ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

Факультет мореходный

Кафедра «Технологические машины и оборудование»

УТВЕРЖДАЮ Декан мореходного факультета Труднев С.Ю.

«01» декабря 2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Анализ конструкций и основы расчета базовых шасси машин»

направление: 15.03.02 «Технологические машины и оборудование» (уровень бакалавриата)

профиль: «Машины и оборудование инженерной и транспортной инфраструктур»

Рабочая программа составлена на основании $\Phi \Gamma OC$ ВО направления 15.03.02 «Технологические машины и оборудование».

Составитель рабочеи программи	Ы	
Доцент кафедры ТМО	_fas	к.т.н., доц. А.В.Костенко
Рабочая программа рассмотрена вание» «23» ноября 2021г. проте		федры «Технологические машины и оборудо-
Заведующий кафедрой «Технол	огические машин	ны и оборудование», к.т.н., доцент
«23» ноября 2021г.	Jan S-	А. В. Костенко

1. ЦЕЛЬ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

Целью дисциплины является подготовка специалистов, обладающих достаточным уровнем компетентности в области анализа конструкций автомобилей и их узлов и агрегатов, рабочих процессов, происходящих в механизмах и системах, владеющих методами определения действующих нагрузок методами расчета на прочность и жесткость деталей автомобильных узлов и агрегатов.

Задачи дисциплины:

- знакомство с основными требованиями к конструкциям автомобилей, их агрегатов и систем, изучение выходных и оценочных параметров агрегатов и систем;
- изучение условий эксплуатации и нагрузочных режимов агрегатов и систем автомобилей;
- изучение рабочих процессов агрегатов и систем автомобилей, оценка влияния конструктивных и эксплуатационных факторов на рабочие процессы и выходные параметры агрегатов и систем;
- знакомство с основами расчета агрегатов и систем автомобилей на прочность и долговечность.

В результате изучения дисциплины студенты должны

знать:

- компоновочные схемы автомобилей;
- конструктивные схемы узлов, механизмов и систем автомобиля;
- методы определения нагрузок на детали автомобиля;
- основы расчета деталей автомобиля,

уметь:

- анализировать конструктивные схемы узлов, механизмов и систем автомобиля;
- выполнять схемы узлов, механизмов и систем автомобиля;
- определять нагрузки на детали автомобиля;

владеть:

- навыками анализа автомобилей и его узлов;
- навыками расчета деталей на прочность и жесткость.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование профессиональных компетенций:

ОПК-13 - Способен применять стандартные методы расчета при проектировании деталей и узлов технологических машин и оборудования

Планируемые результаты обучения при изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы представлены в таблице.

Таблица — Планируемые результаты обучения при изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы

Код компетен-	Планируемые резуль- таты освоения образо-	Код и наименование ин- дикатора достижения ПК	Планируемый результат обучения по дисциплине	Код показа- теля освое-
ции	вательной программы			ния
	Способен применять	ИД-10пк-13: Знает стандарт-	Знать:	
	стандартные методы	ные методы расчета при	- конструктивные схемы узлов, меха-	3(ОПК-13)1
ОПК-13	расчета при проектиро-	проектировании деталей и	низмов и систем автомобиля;	
	вании деталей и узлов	узлов технологических ма-	 методы определения нагрузок на де- 	3(ОПК-13)2
	технологических машин	шин и оборудования	тали автомобиля;	

Код	Планируемые резуль-	Код и наименование ин-	Планируемый результат обучения	Код показа-
компетен-	таты освоения образо-	дикатора достижения ПК	по дисциплине	теля освое-
ции	вательной программы			ния
	и оборудования	ИД-20пк-13: Умеет выпол-	Уметь:	
		нять расчеты при проекти-	 – анализировать конструктивные схе- 	У(ОПК-13)1
		ровании деталей и узлов	мы узлов, механизмов и систем автомо-	
		технологических машин и	биля;	У(ОПК-13)2
		оборудования	 выполнять схемы узлов, механизмов 	
		ИД-30пк-13:Владеет навы-	и систем автомобиля;	
		ками применять стандарт-	Владеть:	В(ОПК-13)1
		ных методов расчета при	 навыками анализа автомобилей и его 	
		проектировании деталей и	узлов;	
		узлов технологических ма-	 навыками расчета деталей на проч- 	В(ОПК-13)2
		шин и оборудования	ность и жесткость.	

