ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

колледж

УТВЕРЖДАЮ

Директор колледжа

____ Жижикина O.B.

<u>« Ж» _ ОІ _</u> 2024 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Техническая механика

специальности:

35.02.11 «Промышленное рыболовство»

Петропавловск-Камчатский, 2024 г.

Рабочая программа составлена на основании $\Phi \Gamma OC$ СПО специальности 35.02.11 «Промышленное рыболовство» и учебного плана $\Phi \Gamma EOY$ «Камчат ΓTY »

Составитель рабочей программы преподаватель

В.В. Тимошин

Рабочая программа рассмотрена на педагогическом совете колледжа

Протокол № α от «30» ноября 2023 г.

Директор колледжа

О.В. Жижикина

ОГЛАВЛЕНИЕ

1. ПАСПОРТ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
1.1.Область применения рабочей программы	4
1.2. Место учебной дисциплины в структуре ППССЗ	4
1.3. Цели и задачи дисциплины – требования к результатам изучения дисциплины	4
1.4. Количество часов, отведенных на изучение дисциплины	4
2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
3. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	6
3.1. Объем учебной дисциплины и виды учебной работы	6
3.2. Тематический план и содержание учебной дисциплины	6
3.3. Вопросы итогового контроля знаний по учебной дисциплине	11
4. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ	12
4.1. Требования к минимальному материально-техническому обеспечению	12
4.2. Информационное обеспечение обучения	13
5. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	14
6. ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ В РАБОЧЕЙ ПРОГРАММЕ	14
Приложение А	15

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ «ТЕХНИЧЕСКАЯ МЕХАНИКА»

1.1 Область применения рабочей программы

Программа учебной дисциплины является частью примерной основной профессиональной образовательной программы в соответствии с ФГОС по специальности СПО **35.02.11 «Промышленное рыболовство»**

Программа учебной дисциплины может быть использована в дополнительном профессиональном образовании (в программах повышения квалификации и переподготовки) и профессиональной подготовке, при освоении рабочей профессии в рамках специальности 35.02.11 «Промышленное рыболовство» при наличии среднего (полного) общего образования или начального профессионального образования.

1.2 Место учебной дисциплины в структуре программы подготовки специалистов среднего звена:

общепрофессиональная дисциплина профессионального цикла (ОП.03).

1.3 Цели и задачи учебной дисциплины – требования к результатам освоения учебной дисциплины

В результате изучения обязательной части профессионального учебного цикла обучающийся по общепрофессиональным дисциплинам должен:

уметь:

- производить расчеты механических передач и простейших сборочных единиц;
- читать кинематические схемы;
- определять напряжения в конструкционных элементах;

знать:

- основы технической механики;
- виды механизмов, их кинематические и динамические характеристики;
- методику расчета элементов конструкций на прочность, жесткость и устойчивость при различных видах деформации;
- основы расчетов механических передач и простейших сборочных единиц общего назначения.

1.4 Количество часов, отведенных на изучение программы учебной дисциплины:

максимальной учебной нагрузки обучающегося **116 часов**, в том числе: обязательной аудиторной учебной нагрузки обучающегося **116 часов**;

2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Результатом освоения учебной дисциплины является овладение обучающимися следующими профессиональными (ПК) и общими (ОК) компетенциями:

Код	Наименование результата обучения				
OK 2	Использовать современные средства поиска, анализа и интерпретации информации, и				
	информационные технологии для выполнения задач профессиональной деятельности.				

Личностные результаты	
личностные результаты реализации программы воспитания	Код
рсализации программы воспитания (дескрипторы)	код
Проявляющий и демонстрирующий уважение к людям труда, осознающий ценность собственного труда. Стремящийся к формированию в сетевой среде личностно и профессионального конструктивного «цифрового следа»	ЛР 4
Осознающий приоритетную ценность личности человека; уважающий собственную и чужую уникальность в различных ситуациях, во всех формах и видах деятельности.	ЛР 7
Личностные результаты	
реализации программы воспитания, определенные отраслевыми требования	ІМИ
к деловым качествам личности	
Готовый соответствовать ожиданиям работодателей: активный, проектномыслящий, эффективно взаимодействующий и сотрудничающий с коллективом, осознанно выполняющий профессиональные требования, ответственный, пунктуальный, дисциплинированный, трудолюбивый, критически мыслящий, демонстрирующий профессиональную жизнестойкость.	ЛР 13
Оценивающий возможные ограничители свободы своего профессионального выбора, предопределенные психофизиологическими особенностями или состоянием здоровья, мотивированный к сохранению здоровья в процессе профессиональной деятельности.	ЛР 14
Готовый к профессиональной конкуренции и конструктивной реакции на критику.	ЛР 15
Ориентирующийся в изменяющемся рынке труда, гибко реагирующий на появление новых форм трудовой деятельности, готовый к их освоению, избегающий безработицы, мотивированный к освоению функционально близких видов профессиональной деятельности, имеющих общие объекты (условия, цели) труда, либо иные схожие характеристики.	ЛР 16
Содействующий поддержанию престижа своей профессии, отрасли и образовательной организации.	ЛР 17
Принимающий цели и задачи научно-технологического, экономического, информационного и социокультурного развития России, готовый работать на их достижение.	ЛР 18
Управляющий собственным профессиональным развитием, рефлексивно оценивающий собственный жизненный опыт, критерии личной успешности, признающий ценность непрерывного образования,	ЛР 19
Способный генерировать новые идеи для решения задач цифровой экономики, перестраивать сложившиеся способы решения задач, выдвигать альтернативные варианты действий с целью выработки новых оптимальных алгоритмов; позиционирующий себя в сети как результативный и привлекательный участник трудовых отношений.	ЛР 20
Самостоятельный и ответственный в принятии решений во всех сферах своей деятельности, готовый к исполнению разнообразных социальных ролей, востребованных бизнесом, обществом и государством	ЛР 21

3. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1 Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	118
Обязательная аудиторная учебная нагрузка (всего)	116
в том числе:	
практические занятия	22
Самостоятельная работа обучающегося (всего)	-
Итоговая аттестация в форме 3 семестр – зачет	·
4 семестр – контрольная работа.	

