	18	10	2		8	18	Практикум, Собеседование Экзамен
Экзамен	36						Экзамен
Всего	144	40	10		30	68	
Итого по дисциплине	288	108	27	34	47	144	

4.2. Описание содержания дисциплины

Раздел 1. Автоматические системы управления

Тема 1.1. Основы теории автоматического регулирования

Основные понятия о системах автоматизации. Виды и задачи автоматического регулирования и управления. Характеристика и классификация автоматических систем управления. Основные свойства САР. Основные свойства объектов регулирования. Схематическое представление САР. Общий подход к автоматизации технологических процессов.

Тема 1.2. *Технические средства автоматических систем управления*

Общие сведения о приборах и средствах автоматизации технологических процессов. Измерительные преобразователи и устройства. Автоматические регуляторы. Исполнительные механизмы. Регулирующие органы.

Тема 1.3. Основы теории автоматического регулирования

Принцип автоматизации работы холодильной установки. Преимущества и перспективы развития автоматизации низкотемпературных установок. Понятие о системе автоматизации и ее элементах. Замкнутые и разомкнутые системы автоматизации. Системы автоматического регулирования и защиты.

Тема 1.4. Виды автоматизации и основные параметры регулирования работы холодильной установки

Основная задача автоматизации. Тепловое состояние системы охлаждения в установившемся режиме работы. Принцип самовыравнивания. системы «компрессор – испаритель» и «компрессор – конденсатор». Поддержание заданного режима работы холодильной установки. Изменение холодопроизводительности: плавное и ступенчатое.

Практическая работа №1. Характеристика и классификация автоматических систем управления

Практическая работа №2. Измерительные преобразователи и устройства

Практическая работа №3. Автоматические регуляторы

Практическая работа №4. Исполнительные механизмы

Практическая работа №5. Регулирующие органы

Раздел 2. Приборы и средства автоматизации

Тема 2.1. Индикация, контроль и регулирование давления

Манометры, вакуумметры, дифференциальные манометры. Реле давления, дифференциальные реле давления. Датчики давления. Регуляторы давления. Пилотные вентили (сервоприводные клапаны с пилотным управлением). Автоматические дроссели по

давлению (вентили постоянного давления). Регуляторы давления конденсации (водорегулирующие вентили).

Тема 2.2. Индикация, контроль и регулирование температуры

Термометры. Датчики температуры. Реле температуры (термостаты). Дифференциальное термореле. Терморегулирующие (расширительные) вентили – ТРВ. Электроприводные расширительные вентили. Электронные ТРВ. Электроприводные и ручные регулирующие вентили.

Тема 2.3. Индикация, контроль и регулирование уровня

Поплавковые регуляторы уровня. Электромеханические реле уровня. Электронные реле и датчики уровня. Указатели уровня и смотровые стекла. Клапаны регулирования уровня.

Тема 2.4. Регулирование перегрева пара, выходящего из испарителя

Регулирование температуры перегрева паров холодильного агента на выходе из испарителя с помощью терморегулирующего вентиля. Статическая характеристика ТРВ. ТРВ с внешним и внутренним выравниванием. Подбор и установка ТРВ. Схемы включения ТРВ.

Тема 2.5. Регулирование уровня жидкого холодильного агента в испарителях Назначение регуляторов уровня. Применение поплавковых регуляторов уровня высокого и низкого давления. Схема включения электронных и электроприводных регуляторов уровня непрямого действия.

Тема 2.6. Регулирование температуры охлаждаемого объекта

Регулирование температуры объекта в одноиспарительных системах путем регулирования холодопроизводительности компрессора: двухпозиционное, ступенчатое и плавное. Регулирование температуры охлаждаемого объекта в многоиспарительных системах. Сравнение различных способов регулирования температуры охлаждаемых объектов. Работа одним компрессором на несколько температур кипения. Регулирование температуры объектов, охлаждаемых хладоносителем.

Тема 2.7. Регулирование температуры конденсации

Необходимость регулирования температуры конденсации. Регулирование температуры и давления конденсации с помощью водорегулирующего вентиля. количественное регулирование температуры конденсации. Ступенчатое регулирование температуры в воздушных конденсаторах.