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина является обязательной дисциплиной блока 1 в структуре образовательной программы.

Дисциплина опирается на дисциплины: инженерная графика, инфраструктура муниципальных образований, конструкция двигателей и базовых шасси машин, детали машин и основы конструирования, эксплуатационные свойства базовых шасси машин

Дисциплина важна для более глубокого и всестороннего изучения и понимания последующих дисциплин учебного плана данного направления. К таким курсам можно отнести «Анализ конструкций и основы расчета базовых шасси машин», «Эксплуатация машин и оборудования инженерной и транспортной инфраструктур», «Диагностика машин и оборудования инженерной и транспортной инфраструктур», «Технологическое оборудование инженерной и транспортной инфраструктур».

В соответствии с учебным планом изучение дисциплины завершается экзаменом в седьмом семестре.

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Тематический план дисциплины

Очная форма обучения

Наименование разделов и тем	Всего часов	Аудиторные занятия		практические занятия занятия		Самостоятельная работа	Формы контроля
Раздел 1. Трансмиссия	48	32	16	16	П	16	
Тема 1.1. Автомобильная промышленность. Нагрузочные и расчетные режимы	6	4	2	2		2	Практикум, Собеседование Экзамен
Тема 1.2. Анализ компоновочных схем автомобилей	6	4	2	2		2	Практикум, Собеседование Экзамен
Тема 1.3. Сцепление	6	4	2	2		2	Практикум, Собеседование Экзамен
Тема 1.4. Коробки передач	6	4	2	2		2	Практикум, Собеседование Экзамен
Тема 1.5. Бесступенчатые передачи	6	4	2	2		2	Практикум, Собеседование Экзамен
Тема 1.6. Карданные передачи	6	4	2	2		2	Практикум, Собеседование Экзамен
Тема 1.7. Главные передачи	6	4	2	2		2	Практикум, Собеседование Экзамен

Тема 1.8. Дифференциалы Тема 1.9. Приводы ведущих колес	6	4	2	2	2	Практикум, Собеседование Экзамен
Раздел 2. Ходовая часть, кузов	26	16	8	8	10	
Тема 2.1. Мосты	6	4	2	2	2	Практикум, Собеседование Экзамен
Тема 2.2. Рамы	6	4	2	2	2	Практикум, Собеседование Экзамен
Тема 2.3. Кузов	7	4	2	2	3	Практикум, Собеседование Экзамен
Тема 2.4. Подвеска	7	4	2	2	3	Практикум, Собеседование Экзамен
Раздел 3. Системы управления	34	20	10	10	14	
Тема 3.1. Оценка конструкций рулевых управлений	6	4	2	2	2	Практикум, Собеседование Экзамен
Тема 3.2. Рулевые механизмы	7	4	2	2	3	Практикум, Собеседование Экзамен
Тема 3.3. Усилители рулевого управления	7	4	2	2	3	Практикум, Собеседование Экзамен
Тема 3.4. Тормозные приводы	7	4	2	2	3	Практикум, Собеседование Экзамен
Тема 3.5. Регуляторы тормозных сил и антибло- кировочная система	7	4	2	2	3	Практикум, Собеседование Экзамен
Экзамен	36					Экзамен
Всего	144	68	34	34	40	

Заочная форма обучения

Наименование разделов и тем		занятия	Контактная работа по видам учебных занятий			ьная	вгос	
	Всего часов	Аудиторные за	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	Формы контроля	
Раздел 1. Трансмиссия	46	6	3	3		40	Практикум, Собеседование Экзамен	
Раздел 2. Ходовая часть, кузов	43	4	2	2		39	Практикум, Собеседование Экзамен	
Раздел 3. Системы управления	46	6	3	3		40	Практикум, Собеседование Экзамен	
Экзамен	9						Экзамен	
	144	16	8	8		119		

4.2. Описание содержания дисциплины

Раздел 1. Трансмиссия

Тема 1.1. *Автомобильная промышленность. Нагрузочные и расчетные режимы* Цель и задачи дисциплины. Автомобильная промышленность и автомобильный транспорт. Основы проектирования автомобилей. Погрузочные и расчетные режимы.

Тема 1.2. Анализ компоновочных схем автомобилей

Обзор основных компоновочных схем легковых и грузовых автомобилей и автобусов. Их преимущества и недостатки.