3.2. Тематический план и содержание учебной дисциплины OП.03 «Техническая механика»

разделов и тем 1 Раздел 1. Тема 1.1. Основные	практические занятия, самостоятельная работа обучающихся, курсовая работа (проект) 2 Семестр 3 Теоретическая механика С Т А Т И К А	3	
Раздел 1.	2 Семестр 3 Теоретическая механика	3	
Раздел 1.	Теоретическая механика	3	
	Теоретическая механика		
	Теоретическая механика С Т А Т И К А		
Тема 1.1. Основные	СТАТИКА		
Тема 1.1. Основные			
	Содержание учебного материала	2	
понятия и аксиомы	1 Основные понятия и аксиомы статики. Материальная точка.		
статики	Абсолютное твёрдое тело. Сила, система сил, эквивалентные системы		
	сил. Равнодействующая и уравновешивающая силы.		
	2. Аксиомы статики. Связи и реакции связей. Определение направлений		
	реакции связи. Изучение учебного материала о материи и движении, о		
	механическом движении и равновесии.		
Тема 1.2. Плоская	Содержание учебного материала	4	
система сходящихся сил	1 Плоская система сходящихся сил. Система сходящихся сил. Способы сложения двух сил. Разложение сил на две составляющие. Определение равнодействующей системы сил геометрическим способом. Силовой многоугольник.		
	2 Проекция силы на ось, правило знаков. Проекция силы на две взаимно-перпендикулярные оси. Аналитическое определение равнодействующей. Условие равновесия в геометрической и аналитической формах. Определение равнодействующей системы сходящихся сил.		
	Практическое занятие:		
	Решение задач на равновесие плоской системы сходящихся сил		
	(геометрический и аналитический методы)		
Тема 1.3. Пара сил и	Содержание учебного материала	2	
момент силы относительно точки	Пары сил и её характеристики. Момент пары, плечо пары. Эквивалентные пары. Сложение пар. Условие равновесия системы пар сил. Определение пары сил и её характеристик. Момент пары. Условие равновесия системы пар сил.		
Тема 1.4. Плоская	Содержание учебного материала	4	
система произвольно расположенных сил	1 Момент силы относительно точки и оси. Приведение силы к данной точке. Приведение плоской системы сил к данному центру. Главный вектор и главный момент системы сил. Равнодействующая системы сил. Уравнения равновесия плоской системы сил и их различные формы.		
	2 Балочные системы. Классификация нагрузок и виды опор. Определение реакции опор и моментов защемления. Составление расчетных схем, уравнений равновесия. Приведение плоской системы сил к данному центру. Определение опорных реакций балок. Определение реакций опор и моментов защемления. Практические занятия:	2	

	Определение момента силы относительно точки и относительно оси.	
	Определение главного вектора и главного момента произвольной	
	плоскости системы сил	
Тема 1.5.	Содержание учебного материала	2
Пространственная	1 Пространственная система сил, сходящаяся и произвольная.	
система сил.	Приведение системы к точке. Главный вектор и главный момент.	
	Условия равновесия системы сил. Уравнения равновесия	
	пространственной системы сил. Решение задач на равновесие	
	пространственной системой сил	
Тема 1.6. Центр	Содержание учебного материала	2
тяжести	1 Центр параллельных сил и его координаты. Понятие о силе тяжести и	2
тижести	ее центре. Центр тяжести как равнодействующая вертикальных сил.	
	Центр тяжести тела. Центр тяжести простых геометрических фигур.	
	Центр тяжести тела. центр тяжести простых теометрических фигур. Центр тяжести составных плоских фигур.	
	Практическое занятие:	2
	Определение центра тяжести простейших плоских фигур.	
	Определение координат центра тяжести составных сечений. Определение	
	положения центра тяжести сложной геометрической фигуры.	
	КИНЕМАТИКА	
Тема 1.7. Основные	Содержание учебного материала:	4
понятия кинематики.	1. Основные понятия кинематики. Основные характеристики движения:	
	траектория, путь, время, скорость, ускорение. Кинематические	
	графики.	
		1
Тема 1.8. Кинематика	Содержание учебного материала	4
точки	1. Уравнениядвиженияточкиприестественномикоординатномспособахдв	
	ижения. Скорость точки: истинная и средняя. Равномерное и	
	неравномерное движения. Ускорение точки: полное, касательное,	
	нормальное, связь между ними. Виды движения материальной точки	
	в зависимости от ускорения: равномерное прямолинейное движение;	
	равномерное криволинейное движение; неравномерное	
	прямолинейное движение; равномерное криволинейное движение;	
	равноускоренное движение.	
	Практическое занятие:	1
	Определение ускорения точки. Определение параметров движения	_
	твёрдого тела.	
	пвердого тела.	1
Тема 1.9. Простейшие	Содержание учебного материала	4
движения твёрдого	1. Простейшие движения твёрдого тела.	-
-	Поступательное движения гвердого тела. Поступательное движение, особенности и параметры.	
тела	Вращательное движение тела и его параметры. Формула для	
	определения параметров поступательного и вращательного движения	
	тела (без вывода)	
	2. Линейные скорости и ускорение точек вращающегося тела. Формулы	
	определения линейных скоростей и ускорений точек вращающегося	
	тела. Определение параметров движения твёрдого тела.	2
Tana 1 10 C-	Communication	2
Тема 1.10. Сложное	Содержание учебного материала	2
движение точки	1. Переносное, относительное и абсолютное движения точки. Теорема	
	сложения скоростей.	
Тема 1.11. Сложное	Содержание учебного материала	2
движение твердого	1. Сложное движение твердого тела. Плоскопараллельное движение.	
тела	Разложение плоскопараллельного движения на поступательное и	
* **	вращательное. Определение абсолютной скорости любой точки тела.	
	Мгновенный центр скоростей, способы его определения. Сложение	
	двух вращательных движений.	
	· · ·	
	Практическое занятие:	
	Решениезадачпоопределению скоростейточекметодоммгновенногоцентрас	1
	коростей. Решение задач по теореме «Сложение скоростей» Определение	1
	параметров движения твёрдого тела.	