Практическая работа № 6. Индикация, контроль и регулирование давления

Практическая работа № 7. Индикация, контроль и регулирование температуры

Практическая работа № 8. Индикация, контроль и регулирование уровня

Практическая работа № 9. Регулирование перегрева пара, выходящего из испарителя

Практическая работа № 10. *Регулирование уровня жидкого холодильного агента в испарителях*

Практическая работа № 11. Регулирование температуры охлаждаемого объекта

Практическая работа № 12. Регулирование температуры конденсации

Лабораторная работа № 1. Индикация, контроль и регулирование давления

Лабораторная работа № 2. Индикация, контроль и регулирование температуры

Лабораторная работа N $_{2}$ **3.** *Индикация*, контроль и регулирование уровня

Лабораторная работа № 4. Регулирование перегрева пара, выходящего из испарителя

Лабораторная работа № 5. Регулирование уровня жидкого холодильного агента в испарителях

Лабораторная работа № **6.** *Регулирование температуры охлаждаемого объекта* **Лабораторная работа** № **7.** *Регулирование температуры конденсации*

Раздел З. Автоматизация машин и аппаратов холодильной установки

Тема 3.1. *Автоматическая защита машин и аппаратов холодильных установок* Автоматическая защита машин и аппаратов холодильных установок от влажного хода и гидравлического удара. Автоматическая защита холодильного компрессора и насосов.

Защита электродвигателей от перегрева и от токов короткого замыкания. Защита от

чрезмерного падения давления всасывания и чрезмерного повышения давления нагнетания. Защита от чрезмерного повышения температуры нагнетания. Защита от нарушений в системе смазки. Защита от нарушения режима работы насосов холодильного агента.

Тема 3.2. Управление компрессорами и насосами

Функциональные схемы автоматизации компрессоров. Способы облегчения запуска электродвигателя. Пуск и остановка двухступенчатого поршневого компрессора.

Управление насосами. Особенности работы насосов холодильного агента. Автоматизация работы для воды и хладоносителя. *Лекция*: Управление работой винтового холодильного компрессора. Автоматизация оттайки испарителей

Практическая работа № 13. Автоматическая защита машин и аппаратов холодильных установок

Практическая работа № 14. Управление компрессорами и насосами

Лабораторная работа № 8. Автоматическая защита машин и аппаратов холодильных установок

Лабораторная работа № 9. Управление компрессорами и насосами

Раздел 4. Программируемые логические контроллеры

Тема 4.1.*Контроллеры*

Определение ПЛК. Интеграция ПЛК в систему управления предприятием. Устройство ПЛК. Архитектура свободно-программируемых промышленных контролеров. Структурные компоненты контроллеров. Особенности организации работы ПЛК в режиме реального времени.

Тема 4.2. Языки программирования промышленных контроллеров

Стандарт МЭК 61131: общая характеристика стандарта, достоинства и недостатки стандарта. Языки программирования ПЛК. Требования к языкам стандарта. Общие элементы языков программирования ПЛК. Язык релейных диаграмм. Язык функциональных блоковых диаграмм. Язык инструкций. Язык структурированного текста. Язык последовательных функциональных блоков. Язык непрерывной потоковой схемы.

Тема 4.3. Пакет CoDeSys

Интерфейс *CoDeSys*. Настройка связи между контроллером и ПК. Разработка программ. Конфигурирование контроллера. Основные приемы работы в CoDeSys.

Тема 4.4. Основы работы в CoDeSys

Создание пользовательского проекта. Разработка программ. Настройка кнопок. Настройка конфигуратора тревог. Настройка задач. Компиляция и загрузка проекта.

Лабораторная работа № 10. Пакет CoDeSys

Лабораторная работа № 11. Создание проекта в CoDeSys

Лабораторная работа № 12. Основные приемы работы в CoDeSys

Раздел 5. SCADA-системы

Тема 5.1. Диспетчерское управление и сбор данных

История развития. Причины развития систем автоматизированного управления. Основные виды систем управления производственным процессом. Концепция и общая структура SCADA. Перечень SCADA-систем. Характеристики SCADA-систем. Функциональные возможности. СОМ технологии. Концепция стандарта OPC.

Тема 5.2. SCADA-система MasterSCADA 4D

Состав MASTERSCADA 4D. Поддерживаемые контроллеры. Установка среды разработки и среды исполнения.

Тема 5.3. Создание проекта в MasterSCADA 4D

Создание проекта. Ќонфигурирование дерева системы. Создание логической части проекта. Создание окна управления. Конфигурирование всплывающего окна. Объектный подход при создании проекта. Операции с библиотеками.

