ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

КОЛЛЕДЖ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Физическая и коллоидная химия»

специальности:

20.02.01 «Экологическая безопасность природных комплексов»

Рабочая программа составлена на основании $\Phi \Gamma OC$ СПО по специальности 20.02.01 «Экологическая безопасность природных комплексов» и учебного плана $\Phi \Gamma EOV$ ВО «Камчат ΓTV ».

Составитель рабочей программы Преподаватель колледжа

Е.А. Шорохова

Рабочая программа рассмотрена на заседании педагогического совета Протокол № 6 от «29» ноября 2022 г.

Зам. директора по УМР

Е.В. Жигарева

ОГЛАВЛЕНИЕ

1. Паспорт учебной дисциплины	стр 4
1.1.Область применения рабочей программы 1.2. Место учебной дисциплины в структуре ППССЗ	4 4
1.3. Цели и задачи дисциплины – требования к результатам изучения дисциплины	4
1.4. Количество часов отведенных на изучение дисциплины	4
2. Результаты освоения учебной дисциплины	4
3. Структура и содержание учебной дисциплины	5
3.1. Объем учебной дисциплины и виды учебной работы	5
3.2. Тематический план и содержание учебной дисциплины	6
3.3. Вопросы итогового контроля знаний по учебной дисциплине	8
4. Условия реализации учебной дисциплины	10
4.1. Требования к минимальному материально-техническому обеспечению	10
4.2. Информационное обеспечение обучения	10
5. Контроль и оценка результатов освоения учебной дисциплины	11
6. Дополнения и изменения в рабочей программе	12

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ

1.1. Область применения рабочей программы

Рабочая программа учебной дисциплины является частью основной профессиональной образовательной программы в соответствии с ФГОС по специальности СПО 20.02.01 «Экологическая безопасность природных комплексов» (базовый уровень).

Рабочая программа учебной дисциплины «Физическая и коллоидная химия» может быть использована в дополнительном профессиональном образовании (в программах повышения квалификации и переподготовки) и профессиональной подготовке, при освоении рабочей профессии в рамках специальности 20.02.01 «Экологическая безопасность природных комплексов» при наличии среднего (полного) общего образования или начального профессионального образования.

1.2. Место учебной дисциплины в структуре программы подготовки специалистов среднего звена:

общепрофессиональная дисциплина профессионального цикла (ОП.13).

1.3. Цели и задачи учебной дисциплины – требования к результатам освоения учебной дисциплины

В результате освоения учебной дисциплины обучающийся должен уметь:

- производить расчеты, используя основные законы физической и коллоидной химии;
- выполнять физико-химический эксперимент и оформлять результаты эксперимента. В результате освоения учебной дисциплины обучающийся должен **знать:**
- основные законы физической и коллоидной химии;
- свойства истинных и коллоидных растворов;
- основы электрохимии;
- правила техники безопасности при выполнении лабораторных работ.

1.4. Количество часов на освоение примерной программы учебной дисциплины:

максимальной учебной нагрузки обучающегося **60** часов, в том числе: обязательной аудиторной учебной нагрузки обучающегося **60** часов; самостоятельной работы обучающегося **0** часов.

2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Изучение дисциплины способствует формированию следующих общих профессиональных компетенций:

Код	Наименование результата обучения
OK 1.	Выбирать способы решения задач профессиональной деятельности применительно к
	различным контекстам;
OK 2.	Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности;

Личностные результаты	Код личностных
реализации программы воспитания	результатов
(дескрипторы)	реализации
	программы
	воспитания
Проявляющий и демонстрирующий уважение к людям труда, осознающий	TD 4
ценность собственного труда. Стремящийся к формированию в сетевой среде личностно и профессионального конструктивного «цифрового следа»	ЛР 4
1 1 1 11	
Осознающий приоритетную ценность личности человека; уважающий	ЛР 7