	ДИНАМИКА	
Тема 1.12.Основные	Содержание учебного материала	4
понятия и аксиомы	1 Основные понятия и аксиомы динамики. Две основные задачи	
динамики	динамики. Принцип инерции. Основной закон динамики. Зависимость	
	между массой и силой тяжести.	
	2 Закон равенства действия и противодействия. Принцип независимости	
	действия сил.	
Тема 1.13. Движение	Содержание учебного материала	2
материальной точки. Метод кинетостатики	1. Движение материальной точки. Движение свободной и несвободной	
метод кинстостатики	материальных точек. Сила инерции. Принцип Даламбера.	
	2. Определение параметров движения материальной точки с использованием принципа Даламбера. Формулы для расчёта силы	
	инерции при поступательном и вращательном движениях.	
Тема 1.14. Трение.	Содержание учебного материала	4
Работа и мощность	1. Виды трения. Законы трения скольжения. Трение качения.	
	Коэффициенты трения. Формулы для расчёта силы трения.	
	2 Работа и мощность. Работа постоянной силы. Работа силы тяжести.	
	КПД. Формулы для расчёта работы и мощности при поступательном	
	движении, КПД.	
Тема 1.15. Теоремы	Содержание учебного материала	4
динамики	1. Импульс силы, количество движения. Теоремы о количестве движения	
	для точки. Кинетическая энергия точки. Теорема о кинетической	
	энергии для точки. 2 Основное уравнение динамики для вращательного движения твердого	
	тела. Момент инерции тела. Кинетическая энергия тела при	
	поступательном, вращательном и плоскопараллельном движениях.	
	Практическое занятие:	
	Определение кинетической энергии при различных видах движения	2
	рассчитать работу и мощность по формулам (с учётом сил инерции и силы	
	трения) – по заданию преподавателя.	
	Рассчитать работу и мощность по формулам (с учётом сил инерции и силы	
	трения) – по заданию преподавателя.	
Раздел 2.	4 семестр Сопротивление материалов	
Тема 2.1. Основные	Содержание учебного материала	6
положения и задачи	1. Основные положения. Виды расчётов в сопротивлении материалов.	
сопротивления	Классификация нагрузок и элементов конструкций. Основные	
материалов	Классификация нагрузок и элементов конструкции. Основные	
	гипотезы и допущения.	
	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды.	
	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические	
	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений.	
Тема 2.2. Растяжение	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Содержание учебного материала	10
Тема 2.2. Растяжение и сжатие	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Содержание учебного материала 1. Внутренние силовые факторы при растяжении и сжатии. Нормальное	10
	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Содержание учебного материала 1. Внутренние силовые факторы при растяжении и сжатии. Нормальное напряжение. Эпюры продольных сил и нормальных напряжений.	10
	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Содержание учебного материала 1. Внутренние силовые факторы при растяжении и сжатии. Нормальное напряжение. Эпюры продольных сил и нормальных напряжений. Продольные и поперечные деформации. Закон Гука. Коэффициент	10
	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Содержание учебного материала 1. Внутренние силовые факторы при растяжении и сжатии. Нормальное напряжение. Эпюры продольных сил и нормальных напряжений. Продольные и поперечные деформации. Закон Гука. Коэффициент Пуассона. Определение осевых перемещений поперечных сечений	10
	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Содержание учебного материала 1. Внутренние силовые факторы при растяжении и сжатии. Нормальное напряжение. Эпюры продольных сил и нормальных напряжений. Продольные и поперечные деформации. Закон Гука. Коэффициент	10
	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Содержание учебного материала 1. Внутренние силовые факторы при растяжении и сжатии. Нормальное напряжение. Эпюры продольных сил и нормальных напряжений. Продольные и поперечные деформации. Закон Гука. Коэффициент Пуассона. Определение осевых перемещений поперечных сечений бруса.	10
	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Содержание учебного материала 1. Внутренние силовые факторы при растяжении и сжатии. Нормальное напряжение. Эпюры продольных сил и нормальных напряжений. Продольные и поперечные деформации. Закон Гука. Коэффициент Пуассона. Определение осевых перемещений поперечных сечений бруса. 2. Испытание материалов при растяжении и сжатии. Диаграммы растяжения и сжатия пластичных и хрупких материалов. 3. Напряжения предельно допускаемые и расчётные. Условия прочности.	10
	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Содержание учебного материала 1. Внутренние силовые факторы при растяжении и сжатии. Нормальное напряжение. Эпюры продольных сил и нормальных напряжений. Продольные и поперечные деформации. Закон Гука. Коэффициент Пуассона. Определение осевых перемещений поперечных сечений бруса. 2. Испытание материалов при растяжении и сжатии. Диаграммы растяжения и сжатия пластичных и хрупких материалов. 3. Напряжения предельно допускаемые и расчётные. Условия прочности. Расчёты на прочность. Построение эпюр продольных сил и	10
	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Содержание учебного материала 1. Внутренние силовые факторы при растяжении и сжатии. Нормальное напряжение. Эпюры продольных сил и нормальных напряжений. Продольные и поперечные деформации. Закон Гука. Коэффициент Пуассона. Определение осевых перемещений поперечных сечений бруса. 2. Испытание материалов при растяжении и сжатии. Диаграммы растяжения и сжатия пластичных и хрупких материалов. 3. Напряжения предельно допускаемые и расчётные. Условия прочности. Расчёты на прочность. Построение эпюр продольных сил и нормальных напряжений при растяжении и сжатии, определение	10
и сжатие	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Содержание учебного материала 1. Внутренние силовые факторы при растяжении и сжатии. Нормальное напряжение. Эпюры продольных сил и нормальных напряжений. Продольные и поперечные деформации. Закон Гука. Коэффициент Пуассона. Определение осевых перемещений поперечных сечений бруса. 2. Испытание материалов при растяжении и сжатии. Диаграммы растяжения и сжатия пластичных и хрупких материалов. 3. Напряжения предельно допускаемые и расчётные. Условия прочности. Расчёты на прочность. Построение эпюр продольных сил и нормальных напряжений при растяжении и сжатии, определение перемещений.	
и сжатие Тема 2.3.	гипотезы и допущения. 2. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Содержание учебного материала 1. Внутренние силовые факторы при растяжении и сжатии. Нормальное напряжение. Эпюры продольных сил и нормальных напряжений. Продольные и поперечные деформации. Закон Гука. Коэффициент Пуассона. Определение осевых перемещений поперечных сечений бруса. 2. Испытание материалов при растяжении и сжатии. Диаграммы растяжения и сжатия пластичных и хрупких материалов. 3. Напряжения предельно допускаемые и расчётые. Условия прочности. Расчёты на прочность. Построение эпюр продольных сил и нормальных напряжений при растяжении и сжатии, определение перемещений. Содержание учебного материала	10
и сжатие Тема 2.3. Практические	 гипотезы и допущения. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Содержание учебного материала Внутренние силовые факторы при растяжении и сжатии. Нормальное напряжение. Эпюры продольных сил и нормальных напряжений. Продольные и поперечные деформации. Закон Гука. Коэффициент Пуассона. Определение осевых перемещений поперечных сечений бруса. Испытание материалов при растяжении и сжатии. Диаграммы растяжения и сжатия пластичных и хрупких материалов. Напряжения предельно допускаемые и расчётые. Условия прочности. Расчёты на прочность. Построение эпюр продольных сил и нормальных напряжений при растяжении и сжатии, определение перемещений. Содержание учебного материала Внутренние силовые факторы при сдвиге и сжатии. Условия 	
тема 2.3. Практические расчёты на срез и	 гипотезы и допущения. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Внутренние силовые факторы при растяжении и сжатии. Нормальное напряжение. Эпюры продольных сил и нормальных напряжений. Продольные и поперечные деформации. Закон Гука. Коэффициент Пуассона. Определение осевых перемещений поперечных сечений бруса. Испытание материалов при растяжении и сжатии. Диаграммы растяжения и сжатия пластичных и хрупких материалов. Напряжения предельно допускаемые и расчётные. Условия прочности. Расчёты на прочность. Построение эпюр продольных сил и нормальных напряжений при растяжении и сжатии, определение перемещений. Содержание учебного материала Внутренние силовые факторы при сдвиге и сжатии. Условия прочности. Выбор допускаемых напряжений. Детали, работающие на 	
и сжатие Тема 2.3. Практические	 гипотезы и допущения. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Содержание учебного материала Внутренние силовые факторы при растяжении и сжатии. Нормальное напряжение. Эпюры продольных сил и нормальных напряжений. Продольные и поперечные деформации. Закон Гука. Коэффициент Пуассона. Определение осевых перемещений поперечных сечений бруса. Испытание материалов при растяжении и сжатии. Диаграммы растяжения и сжатия пластичных и хрупких материалов. Напряжения предельно допускаемые и расчётные. Условия прочности. Расчёты на прочность. Построение эпюр продольных сил и нормальных напряжений при растяжении и сжатии, определение перемещений. Содержание учебного материала Внутренние силовые факторы при сдвиге и сжатии. Условия прочности. Выбор допускаемых напряжений. Детали, работающие на срез и смятие. 	
тема 2.3. Практические расчёты на срез и	 гипотезы и допущения. Основные задачи сопротивления материалов. Деформации и их виды. Силы внешние и внутренние. Метод сечений. Механические напряжения. Составляющие вектора напряжений. Внутренние силовые факторы при растяжении и сжатии. Нормальное напряжение. Эпюры продольных сил и нормальных напряжений. Продольные и поперечные деформации. Закон Гука. Коэффициент Пуассона. Определение осевых перемещений поперечных сечений бруса. Испытание материалов при растяжении и сжатии. Диаграммы растяжения и сжатия пластичных и хрупких материалов. Напряжения предельно допускаемые и расчётные. Условия прочности. Расчёты на прочность. Построение эпюр продольных сил и нормальных напряжений при растяжении и сжатии, определение перемещений. Содержание учебного материала Внутренние силовые факторы при сдвиге и сжатии. Условия прочности. Выбор допускаемых напряжений. Детали, работающие на 	