Тема 1.3. Сцепление

Конструктивные схемы сцеплений, требования к ним и анализ их конструкций. Буксование сцепления и его тепловой режим. Динамические нагрузки в трансмиссии и способы их снижения. Конструктивные схемы и расчет типовых элементов фрикционных сцеплений. Анализ схем и конструкций приводов управления сцеплением.

Тема 1.4. Коробки передач

Требования к коробке передач, классификация. Анализ и оценка конструкций коробка передач. Способы обеспечения бесшумности работы, легкости переключения передач, высокого КПД. Анализ конструкций зубчатых муфт и синхронизаторов. Рабочий процесс инерционного синхронизатора.

Силы, действующих на зубчатые колеса, валы, подшипники ступенчатых коробок передач. Особенности методики расчета динамической грузоподъемности подшипников коробки передач с учетом необходимого ресурса, вида и условий работы ATC.

Тема 1.5. Бесступенчатые передачи

Анализ схем, рабочих процессов и конструкций механических бесступенчатых передач.

Назначение, конструкция и принцип действия гидротрансформаторов и гидромеханических передач. Их преимущества и недостатки. Рабочий процесс гидродинамической передачи. Способы повышенным КПД гидротрансформаторов.

Тема 1.6. Карданные передачи

Требования, классификация, схемы карданных передач. Кинематика твердого карданного шарнира неравных угловых скоростей. Анализ и оценка конструкций карданных передач с шарнирами равных угловых скоростей. Методика определения нагрузок, действующих на детали карданной передачи. Материалы деталей и ресурс работы карданных передач.

Тема 1.7. Главные передачи

Требования, классификация, основные типы. Анализ и оценка конструкций главных передач. Нагрузки на зубчатые колеса и подшипники цилиндрических, конических и гипоидных главных передач. Определение нагрузок на детали колесного редуктора. Способы повышения жесткости установки валов главной передачи. Предварительный натяг и особенности конструкции подшипников. Материалы деталей и ресурс работы главных передач.

Тема 1.8. Дифференциалы

Требования, классификация, основные типы дифференциалов. Анализ и оценка конструкций дифференциалов. Кинематика асимметричного и симметричного дифференциалов. Уравнения распределения моментов дифференциалами. Влияние внутреннего трения в дифференциалов на распределение моментов и КПД трансмиссии. Нагрузки на детали дифференциала. Материалы деталей дифференциалов.

Тема 1.9. Приводы ведущих колес

Требования, классификация, основные типы. Анализ и оценка конструкций приводов колес. Схемы и анализ конструкций привода при зависимой и независимой подвесках колес. Методика определения нагрузок, действующих на детали. Материалы деталей привода колес.

Практическая работа №1. Сцепление

Практическая работа №2. Коробка передач

Практическая работа №3. Карданные передачи

Практическая работа №4. Главные передачи

Практическая работа №5 Дифференциалы

Раздел 2. Ходовая часть, кузов

Тема 2.1. *Мосты*

Классификация мостов. Требования к ведущим, управляемым, комбинированным и поддерживающим мостам. Анализ и оценка конструкций мостов. Методика определения сил и моментов, действующих на балки мостов, поворотные цапфы, шкворни. Материалы деталей мостов.

Тема 2.2. Рамы

Требования к рамам. Конструктивные схемы и классификация рам. Анализ конструкций рам: виды применяемых профилей для лонжеронов и поперечин, способы соединения де-

талей. Конструктивные меры по повышению прочности, крутильной жесткости, снижение массы. Расчетные режимы и основы расчета рам.

Тема 2.3. *Кузов*

Требования к кузовам легковых автомобилей, автобусов, грузовых автомобилей. Особенности конструкции кузовов и кабин автомобилей различного назначения. Общие сведения о требованиях на размещение и посадку водителя, размещение органов управления и приборов, обзорность с места водителя, оборудование кузовов и кабин, требования к среде в кузове и кабине. Материалы для изготовления кузовов и кабин.

Тема 2.4. Подвеска

Требования к подвескам. Классификация. Упругая характеристика подвески и ее параметры. Анализ и оценка конструкций подвесок. Влияние схемы направляющего устройства подвески на стабилизацию и автоколебания управляемых колес, устойчивость движения, проходимость.

Требования к амортизаторам. Классификация амортизаторов. Рабочий процесс, характеристика и рабочая диаграмма телескопического амортизатора. Анализ конструкций амортизаторов. Анализ конструкций и упругой характеристики стабилизаторов поперечной крена. Нагрузки на направляющие и упругие устройства подвесок. Материалы основных деталей подвесок.