Обзор инструментальной среды. Принципы проектирования. Интерфейс редактора проекта. Методы разработки типов элементов. Дерево системы. Дерево объектов. Дерево библиотек. Программирование. Создание окон для клиента визуализации. Создание отчетов.

Лабораторная работа № 13. Создание проекта в MasterSCADA 4D **Лабораторная работа № 14.** Особенности работы MasterSCADA 4D

5.УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

В целом внеаудиторная самостоятельная работа обучающегося при изучении курса включает в себя следующие виды работ:

- 🛮 проработка (изучение) материалов лекций;
- 🛮 чтение и проработка рекомендованной основной и дополнительной литературы;
- 🛮 подготовка к практическими лабораторным занятиям;
- 🛮 поиск и проработка материалов из Интернет-ресурсов, периодической печати;
- 🛮 подготовка к текущему и итоговому (промежуточная аттестация) контролю знаний по дисциплине.

Основная доля самостоятельной работы обучающихся приходится на подготовку к практическим и лабораторным занятиям, тематика которых полностью охватывает содержание курса. Самостоятельная работа по подготовке к практическими лабораторным занятиям предполагает умение работать с первичной информацией.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по представлен в приложении к рабочей программе дисциплины и включает в себя:

- Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- 🛮 описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- ☑ типовые контрольные задания или материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Вопросы для проведения промежуточной аттестациипо дисциплине (зачет, экзамен)

- 1. Основные понятия о системах автоматизации.
- 2. Виды и задачи автоматического регулирования и управления.
- 3. Характеристика и классификация автоматических систем управления.
- 4. Основные свойства САР.
- 5. Основные свойства объектов регулирования.
- 6. Автоматические регуляторы.
- 7. Исполнительные механизмы.
- 8. Регулирующие органы.
- 9. Основные понятия о системах автоматизации.
- 10. Виды и задачи автоматического регулирования и управления.
- 11. Характеристика и классификация автоматических систем управления.
- 12. Основные свойства САР.
- 13. Основные свойства объектов регулирования.
- 14. Схематическое представление САР.
- 15. Общий подход к автоматизации технологических процессов.

- 16. Общие сведения о приборах и средствах автоматизации технологических процессов.
 - 17. Измерительные преобразователи и устройства.
 - 18. Автоматические регуляторы.
 - 19. Исполнительные механизмы.
 - 20. Регулирующие органы.
 - 21. Интерфейс CoDeSys.
 - 22. Настройка связи между контроллером и ПК
 - 23. Конфигурирование контроллера.
 - 24. Основные приемы работы в CoDeSys.
 - 25. Создание пользовательского проекта.
 - 26. Разработка программ в CoDeSys.
 - 27. Связь визуализации и программных переменных в CoDeSys.
 - 28. Настройка кнопок в CoDeSys.
 - 29. Настройка конфигуратора тревог в CoDeSys.
 - 30. Настройка задач в CoDeSys.
 - 31. Настройка обмена данными по протоколу Modbus RTU в CoDeSys.
 - 32. Компиляция и загрузка проекта в CoDeSys.
 - 33. Причины развития систем автоматизированного управления.
 - 34. Основные виды систем управления производственным процессом.
 - 35. Концепция и общая структура SCADA.
 - 36. Перечень SCADA-систем
 - 37. Характеристики SCADA-систем.
 - 38. Функциональные возможности.
 - 39. Концепция стандарта ОРС.
 - 40. Обзор инструментальной среды MASTERSCADA 4D.
 - 41. Принципы проектирования в MASTERSCADA 4D.
 - 42. Интерфейс редактора проекта в MASTERSCADA 4D.
 - 43. Методы разработки типов элементов в MASTERSCADA 4D.
 - 44. Дерево системы MASTERSCADA 4D.
 - 45. Дерево объектов в MASTERSCADA 4D.
 - 46. Дерево библиотек в MASTERSCADA 4D.
 - 47. Программирование в MASTERSCADA 4D.
 - 48. Создание окон для клиента визуализации в MASTERSCADA 4D.
 - 49. Создание отчетов в MASTERSCADA 4D.
 - 50. Измерительные приборы.
 - 51. Обнаружение и устранение неисправностей в приборах автоматики.
- 52. Обнаружение и предупреждение неисправностей в холодильных установках с герметичными компрессорами.
 - 53. Настройка и проверка устройств защиты.
 - 54. Настройка и проверка органов управления.
 - 55. Подготовка холодильной установки к пуску.
 - 56. Подготовка компрессора к пуску.
 - 57. Пуск и остановка поршневых компрессоров с байпасом.
- 58. Пуск и остановка поршневых компрессоров без байпаса (с отжимом пластин всасывающих клапанов).
 - 59. Пуск и остановка винтовых агрегатов.
 - 60. Пуск и остановка двухступенчатых компрессоров.
- 61. Основные особенности пуска и остановки автоматизированных одноступенчатых агрегатов.
- 62. Основные особенности пуска и остановки автоматизированных двухступенчатых агрегатов.
 - 63. Техника безопасности при пуске и остановке компрессоров.
 - 64. Условные обозначения в схемах автоматизации
- 65. Регулирование подачи жидкого хладагента в испарительную систему. Способы регулирования подачи.