Тема 2.4.	Содержание учебного материала	6
Геометрические		
характеристики	1. Геометрические характеристики плоских сечений.	
плоских сечений	Осевые, центробежные и полярные моменты инерции. Главные оси и	
	главные центральные моменты инерции. Осевые моменты инерции	
	простейших сечений. Полярные моменты инерции круга и кольца.	
	2 Формулы для расчёта осевых моментов инерции простейших сечений	
	и полярных моментов инерции круга и кольца.	2
	Самостоятельная работа обучающихся:	2
Torra 2.5. University v	Изучение учебного материала по теме 2.4 – по заданию преподавателя. Содержание учебного материала	
Тема 2.5. Кручение и изгиб	1. Кручение. Внутренние факторы при кручении. Эпюры крутящихся	6
изгио	моментов. Кручение бруса круглого и кольцевого поперечного	
	сечений. Напряжения в поперечном сечении. Угол закручивания.	
	Расчёты на прочность и жёсткость при кручении. Рациональное	
	расположение колёс на валу.	
	2. Изгиб. Виды изгиба. Внутренние силовые факторы при прямом	
	изгибе. Эпюры поперечных сил и изгибающихся моментов.	
	Нормальные напряжения при изгибе. Расчёты на прочность при	
	изгибе. Рациональные формы поперечных сечений балок.	
	Понятие о касательных напряжениях при изгибе, о линейных и	
	угловых напряжениях.	
Тема 2.6. Гипотезы	Содержание учебного материала	8
прочности и их	1. Гипотезы прочности и их применение.	
применение	Напряжённое состояние в точке упругого тела. Виды напряжённых	
	состояний. Упрощённое плоское напряжённое состояние.	
	2. Назначение гипотез прочности. Эквивалентное напряжение.	
	3. Расчёты на прочность.	
Тема 2.7.	Содержание учебного материала	6
Сопротивление усталости. Прочность	1. Сопротивление усталости. Циклы напряжений. Усталостное	
	разрушение, его причины и характер. Кривая усталости, предел выносливости. Факторы, влияющие на величину предела	
при динамических нагрузках	выносливости. Факторы, влияющие на величину предела выносливости. Коэффициент запаса	
nai pyskaz	2. Прочность при динамических нагрузках. Понятие о динамических	
	нагрузках. Силы инерции при расчете на прочность. Динамическое	
	напряжение, динамический коэффициент.	
Раздел 3.	Детали и механизмы машин	
Тема 3.1 Основные	Содержание учебного материала	6
положения	1. Цели и задачи раздела.	
	Механизм, машина, деталь, сборочная единица. Критерии	
	работоспособности и расчёта деталей машин. Выбор материалов для	
	деталей машин. Основные понятия о надёжности машин и их деталей.	
Тема 3.2. Общие	Стандартизация и взаимозаменяемость.	6
	Содержание учебного материала	6
сведения о передачах	1. Общие сведения о передачах, применяемых при проектировании	
	машин и механизмов.	
	Классификация передач. Основные характеристики передач. Кинематические и силовые расчёты передач. Расчёт	
	многоступенчатого привода по формулам.	
Тема 3.3.	Содержание учебного материала	10
Фрикционные,	1. Фрикционные передачи, их классификация, назначение. Дисковые,	10
ременные передачи и	конусные и цилиндрические фрикционные передачи, их принцип	
вариаторы	работы. Фрикционная передача (цилиндрическая) с нерегулируемым	
~~h	передаточным числом. Достоинства и недостатки фрикционных	
	передач.	
	2. Ременные передачи. Общие сведения, принцип работы, устройство,	
	область применения и детали ременных передач. Сравнительная	
	характеристика передач плоским, клиновидным и зубчатым ремнем.	
	Материалы, применяемые для изготовления ремней. Геометрические	
	<u> </u>	