собственную и чужую уникальность в различных ситуациях, во всех формах и		
видах деятельности.		
Личностные результаты		
реализации программы воспитания, определенные отраслевыми требованиями		
к деловым качествам личности		
Демонстрирующий готовность и способность вести диалог с другими людьми,		
достигать в нем взаимопонимания, находить общие цели и сотрудничать для их	ЛР 13	
достижения в профессиональной деятельности		
Проявляющий сознательное отношение к непрерывному образованию как	ЛР 14	
условию успешной профессиональной и общественной деятельности	JIF 14	
Проявляющий гражданское отношение к профессиональной деятельности как к		
возможности личного участия в решении общественных, государственных,	ЛР 15	
общенациональных проблем		
Принимающий основы экологической культуры, соответствующей современному	ЛР 16	
уровню экологического мышления, применяющий опыт экологически		
ориентированной рефлексивно-оценочной и практической деятельности в		
жизненных ситуациях и профессиональной деятельности		
Проявляющий ценностное отношение к культуре и искусству, к культуре речи и	ЛР 17	
культуре поведения, к красоте и гармонии		

3. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Объем учебной дисциплины и виды учебной работы:

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	60
Обязательная аудиторная учебная нагрузка (всего)	60
в том числе:	
лабораторные занятия	30
практические занятия	-
Самостоятельная работа обучающегося (всего)	0
Итоговая аттестация в форме 4 семестр – дифф. зачет	

3.2. Тематический план и содержание учебной дисциплины «ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ»

Наименование	Содержание учебного материала, практические занятия, самостоятельная работа				
разделов и тем	обучающихся				
1	3				
	Содержание учебного материала:				
	1 Предмет «Физической химии». М.В. Ломоносов – основоположник физической				
47	химии. Использование методов и законов физической химии в других областях				
Ĭ	химии, биологии, геологии в области охраны окружающей среды и				
He	рационального природопользования				
Введение	2 Прикладное значение физической химии. Использование физико-химических				
	закономерностей для нахождения оптимальных условий ведения химических				
	процессов и сознательного управления ими в производственных условиях.				
	Применение законов физической химии для защиты окружающей среды				
	РАЗДЕЛ 1.				
	Физическая химия				
Z	Содержание учебного материала:	4			
Уй ИК	1 Предмет термодинамики, его сущность и содержание. Некоторые основные				
Тема 1.1. Основы химической рмодинами	понятия термодинамики. Состояния системы, процесс, функции состояния				
413 146 1416	물 물 물 системы. Внутренняя энергия системы. Свободная и связанная энергия. Теплота				
Понятия термодинамики. Состояния системы, процесс, функции состояния системы. Внутренняя энергия системы. Свободная и связанная энергия. Теплота и работа.					
1 Предмет термодинамики, его сущность и содержание. Некоторые основные понятия термодинамики. Состояния системы, процесс, функции состояния системы. Внутренняя энергия системы. Свободная и связанная энергия. Теплота и работа. 2 Закон сохранения энергии и первое начало термодинамики. Формулировка					
L F	первого начала термодинамики. Тепловой эффект химической реакции как мера				