- 66. Регулирование перегрева пара, выходящего из испарителя. ТРВ с внутренним отбором давления. Особенности конструкций и принцип действия.
- 67. Регулирование перегрева пара, выходящего из испарителя. ТРВ с внешним отбором давления. Особенности конструкций и принцип действия.
 - 68. Электрический ТРВ непрямого действия.
- 69. Регулирование перегрева пара, выходящего из испарителя за счет поддержания постоянного уровня жидкого хладагента в испарителе.
 - 70. Регуляторы уровня непрямого действия, схема подключения.
 - 71. Регулирование температуры воздуха в охлаждаемых объектах.
- 72. Приборы регулирования температуры воздуха в охлаждаемых объектах, их устройство и назначение.
- 73. Способы регулирования температуры воздуха в одном или нескольких охлаждаемых объектах.
- 74. Регулирование холодопроизводительности компрессоров. Основные принципы регулирования холодопроизводительности компрессоров.
 - 75. Плавное и ступенчатое регулирование холодопроизводительности компрессоров.
- 76. Автоматическая разгрузка компрессоров в период пуска, основные схемы разгрузки, их достоинства и недостатки.
- 77. Регулирование температуры конденсации. Основные способы регулирования температуры конденсации.
 - 78. Водорегулирующий вентиль, его назначение, устройство, принцип действия.
 - 79. Автоматическая защита машин и аппаратов холодильной установки.
- 80. Требования, предъявляемые к системе автоматической защиты машин и аппаратов холодильной установки.
 - 81. Виды автоматической сигнализации и ее назначение.
 - 82. Приборы и схемы автоматической сигнализации.
- 83. Отклонения от оптимального режима работы установки повышенная температура конденсации. Выявление и способы устранения отклонений.
- 84. Отклонения от оптимального режима работы установки повышенная температура нагнетания. Выявление и способы устранения отклонений.
- 85. Отклонения от оптимального режима работы установки влажный ход компрессора. Выявление и способы устранения отклонений.
 - 86. Особенности эксплуатации хладоновых установок
 - 87. Особенности эксплуатации компаундных схем.
- 88. Функциональные схемы автоматической защиты холодильных установок. Выбор параметров, подлежащих автоматической защите, по давлению нагнетания, по давлению всасывания, по высокому уровню хладагента.
 - 89. Схема автоматизации узла циркуляционного ресивера и насоса.
 - 90. Схемы автоматизации хладоновых холодильных установок.

7. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

7.1. Основная литература:

- 1. Ленский, М. С. Автоматизация технологических процессов : учебное пособие / М. С. Ленский. Москва : РТУ МИРЭА, 2019. 99 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/171503 (дата обращения: 20.10.2022). Режим доступа: для авториз. пользователей.
- 2. Полевой А.А. Автоматизация холодильных установок и систем кондиционирования воздуха.- СПб.: «Профессия», 2010. 244 с.

7.2. Дополнительная литература:

1. Автоматизация технологических процессов и системы автоматического управления: Учебник для вузов / Бородин И. Ф., Андреев С. А. - 2-е изд.; испр. и доп. - Москва: Юрайт, 2022. - 386 с. - (Высшее образование). - Режим доступа: Электронно-библиотечная система Юрайт, для авториз. пользователей. - URL: https://urait.ru/bcode/491910

- 2. Канторович В.И, Подлипенцева З.В. Основы автоматизации холодильных установок.— М.: Агропромиздат, 1987.— 287 с.
- 3. Ужанский В.С., Каплан Л.Г., Вольская Л.С. Холодильная автоматика. М.: Пищевая промышленность, 1971.-464 с.

7.3 Методические указания

Автоматизация низкотемпературных установок: Методические указания к выполнению лабораторных работ / И. П. Сарайкина. – Петропавловск-Камчатский: КамчатГТУ, 2019.–55 с.