		соотношения в ременных передачах. Силы и напряжение в ремнях.	
	3.	Передача с бесступенчатым регулированием передаточного числа -	
		вариаторы. Область применения, определение диапазона	
		регулирования.	10
Тема 3.4. Зубчатые и		держание учебного материала	12
цепные передачи	1.	Зубчатые передачи. Цилиндрические и конические зубчатые колёса. Общие сведения о зубчатых колёсах. Назначение и область их	
		применения. Основы зубчатого зацепления. Зацепление эвольвентных	
		колёс. Геометрия зацепления и основные элементы зацепления	
		зубчатого колеса.	
	2.	Прямозубые цилиндрические передачи; геометрические соотношения;	
		силы, действующие в зацеплении. Расчёт на контактную прочность и	
		изгиб. Особенности косозубых передач.	
	3.	Виды разрушений зубчатых колёс. Основные критерии	
		работоспособности и расчёта. Материалы для изготовления зубчатых колёс и допускаемые напряжения. КПД зубчатых передач.	
	4.	Общие сведения о цепных передачах: состав, область применения.	
		Достоинства и недостатки цепных передачах. Число зубьев звёздочек,	
		шаг цепи. Критерии работоспособности и материалы, применяемые	
		для изготовления цепей. Смазка.	
	5.	Несущая способность и подбор цепных передач.	
		актические занятия:	4
		Определение параметров зубчатых колёс по их размерам. Расчёт	
		учатой передачи.	
Тема 3.5. Передача		Изучение конструкции и расчёт цепной передачи. держание учебного материала	6
винт-гайка.	1.	Винтовая передача. Передачи с трением скольжения и трением	0
Червячная передача.	1.	качения. Виды разрушения и критерии работоспособности.	
		Материалы винтовой пары. Основы расчета передачи.	
	2.	Общие сведения о червячных передачах. Червячная передача с	
		Архимедовым червяком. Геометрические соотношения, передаточное	
		число, КПД. Силы, действующие в зацеплении. Виды разрушения	
		зубьев червячных колес. Материалы звеньев. Расчет передачи на	
		контактную прочность и изгиб. Тепловой расчет червячной передачи. Порядок проектировочного расчета передачи винт-гайка с	
		трапецеидальным профилем резьбы	
		Проектировочный и проверочный расчеты червячной передачи.	
	Пр	актическое занятие:	4
		счет червячной передачи на контактную прочность и изгиб.	
Тема 3.6. Общие		держание учебного материала	6
сведения о	1.	Общие сведения о редукторах. Назначение, устройство,	
редукторах		классификация. Конструкции одно- и двухступенчатых редукторов. Мотор-редукторы. Основные параметры редукторов. Достоинства и	
		недостатки редукторов основных типов	
		педостатки редукторов основных типов	
Тема 3.7. Валы и оси.	Co	держание учебного материала	8
Муфты. Подшипники	1.	Валы и оси. Классификация, применение, элементы конструкции и	
		материалы, из которых они изготавливаются. Общие сведения о	
		редукторах: зубчатые, червячные и планетарные редукторы.	
	2.	Муфты. Их назначение. Нерасцепляемые, управляемые (сцепляемые)	
		и автоматически действующие муфты. Устройство и принцип	
	3.	действия основных типов муфт. Общие сведения о подшипниках. Подшипники скольжения:	
] .	радиальные и упорные. Типы подшипников скольжения:	
		гидродинамические, гидростатические и с воздушной смазкой.	
		Подшипники качения. Их состав, типы и серии. Их применение в	
		машиностроении. Преимущества подшипников качения.	
		Проектировочный и проверочный расчёты валов и осей.	
		Устройство и принцип действия основных типов муфт и методы	
		подбора стандартных и нормализованных муфт. Особенности рабочего процесса подшипников скольжения и качения.	

		Порядок подбора подшипников качения по динамической грузоподъёмности.	
	1. I	мактическое занятие: Изучение конструкции подшипников качения и определение в них герь на трение.	4
Тема 3.8. Соединения деталей машин и механизмов	1.	держание учебного материала Неразъёмные соединения: сварные, клёпанные и клееные. Деление сварных соединений на группы. Недостатки сварных соединений. Классификация клёпанных швов. Достоинства клееных соединений и их недостатки.	6
	2.	Разъёмные соединения деталей. Применение разъёмных соединений при сборке машин. Механизмов и отдельных деталей.	116
		Всего:	116

3.3 Вопросы итогового контроля по учебной дисциплине

- 1. Аксиомы статики. Следствия из аксиом.
- 2. Плоская система сходящихся сил. Разложение силы на две составляющие. Определение равнодействующей системы сил геометрическим и аналитическим способом. Условие равновесия.
- 3. Пара сил, момент пары сил. Свойства пар сил. Условие равновесия системы пар сил. Момент силы относительно точки.
- 4. Плоская система произвольно расположенных сил. Теорема Пуансо. Приведение произвольной плоской системы сил к точке. Главный вектор и главный момент системы сил.
- 5. Балочные системы. Классификация опор и нагрузок, реакции опор. Уравнение равновесия для системы произвольно расположенных сил.
- 6. Пространственная система сил. Разложение силы на три взаимоперпендикулярные оси. Момент силы относительно оси, свойства момента. Условия равновесия пространственной системы произвольно расположенных сил.
- 7. Траектория, путь, скорость, ускорение. Ускорение полное, нормальное, касательное. Поступательное движение.
- 8. Вращательное движение твердого тела вокруг неподвижной оси, его различные виды и кинематические параметры. Окружная скорость.
 - 9. Аксиомы динамики. Две основные задачи динамики.
 - 10. Сила инерции при прямолинейном и криволинейном движениях.
 - 11. Виды трения. Законы трения. Коэффициент трения.
 - 12. Работа постоянной силы. Работа при вращательном движении. Мощность. КПД.
- 13. Основные задачи сопротивления материалов. Основные допущения. Деформации упругие и пластические. Классификация нагрузок.
- 14. Силы внешние и внутренние. Метод сечений. Виды внутренних силовых факторов.
 - 15. Напряжение. Составляющие вектора напряжений.
- 16. Растяжение и сжатие. Распределение нормального напряжения по поперечному сечению. Последовательность построения эпюр продольных сил и нормальных напряжений.
- 17. Механические характеристики материалов. Диаграммы растяжения и сжатия пластичных и хрупких материалов.
- 18. Закон Гука. Определение абсолютного удлинения (укорочения) при растяжении (сжатии).
- 19. Напряжения предельные, допускаемые и расчетные. Коэффициент запаса прочности. Расчеты на прочность при растяжении (сжатии).