	изменения внутренней энергии и энтальпии. Соотношение между изобарным и		
изохорным тепловым эффектом химической реакции. Различные			
	термодинамических процессов. 3 Закон Гесса - основной закон термохимии. Теплота образования и разложения		
	вещества. Теплота сгорания. Теплота растворения. Теплота нейтрализации.		
	Факторы, влияющие на тепловой эффект химической реакции.		
	4 Предел течения самопроизвольных необратимых процессов. Факторы интенсивности и экстенсивности. Принцип минимума свободной энергии.		
	Лабораторная работа:		
	Техника безопасности при выполнении работ по курсу «Физическая и коллоидная		
	химия». Фотоколориметрия.	10	
	Содержание учебного материала:	2	
тояний	 1 Агрегатные состояния вещества. Общая характеристика 4-х агрегатных состояний. Условия перехода из одного агрегатного состояния в другое. 2 Газообразное состояние вещества. Понятие об идеальном газе. Основное 		
сос сос	уравнение молекулярно-кинетической теории. Уравнение состояния идеального		
11.2 KKNH HBIX CTB	газа. Реальные газы. Изотермы реального и идеального газов.		
Тема 1.2. Молеку лярно-кинетическая теория агрегатных состояний вещества	3 Жидкое состояние вещества, его особенности. Внутреннее давление жидкости. Вязкость жидкостей. Измерение вязкости. Зависимость вязкости жидкости от природы, температуры и концентрации жидкости. Испарение и конденсация жидкостей.		
Моле	4 Твердое состояние вещества, его особенности. Кристаллическое и аморфное состояние. Классификация кристаллических решеток. Плазменное состояние вещества. Условия перехода вещества в плазменное состояние.		
o	Содержание учебного материала:	2	
Тема 1.3. Химическое равновесие	1 Обратимость химических реакций. Изменение скорости прямой и обратной реакции во времени. Закон действующих масс. Истинное химическое равновесие. Константы химического равновесия. Равновесие в растворах электролитов.		
Тема 1.3 иическое рав	Факторы, влияющие на положение равновесия в химической системе. Принцип Ле-Шателье. Зависимость константы равновесия от температуры		
Xm	Лабораторная работа: Потенциометрия.	4	
	потенциометрия.		
· . ¤	Содержание учебного материала:		
Тема 1.4. Фазовое равновеси е	Основные понятия фазового равновесия. Правило фаз Гиббса. Классификация систем по числу компонентов, фаз и степеней свободы. Фазовые равновесия в однокомпонентных системах на примере воды.	1	
	РАЗДЕЛ 2.		
	Химическая кинетика		
	Содержание учебного материала:	2	
Тема 2.1 Растворы	Общая характеристика растворов. Растворение как физико-химический процесс. Гидратная (сольватная) теория растворов Д.И.Менделеева. Сильные и слабые электролиты. Степень диссоциации. Развитее понятия кислоты и основания. Сила кислот и оснований. Ионное произведение воды. Понятие ρН. Классификация кислот и оснований по отношению к воде. Вычисление рН водных растворов солей (гидролиз солей). Буферные растворы.		
	Содержание учебного материала:	2	
Тема 2.2. Химическая кинетика	1 Сущность химической кинетики. Скорость химической реакции. Основы кинетики гомогенных процессов. Зависимость скорости реакции от концентрации реагирующих веществ. Закон действия масс. Константа скорости и её физический смысл. Изменение скорости реакции во времени. Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Понятие об энергии активации. Энергетический барьер реакции. Скорость фотохимических реакций. Гетерогенные реакции, цепные реакции.	-	

Содержание учебного материала: 1 Катализ, основные понятия и определения. Особенности каталитических реакций. Гомогенный катализ. Теория промежуточных соединений. Гетерогенный катализ. Факторы, влияющие на активность катализатора. Специфичность действия катализатора. Роль катализаторов в биологических процессах. Торможение химических процессов. Ингибиторы.	2
Содержание учебного материала: 1 Сущность электролиза. Особенности электрохимических процессов. Электролиз растворов. Электролиз расплавов. Электролиз растворов солей в разных средах. Применение электролиза. Законы электролиза (законы Фарадея). Понятие о потенциометрическом методе анализа	4
РАЗДЕЛ 3.	
Основы коллоидной химии	
Содержание учебного материала:	4
Тоборожими у колото материали: 1 Коллоидная химия — химия дисперсных систем. Роль дисперсных систем в природе и технике, их основные особенности. Классификация дисперсных систем по степени дисперсности и агрегатному состоянию фаз, составляющих систему. Методы получения и очистки коллоидных растворов (золей). Свойства коллоидных растворов. Молекулярно-кинетические свойства. Броуновское движение и его особенности в коллоидных системах. Оптические свойства ультрамикрогетерогенных систем. Эффект Фарадея-Тиндаля. Диализ. Электролиз. Строение мицелл золей. Коагуляция. Коагулирующие действия различных факторов.	·
Лабораторные работы: Получение коллоидных систем.	8
_ Содержание учебного материала:	4
Понятие о суспензиях, эмульсиях, аэрозолях. Основные факторы устойчивости таких систем. Механизм действия эмульгаторов. Практическое использование микрогетерогенных систем в своевременной технике. Микрогетерогенные системы и вопросы загрязнения окружающей среды	•
Содержание учебного материала:	2
1 Общая характеристика растворов ВМС. Сравнение их свойств со свойствами низкомолекулярных соединений и ультрамикрогетерогенных систем. Растворы ВМС в природе и технике. Особые свойства растворов ВМС (набухание, структурная вязкость, высаливание). Стабилизация дисперсных систем посредствам ВМС. Адсорбция ВМС на различных материалах, практическое применение этого явления. Лабораторная работа: Растворы высокомолекулярных соединений.	
Дабораторная работа:	8
Растворы высокомолекулярных соединений. Оптические свойства коллоидных систем	60

3.3. Перечень контрольных вопросов по дисциплине

- 1. Предмет изучения и разделы физической химии. Области применения физико-химических методов исследования.
- 2. Основное уравнение молекулярно-кинетической теории газов. Уравнение идеального газа.
- 3. Физический смысл универсальной газовой постоянной, ее численные значения и размерность.
- 4. Идеальные газы. Отличия реальных газов от идеальных.
- 5. Особенности жидкого состояния вещества.