8.ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ»

- 1. Российское образование. Федеральный портал: [Электронный ресурс]. Режим доступа: http://www.edu.ru
- 2. Электронно-библиотечная система «eLibrary»: [Электронный ресурс]. Режим доступа: http://www.elibrary.ru
- 3. Электронно-библиотечная система «Буквоед»: [Электронный ресурс]. Режим доступа:http://91.189.237.198:8778/poisk2.aspx
- 4. Электронно-библиотечная система «Лань» [Электронный ресурс]. Режим доступа: https://e.lanbook.com/
- 5. Образовательная платформа «ЮРАЙТ» [Электронный ресурс]. Режим доступа:https://urait.ru/

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Методика преподавания данной дисциплины предполагает чтение лекций, проведение практических занятий, групповых и индивидуальных консультаций по отдельным специфическим проблемам дисциплины. Предусмотрена самостоятельная работа студентов, а также прохождение аттестационных испытаний промежуточной аттестации (зачет, экзамен).

Лекции посвящаются рассмотрению наиболее важных и общих вопросов.

Цельюпроведения практических и лабораторных занятий является закрепление знаний обучающихся, полученных ими в ходе изучения дисциплины на лекциях и самостоятельно.

При изучении дисциплины используются интерактивные методы обучения, такие как:

- проблемная лекция, предполагающая изложение материала через проблемность вопросов, задач или ситуаций. При этом процесс познания происходит в научном поиске, диалоге и сотрудничестве с преподавателем в процессе анализа и сравнения точек зрения;
- Подача материала осуществляется средствами технических средств обучения с кратким комментированием демонстрируемых визуальных материалов (презентаций).

10. КУРСОВОЙ ПРОЕКТ (РАБОТА)

По дисциплине не предусмотрено выполнение курсового проекта (работы).

11. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННО-СПРАВОЧНЫХ СИСТЕМ

11.1. Перечень информационных технологий, используемых при осуществлении образовательного процесса

- 🛛 электронные образовательные ресурсы, представленные выше;
- 🛛 использование слайд-презентаций;
- 🛮 интерактивное общение с обучающимися и консультирование посредством электронной почты.

11.2. Перечень программного обеспечения, используемого при осуществлении образовательного процесса

При освоении дисциплины используется лицензионное программное обеспечение:

- 🛛 Пакет Р7-офис.
- SCADA-система MasterSCADA 4D;
- Пакет CoDeSys.

11.3. Перечень информационно-справочных систем

- 🛛 справочно-правовая система Консультант-плюс http://www.consultant.ru/online
- 🛮 справочно-правовая система Гарант <u>http://www.garant.ru/online</u>

12. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- ☑ для проведения занятий лекционного типа, практических (семинарских) занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, специализированные учебные аудитории 3-201, 3-202, 3.203, 3-204, 3-205, 3-213, 3-308 с комплектом учебной мебели;
- для самостоятельной работы обучающихся аудитория 3-208, оборудованная комплектом учебной мебели;
- ② читальный зал и библиотечные каталоги научно-технической библиотеки КамчатГТУ;
 - 🛮 мультимедийное оборудование (ноутбук, проектор).
- ② для проведения лабораторных занятий, текущего контроля и аттестации используется аудитория 3-313 с комплектом учебной мебели на 30 посадочных мест, 12 компьютерными столами, 6 персональными компьютерами и 5 ноутбуков с установленной программой Nano CAD, MasterSCADA4D, CoDeSvs;
- ② для самостоятельной работы обучающихся –кабинетом для самостоятельной работы №3-302, оборудованным 4 рабочими станциями с доступом к сети «Интернет» и в электронную информационно-образовательную среду организации, и комплектом учебной мебели на 6 посадочных мест;
- Для самостоятельной работы обучающихся –кабинетом для самостоятельной работы №7-103, оборудованный 1 рабочей станцией с доступом к сети «Интернет» и в электронную информационно-образовательную среду организации, и комплектом учебной мебели на 6 посадочных места и аудиторией для самостоятельной работы обучающихся 3-302, оборудованный 4 рабочими станциями с доступом к сети «Интернет» и в электронную информационно-образовательную среду организации, и комплектом учебной мебели на 6 посадочных мест;
 - 🛮 доска аудиторная;
 - 🛮 мультимедийное оборудование (ноутбук, проектор);
 - 🛮 презентации по темам курса.