- 20. Срез и смятие. Внутренние силовые факторы и напряжения. Расчеты на прочность.
- 21. Геометрические характеристики плоских сечений. Осевые, центробежные и полярные моменты инерции. Полярные моменты инерции круга и кольца. Главные центральные оси.
- 22. Кручение. Внутренние силовые факторы. Последовательность построения эпюр крутящих моментов.
- 23. Кручение. Напряжение в поперечном сечении бруса круглого поперечного сечения. Расчеты на прочность и жесткость.
- 24. Прямой изгиб. Внутренние силовые факторы. Изгибающий момент и поперечная сила. Правило злаков при построении эпюр.
- 25. Распределение нормальных напряжений по сечению при чистом изгибе. Условие прочности и жесткости.
- 26. Сопротивление усталости. Усталостное разрушение, его причины. Кривая усталости. Предел выносливости.
- 27. Сопротивление усталости. Факторы, влияющие на величину придела выносливости.
- 28. Деталь, сборочная единица, машина. Требования, предъявляемые к машинам, деталям. Критерии работоспособности машин.
- 29. Общие сведения о передачах. Назначение, классификация. Передаточное отношение и передаточное число. Основные кинематические и силовые соотношения.
- 30. Фрикционные передачи. Принцип работы, классификация, достоинства, недостатки, область применения, кинематические соотношения. Вариаторы.
- 31. Зубчатые передачи. Характеристики, классификация. Достоинства, недостатки. Принцип работы.
- 32. Кинематические и силовые соотношения цилиндрических и конических зубчатых передач. Виды разрушений зубчатых передач.
- 33. Червячная передача. Достоинства и недостатки. Принцип работы, устройство, кинематические соотношения.
- 34. Ременные передачи. Устройство, принцип работы, достоинства, недостатки, характеристики. Передаточное отношение. Классификация, геометрические зависимости.
- 35. Цепные передачи. Устройство, принцип работы, достоинства, недостатки, характеристики. Передаточное число, критерии работоспособности.
- 36.Валы и оси, их назначение и классификация. Элементы конструкции валов. Основы проектировочного и проверочного расчета.
- 37.Подшипники скольжения. Устройство, достоинства и недостатки. Видыразрушения. Смазывание.
- 38.Подшипники качения. Основные типы, маркировка, способы установки. Достоинства и недостатки.
- 39. Основные типы сварных соединений. Расчет на прочность при осевом нагружении соединяемых деталей. Паяные соединения.
- 40. Резьбовые, шпоночные, шлицевые соединения. Основы расчета на прочность при постоянной нагрузке. Типы соединений стандартными шпонками.

4. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

4.1 Требования к минимальному материально-техническому обеспечению Реализация учебной дисциплины предполагает наличие кабинета технической механики.

Оборудование учебного кабинета и рабочих мест кабинета: учебные столы, руководства и пособия, инструменты, справочные материалы.

4.2 Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы.

Основные источники:

- 1. Смирнов, В. А. Техническая (строительная) механика: учебник для среднего профессионального образования / В. А. Смирнов, А. С. Городецкий. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2021. 423 с. (Профессиональное образование). ISBN 978-5-534-10344-1. Текст: непосредственный.
- 2. Техническая механика: учебник для среднего профессионального образования / В. В. Джамай, Е. А. Самойлов, А. И. Станкевич, Т. Ю. Чуркина. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2021. 360 с. (Профессиональное образование). ISBN 978-5-534-14636-3. Текст: непосредственный.
- 3. Гребенкин, В. 3. Техническая механика: учебник и практикум для среднего профессионального образования / В. 3. Гребенкин, Р. П. Заднепровский, В. А. Летягин; под редакцией В. 3. Гребенкина, Р. П. Заднепровского. Москва: Издательство Юрайт, 2021. 390 с. (Профессиональное образование). ISBN 978-5-534-10337-3. Текст: непосредственный.
- 4. Зиомковский, В. М. Техническая механика: учебное пособие для среднего профессионального образования / В. М. Зиомковский, И. В. Троицкий; под научной редакцией В. И. Вешкурцева. Москва: Издательство Юрайт, 2021. 288 с. (Профессиональное образование). ISBN 978-5-534-10334-2. Текст: непосредственный.
- 5. Техническая механика: учебник / Л. Н. Гудимова, Ю. А. Епифанцев, Э. Я. Живаго, А. В. Макаров; под редакцией Э. Я. Живаго. Санкт-Петербург: Лань, 2020. 324 с. ISBN 978-5-8114-4498-4. Текст: непосредственный.
- 6. Максимов, А. Б. Механика. Решение задач статики и кинематики: учебное пособие для СПО / А. Б. Максимов. Санкт-Петербург: Лань, 2021. 208 с. ISBN 978-5-8114-6767-9. Текст: непосредственный.
- 7. Лукьянчикова, И. А. Техническая механика. Примеры и задания для самостоятельной работы: учебное пособие для спо / И. А. Лукьянчикова, И. В. Бабичева. Санкт-Петербург: Лань, 2021. 236 с. ISBN 978-5-8114-6522-4. Текст: непосредственный.

Интернет – ресурсы:

- 1. http://www.elektronik-chel.ru/books/detali_mashin.html Электронные книги по деталям машин
- 2. http://www.teoretmeh.ru/ Электронный учебный курс для студентов очной и заочной форм обучения
 - 3. http://www.ph4s.ru/book_teormex.html Книги по теоретической механике
- 4. http://www.mathematic.of.by/Classical-mechanics.htm Теоретическая механика, сопротивление материалов. Решение задач
 - 5. http://lib.mexmat.ru/books/81554 Гузенков П.Г. Детали машин: учебное пособие
- 6. http://kursavik-dm.narod.ru/Download.htm Детали машин. Программы, курсовые проекты, чертежи
- 7. http://shop.ecnmx.ru/books/a-14372.html Учебник Аркуша А.И. Теоретическая механика и сопротивление материалов.

5. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контрольи оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

Результаты обучения	Форму и мотоли момеро на и ополим розми долор обущения
(освоенные умения, усвоенные знания)	Формы и методы контроля и оценки результатов обучения
Умения:	
Производить расчеты механических	Текущий контроль в форме опросов.
передач и простейших сборочных единиц.	Итоговый контроль в форме зачета по дисциплине
Практические работы	Тестирование
	Самостоятельная работа
	Контрольная работа
Читать кинематические схемы.	Текущий контроль в форме опросов.
	Практические работы
	Итоговый контроль в форме зачета по дисциплине
	Самостоятельная работа
	Контрольная работа
Определять напряжения в конструкционных	Текущий контроль в форме опросов.
элементах	Итоговый контроль в форме зачета по дисциплине
Практические работы	Самостоятельная работа
	Контрольная работа
Знания:	
Основы технической механики;	Текущий контроль в форме оценки результатов опросов.
методику расчета элементов конструкций	Итоговый контроль в форме зачета по дисциплине
на прочность, жесткость и устойчивость	Самостоятельная работа
при различных видах деформации;	Контрольная работа
Виды механизмов, их кинематические и	Текущий контроль в форме оценки результатов опросов.
динамические характеристики;	Итоговый контроль в форме зачета по дисциплине
Основы расчетов механических передач и	Текущий контроль в форме оценки результатов опросов.
простейших сборочных единиц общего	Итоговый контроль в форме зачета по дисциплине
назначения	Самостоятельная работа
	Контрольная работа

6. ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ В РАБОЧЕЙ ПРОГРАММЕ

Дополнения и изменения в рабочей программе за/	учебный год
В рабочую программу по дисциплине «Техническая механика» для	специальности
35.02.11 «Промышленное рыболовство» вносятся следующие дополнения и	изменения:
Дополнения и изменения внес	
(должность, Ф.И.О., подпись)	
Рабочая программа рассмотрена на педагогическом совете колледжа	
Протокол №	
—————————————————————————————————————	
<u> </u>	
Зам. лиректора по УМР	
Jam. /mperioda no 3 mi	

Тематический план и содержание учебной дисциплины ОП.03 «Техническая механика» для заочной формы обучения