- 6. Поверхностное натяжение. Методы его определения.
- 7. Вязкость, ее определение с помощью вискозиметра. Определение вязкости методом падающего шарика.
- 8. Поверхностно-активные и поверхностно-инактивные вещества и их значение в борьбе с загрязнением окружающей среды.
- 9. Кристаллическое и аморфное состояние вещества. Классификация кристаллических решеток.
- 10. Плазменное состояние вещества. Условия перехода вещества в плазменное состояние.
- 11. Классификация термодинамических систем и процессов. Состояние системы, функции состояния и функции процесса.
- 12. Внутренняя энергия системы. Свободная и связанная энергия.
- 13. Закон сохранения энергии и первое начало термодинамики.
- 14. Тепловой эффект химической реакции. Соотношение между изобарным и изохорным тепловым эффектом химической реакции.
- 15. Закон Гесса. Следствия из закона Гесса.
- 16. Теплота образования разложения веществ. Теплота сгорания. Теплота растворения. Теплота нейтрализации. Факторы, влияющие на тепловой эффект химической реакции.
- 17. Второе начало термодинамики. Энтропия. Предел течения самопроизвольных необратимых процессов.
- 18. Обратимые и необратимые химические реакции. Закон действия масс.
- 19. Факторы, влияющие на положение равновесия в химической системе. Принцип Ле-Шателье.
- 20. Основные понятия фазового равновесия. Правило фаз Гиббса.
- 21. Классификация систем по числу компонентов, фаз и степеней свободы. Фазовое равновесие в однокомпонентных системах.
- 22. Общая характеристика растворов. Классификация растворов по агрегатному состоянию растворителя и растворенного вещества, по степени дисперсности частиц растворенного вещества.
- 23. Ионно-дисперсные, молекулярно-дисперсные, коллоидно-дисперсные и грубодисперсные системы. Свойства растворов, зависящее от числа частиц в растворе и от из размера.
- 24. Растворы газов в жидкостях. Влияние давления и температуры на растворимость газа в жидкости.
- 25. Средняя и истинная скорость химической реакции. Факторы, влияющие на скорость химической реакции.
- 26. Основы кинетики гомогенных процессов.
- 27. Зависимость скорости реакции от концентрации реагирующих веществ. Закон действия масс.
- 28. Константа скорости и ее физический смысл. Изменение скорости реакции во времени.
- 29. Молекулярность и порядок реакции. Период полу распада.
- 30. Зависимость скорости реакции от температуры. Правило Вант-Гоффа.
- 31. Цепные реакции и их особенности. Фотохимические и радиационно-химические процессы.
- 32. Особенности каталитических реакций. Гомогенный катализ. Теория промежуточных соединений.
- 33. Гетерогенный катализ. Роль адсорбции в гетерогенно-каталитических реакциях.
- 34. Адсорбция газов и растворимых веществ твердыми адсорбентами. Применение адсорбционных процессов.
- 35. Ионнообменная адсорбция. Хемосорбция.
- 36. Факторы, влияющие на активность катализатора. Специфичность действия катализатора.

- 37. Роль катализаторов в биологических процессах.
- 38. Торможение химических процессов. Ингибиторы. Ингибиторы биологических процессов.
- 39. Взаимные превращения химической и электрической энергии.
- 40. Особенности электрохимических процессов.
- 41. Электрохимия и ее прикладное значение для физико-химических методов анализа.
- 42. Теория сильных электролитов. Коэффициент проводимости.
- 43. Электролиз. Законы Фарадея. Практическое применение электролиза.
- 44. Коррозия металлов: характеристика, особенности и механизм процесса. Методы защиты от коррозии.
- 45. Электродвижущие силы. Равновесный электродный заряд.
- 46. Потенциометрический метод анализа.
- 47. Дисперсные системы. Роль дисперсных систем в природе и технике, их основные особенности.
- 48. Классификация дисперсных систем по степени дисперсности и агрегатному состоянию фаз, составляющих систему.
- 49. Методы получения и очистки коллоидных растворов.
- 50. Молекулярно-кинетические свойства коллоидных растворов.
- 51. Броуновское движение и его особенности в коллоидных системах.
- 52. Оптические свойства ультрамикрогетерогенных систем. Эффект Фарадея-Тиндаля.
- 53. Электрические свойства коллоидных систем. Электрофорез и электроосмос. Диализ.
- 54. Строение мицелл золей.
- 55. Коагуляция. Коагулирующие действия различных факторов.
- 56. Грубодисперсные системы. Суспензии, эмульсии и аэрооли.
- 57. Механизм действия эмульгаторов. Практическое использование микрогетерогенных систем в современной технике.
- 58. Микрогетерогенные системы и вопросы загрязнения окружающей среды.
- 59. Общая характеристика растворов высокомолекулярных соединений.
- 60. Растворы высокомолекулярных соединений в природе и технике.
- 61. Особые свойства растворов высокомолекулярных соединений (набухание, высаливание, структурная вязкость).
- 62. Стабилизация дисперсных систем посредствам высокомолекулярных соединений.
- 63. Адсорбция высокомолекулярных соединений на различных материалах, практическое применение этого явления.

4. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

4.1. Требования к минимальному материально-техническому обеспечению

Реализация учебной дисциплины требует наличия учебного кабинета и учебной лаборатории.

Оборудование учебного кабинета:

Плакаты, соответствующие содержанию дисциплины; аудиовизуальные средства, модели и муляжи, используемые для наглядной демонстрации на аудиторных занятиях.

Оборудования учебной лаборатории:

Химическая посуда (пробирки, мерные цилиндры, колбы, пипетки, бюретки, стаканы и др.), реактивы, штативы, термометры, секундомеры, химическое оборудование (водяная баня, лабораторные весы, термостат, электрическая плитка), вытяжной шкаф, огнетушитель и ведро с песком.

4.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий,

Основная литература

- 1. *Кудряшева*, *Н. С.* Физическая и коллоидная химия: учебник и практикум для среднего профессионального образования / Н. С. Кудряшева, Л. Г. Бондарева. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2019. 379 с. (Профессиональное образование). ISBN 978-5-534-00447-2. https://www.biblio-online.ru/book/fizicheskaya-i-kolloidnaya-himiya-433315
- 2. *Гавронская*, *Ю. Ю.* Коллоидная химия : учебник и практикум для среднего профессионального образования / Ю. Ю. Гавронская, В. Н. Пак. Москва : Издательство Юрайт, 2019. 287 с. (Профессиональное образование). ISBN 978-5-534-00666-7. https://www.biblio-online.ru/book/kolloidnaya-himiya-434581

Дополнительная литература:

- 3. Белик В.В., Киевская К.И. Физическая и коллоидная химия. М.: Академия, 2005.
- 4. Гельфман М.И. Коллоидная химия. СПб.: Лань, 2008.
- 5. Ипполитов Е.Г. Физическая химия: учебник. М.: Академия, 2005.
- 6. Сумм Б.Д. Основы коллоидной химии: учеб. пособие. М.: Академия, 2007.
- 7. Щукин Е.Д. Коллоидная химия. М.: Высшая школа, 2004.

5. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

Результаты обучения (освоенные умения, усвоенные знания)	Формы и методы контроля и оценки результатов обучения	
Умения: - производить расчеты, используя основные законы	Домашняя работа,	
физической и коллоидной химии;	контрольная работа	
- выполнять физико-химический эксперимент и оформлять	ь Лабораторная работа	
результаты эксперимента.		
Знания:		
- основные законы физической и коллоидной химии;	Тестирование	
- свойства истинных и коллоидных растворов; Коллоквиум		
- основы электрохимии;	Контрольная работа	
- правила техники безопасности при выполнении лабораторных работ.	Домашняя работа	

6. ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ В РАБОЧЕЙ ПРОГРАММЕ

Дополнения и изменения в рабо	очей программе:	за/	учебный г	од
В рабочую программу по дисциплине	е Физическая и і	коллоидная хи	имия для специа.	льности
20.02.01 «Экологическая безопасно-	сть природных	комплексов»	вносятся след	цующи
дополнения и изменения:				
Дополнения и изменения внес				
	(до	лжность, Ф.И.О.	, подпись)	
Рабочая программа пересмотрена	и одобрена на	заседании і	педагогического	совета
протокол № от «»	2	.0 г.		
Зам. директора по УМР				
	(подпись)		(Ф.И	1.O.)