Наименование разделов и тем		Объем часов
	Раздел 1. Теоретическая механика	
Тема 1.1.	Содержание	
Основные	1.Содержание и задачи статики. Основные понятия и аксиомы	
понятия, законы		
	2. Материальная точка и абсолютно твердое тело.	
механики	3. Сила, как мера механического воздействия материальных тел,	
	система сил, равнодействующая и уравновешивающая силы.	
	4. Аксиомы статики. Связи и реакции связей. Определение	
	величины и направления реакций связей. Принцип освобождения	
	от связей.	
	5.Плоская система сходящихся сил. Способы сложения двух сил.	
	Разложение равнодействующей силы на две составляющих.	
	6.Определение равнодействующей системы сил геометрическим	
	способом. Порядок построения силового многоугольника.	
	7. Проекции силы на оси координат. Правило знаков проекций.	
	Проекция системы сил на ось координат.	
	8.Определение равнодействующей силы аналитическим способом.	1
	Условие равновесия в аналитической и геометрической формах	
	9.Пара сил и её свойства. Момент пары. Правило знаков.	
	Сложение пар. Условие равновесия системы пары сил.	
	Момент силы относительно точки. Момент силы относительно	
	оси. 10 Пама такжа сучту и такжа й такжа Пама такжа	
	10. Приведение силы к данной точке. Приведение плоской системы	
	сил к данному центру. 11.Главный вектор и главный момент системы сил. Равновесие	
	плоской произвольной системы сил.	
	12.Три формы уравнений равновесия. Балочные системы.	
	Галари формы уравнении равновесия. Валочные системы. Классификация нагрузок и виды опор.	
	13. Центр параллельных сил. Центр тяжести тела. Координаты	
	центра тяжести. Положение центра тяжести простых	
	геометрических фигур и прокатных профилей. Центр тяжести	
	составных плоских фигур.	
Тема 1.2.	Содержание	
Кинематика	1. Кинематика движения точки.	
	2. Основные характеристики движения: траектория, путь, скорость,	
	ускорение (полное,	
	нормальное и касательное). Относительность движения.	
	3. Уравнение движения точки. Способы задания движения точки:	
	координатный, векторный, естественный. Определение скоростей	0,5
	и ускорений.	
	4. Частные случаи движения точки.	
	5. Простейшие движения твердого тела. Поступательное движение.	
	Вращательное движение вокруг неподвижной оси. Угловая	

	скорость и угловое ускорение. Линейные скорости и ускорения	
	гочки вращающегося тела. Сравнение формул кинематики для	
	поступательного и вращательного движения.	
	6.Сложное и плоскопараллельное движение.	
Тема 1.3.	1.Динамика. Аксиомы динамики: принцип инерции, основной	
	закон динамики, принцип независимости действия сил, принцип	
образования	действия и противодействия.	
_	2.Связь между массой и силой. Две основные задачи динамики.	
	3. Движение свободной и несвободной материальных точек. Силы	
работу	инерции. Принцип Даламбера. Метод кинетостатики при решении	
pacciy	вадач динамики.	
		0,5
	4.Виды трения. Законы трения скольжения. Трение качения.	0,3
	Коэффициент трения.	
	5. Работа постоянной силы на прямолинейном перемещении.	
	Работа силы тяжести. Работа при вращательном движении.	
	6. Мощность. Коэффициент полезного действия.	
	7. Закон изменения количества движения.	
	8.Потенциальная и кинетическая энергия. Закон изменения	
	кинетической энергии.	
	Практическое занятие 1. Определение равнодействующей	
	плоской системы сходящихся сил. Определение реакций опор и	
	моментов защемления. Определение положения центра тяжести	
	плоской фигуры сложной геометрической формы опытным путём.	
	Определение центра тяжести плоской фигуры сложной формы	2
	расчётным пуем. Применение законов динамики в динамических	2
	расчётах. Решение задач динамики. Применение законов	
	кинематики движения точки и твердых тел. Определение	
	скоростей и ускорений материальных точек, движущихся	
	поступательно и вращательно.	
	Практическое занятие 1. Определение равнодействующей	
	плоской системы сходящихся сил. Определение реакций опор и	
	моментов защемления. Определение положения центра тяжести	
	плоской фигуры сложной геометрической формы опытным путём.	
	- · · · · · · · · · · · · · · · · · · ·	
	Определение центра тяжести плоской фигуры сложной формы	2
	расчётным пуем. Применение законов динамики в динамических	
	расчётах. Решение задач динамики. Применение законов	
	кинематики движения точки и твердых тел. Определение	
	скоростей и ускорений материальных точек, движущихся	
	поступательно и вращательно.	
	Раздел 2. Сопротивление материалов	
Тема 2.1.	1. Содержание и задачи раздела «Сопротивление материалов».	
Методика	Основные требования к деталям и конструкциям. Виды расчётов.	
расчёта	Гипотезы и допущения.	
элементов	и ипотезы и допущения. 2.Классификация нагрузок и элементов конструкции. Формы	
	элементов конструкции.	3
прочность,	3.Силы внешние и внутренние. Метод сечений. Внутренние	3
	силовые факторы. Виды нагружений. Механическое напряжение:	
устойчивость	полное, нормальное, касательное. Допускаемые напряжения.	
1 * *	4. Растяжение и сжатие, основные понятия и определения.	
видах	Продольные силы и их эпюры. Напряжение при растяжении и	
деформаций.	сжатии.	

Определение	5. Деформации при растяжении и сжатии. Закон Гука. Формулы для	
внутренних	расчёта перемещений поперечных сечений при растяжении и	
1	всжатии.	
деталях машин	6.Статические испытания материалов на растяжение и сжатие.	
	Диаграммы растяжения и сжатия пластичных и хрупких	
конструкций.	материалов.	
Проверочные	7. Условие прочности. Расчёты элементов конструкций на	
	прочность при растяжении и сжатии.	
	8. Чистый сдвиг. Закон Гука при сдвиге. Деформации, внутренние	
материалов	силовые факторы, напряжения при сдвиге (срезе) и смятии,	
	условия прочности.	
	9.Примеры деталей, работающих на сдвиг (срез) и смятие.	
	10. Кручение. Основные понятия и определения. Деформации,	
	внутренние силовые факторы, напряжения при кручении. Эпюры	
	крутящих моментов.	
	11.Угол закручивания. Расчёты элементов конструкций на	
	прочность и жесткость при кручении.	
	12.Изгиб. Основные понятия и определения. Виды изгиба.	
	Внутренние силовые факторы при прямом поперечном изгибе.	
	Знаки поперечных сил и изгибающих моментов.	
	13. Эпюры поперечных сил и изгибающих моментов. Нормальные	
	напряжения при изгибе.	
	14. Расчёты элементов конструкций на прочность при изгибе.	
	15.Понятие о касательных напряжениях при изгибе, о линейных и	
	угловых перемещениях. Понятие о расчётах элементов	
	конструкций на жесткость при изгибе.	
	16. Расчёты на устойчивость сжатых стержней. Устойчивое и	
	неустойчивое равновесие.	
	Критическая сила. Формула Эйлера. Критическое напряжение и гибкость.	
	Практическое занятие 2. Проверочные расчёты по	
	сопротивлению материалов. Расчёт элементов конструкции на	
	прочность при растяжении и сжатии. Проверочные расчёты по	
	сопротивлению материалов. Геометрические характеристики плоских сечений.	1
	Статический момент площади сечения. Центробежный и осевые	
	моменты инерции. Полярный момент инерции сечения.	
	Практическое занятие 3. Проверочные расчёты по	
	сопротивлению материалов. Построение эпюр крутящих моментов	
	и определение диаметра вала из условия прочности и жесткости на	
	кручение. Определение внутренних напряжений в деталях машин	
	и элементах конструкций. Определение модуля сдвига при	
	испытании образца на кручение.	

	Практическое занятие 4. Проверочные расчёты по	
	сопротивлению материалов. Построение эпюр поперечных сил и	
	изгибающих моментов по характерным точкам и определение	0,5
	размеров поперечных сечений балок при прямом поперечном	- ,-
	изгибе.	
	Практическое занятие 5. Определение внутренних напряжений в	0,5
	деталях машин и элементах конструкций.	,
	Определение прогиба балки при прямом поперечном изгибе	
	опытным путем.	
	Практическое занятие 6. Проверочные расчёты по	
	сопротивлению материалов. Расчёт элементов конструкций на устойчивость: расчёт стержня, нагруженного продольной силой.	0,5
	Практическое занятие 7. Определение внутренних напряжений в деталях машин и элементах конструкций. Определение критической силы при продольном изгибе опытным путем.	0,5
	Практическое занятие 7. Определение внутренних напряжений в	
	деталях машин и элементах конструкций. Определение	0,5
	критической силы при продольном изгибе опытным путем.	0,5
Dan=== 2		
Раздел 3.	1. Цели и задачи раздела. Машина, механизм, сборочная единица,	
Детали машин		
	2.Основные требования к деталям машин. Критерии	
	работоспособности и надежности деталей машин. Стандартизация	
	и взаимозаменяемость. Материал деталей машин.	
	3.3вено, кинематическая пара. Кинематическая схема. Условные обозначения на кинематических схемах.	
	4.Виды движений и преобразующие движение механизмы. Назначение передач в машинах. Классификация передач, условные	
	обозначения на схемах.	
	5. Кинематические и силовые соотношения в передаточных	
	механизмах.	
		2
	6. Фрикционные передачи. Достоинства и недостатки. Классификация, устройство, принцип работы, область	
	применения. Вариаторы.	
	7. Ременные передачи. Достоинства и недостатки. Классификация,	
	устройство, принцип работы, область применения.	
	Геометрические и кинематические характеристики ременных	
	передач.	
	8. Цепные передачи. Достоинства и недостатки. Классификация,	
	устройство, принцип работы, область применения.	
	Геометрические и кинематические характеристики цепных	
	передач.	
Тема 3.1.	9.Муфты: назначение, классификация, устройство и принцип	
	действия основных типов муфт. Область применения	
_	10.Общие сведения о подшипниках. Подшипники скольжения:	2
	назначение, устройство, материал, область применения.	_
Критерии	11. Подшипники качения: назначение, устройство, классификация.	
1	Подбор подшипников по статической и динамической	
	1 / 1	

сти и	грузоподъемности.	
влияющие	12. Разъемные соединения: резьбовые, шпоночные, шлицевые.	
факторы	Назначение, достоинства и недостатки, классификация, область	
Анализ	применения. Основы расчета на прочность болтов при постоянной	
функциональ	ны нагрузке. Штифтовые соединения, расчет на срез.	
х возможнос	тей	
механизмов	иСамостоятельная работа. Проверочные расчёты по деталям	
области	их машин. Прямозубая цилиндрическая передача. Кинематический и	
применения	геометрический расчет. Виды разрушения зубьев. Анализ	
	функциональных возможностей механизмов и области их	
	применения.	
	Составление кинематических схем и структурный анализ плоских	
	рычажных механизмов по Ассуру. Расчёт подвижности механизма.	
	Проверочные расчёты по деталям машин. Валы и оси: применение	
	классификация, элементы конструкции валов и осей, материалы.	
	Проектировочный и проверочный расчёты валов.	
	Проверочные расчёты по деталям машин. Определение	2
	передаточного отношения, кинематический расчёт	2
	многоступенчатого привода.	
	Проверочные расчёты по деталям машин. Расчёт заклёпочного	
	соединения.	
	Проверочные расчёты по деталям машин. Основы расчёта на	
	прочность болтов при постоянной нагрузке. Шпоночные	
	соединения, расчёт на срез призматической шпонки.	
	Проверочные расчёты по деталям машин. Расчёт сварного	
	соединения.	
	Самостоятельная работа. Проверочные расчёты по деталям машин. Прямозубая цилиндрическая передача. Кинематический и	
	геометрический расчет. Виды разрушения зубьев. Анализ	
	функциональных возможностей механизмов и области их	
	применения.	
	Составление кинематических схем и структурный анализ плоских	
	рычажных механизмов по Ассуру. Расчёт подвижности механизма.	
	Проверочные расчёты по деталям машин. Валы и оси: применение	
	классификация, элементы конструкции валов и осей, материалы.	
	Проектировочный и проверочный расчёты валов.	
	Проверочные расчёты по деталям машин. Определение	
	передаточного отношения, кинематический расчёт	
	многоступенчатого привода.	98
	Проверочные расчёты по деталям машин. Расчёт заклёпочного	
	соединения.	
	Проверочные расчёты по деталям машин. Основы расчёта на	
	прочность болтов при постоянной нагрузке. Шпоночные	
	соединения, расчёт на срез призматической шпонки.	
	Проверочные расчёты по деталям машин. Расчёт сварного	
	соединения.	
	Раздел 4. Основные законы статики и динамики жид костей и	
	газов	

статики и динамики жидкостей.	1. Жидкость и её физические свойства. Гидростатическое давление и его свойства. Законы Паскаля и Архимеда. 2. Равновесие тел в жидкости. Плавание тел. 3. Гидродинамика, основные элементы потока. Основные характеристики и режимы движения жидкости. Гидравлические сопротивления и потери напора при движении жидкости. Самостоятельная работа. Расчёт потерь напора в трубопроводе	0,5
	1.Общие понятия. Законы идеальных газов. Первый закон термодинамики. Термодинамические процессы. 2.Понятия о круговом процессе. Цикл Карно. Второй закон термодинамики.	4