Практическая работа №6. Мосты **Практическая работа №7.** Несущие системы **Практическая работа №8.** Подвески

Раздел 3. Системы управления

Тема 3.1. Оценка конструкций рулевых управлений

Анализ и оценка конструкций рулевых управлений. Параметры оценки рулевого управления: передаточное число, КПД, оборачиваемость, жесткость. Кинематика поворота управляемых колес ATC: схемы рулевой трапеции, основы расчета геометрических параметров трапеции.

Тема 3.2. Рулевые механизмы

Рулевые механизмы: требования, классификация, применяемость. Выбор оптимального значения передаточного числа. Анализ конструкций рулевых механизмов. Требования к травмобезопасным рулевым механизмам. Основные схемы травмобезопасных механизмов. Нагрузки на детали рулевых механизмов.

Тема 3.3. Усилители рулевого управления

Усилители рулевого управления: требования, классификация, применяемость. Параметры оценки усилителей. Схемы компоновки и включение усилителей в рулевое управление: их анализ и оценка. Рабочий процесс и характеристики гидравлического усилителя с распределительным устройством различной конструкции. Расчет размеров исполнительных цилиндров гидравлических усилителей, производительности насоса, методика расчета нагрузок, действующих на детали рулевого управления. Материалы основных деталей рулевых механизмов, рулевого привода, усилителей рулевого управления.

Тема 3.4. Тормозные приводы

Требования к тормозным приводам, их классификация. Оценка схем и анализ свойств двухконтурных гидравлических тормозных приводов. Схемы включения вакуумного и пневматического усилителей. Рабочий процесс вакуумных усилителей с диафрагменным и упругореактивным следящим устройством.

Анализ конструкций аппаратов гидравлического привода. Схема и рабочий процесс многоконтурного пневматического привода. Сравнительная оценка одно- и двухконтурного пневматических приводов автопоездов. Анализ конструкции и рабочий процесс аппаратов

пневматического привода, следящих автопоезда: тормозного крана тягача, клапана ограничения давления, воздухораспределителя прицепа.

Тема 3.5. Регуляторы тормозных сил и антиблокировочная система

Статические характеристики аппаратов поводу следящих систем. Статические и динамические характеристики рабочих аппаратов. Распределение и регулирование тормозных сил. Классификация, рабочий процесс регуляторов тормозных сил. Схема и оценка электропневматического привода.

Антиблокировочная система (АБС): принципы регулирования тормозных сил, основные элементы системы и принципиальных схем.

Практическая работа № 9. Рулевое управление **Практическая работа № 10.** Тормозное управление

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

В целом внеаудиторная самостоятельная работа обучающегося при изучении курса включает в себя следующие виды работ:

- проработка (изучение) материалов лекций;
- чтение и проработка рекомендованной основной и дополнительной литературы;
- подготовка к практическим занятиям;
- поиск и проработка материалов из Интернет-ресурсов, периодической печати;
- подготовка к текущему и итоговому (промежуточная аттестация) контролю знаний по дисциплине.

Основная доля самостоятельной работы обучающихся приходится на подготовку к практическим занятиям, тематика которых полностью охватывает содержание курса. Самостоятельная работа по подготовке к практическим занятиям предполагает умение работать с первичной информацией.

Для проведения практических занятий работ, для самостоятельной работы используются методические пособия:

Анализ конструкций и основы расчета базовых шасси машин. Методические указания для выполнения практических работ для студентов по направлению подготовки 15.03.02 «Технологические машины и оборудование» очной и заочной форм обучения» / А.В. Костенко.— Петропавловск-Камчатский: КамчатГТУ

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по представлен в приложении к рабочей программе дисциплины и включает в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенний:
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Вопросы для проведения промежуточной аттестации по дисциплине (экзамен)

- 1. Требования к конструкции автомобилей.
- 2. Мероприятия в двигателях, направленные на уменьшение расхода топлива.
- 3. Мероприятия в шасси направленные на уменьшение расхода топлива.
- 4. Мероприятия в кузовах, направленные на уменьшение расхода топлива.
- 5. Анализ компоновочных схем легковых автомобилей.
- 6. Анализ компоновочных схем грузовых автомобилей.
- 7. Анализ компоновочных схем автобусов.
- 8. Действительная и приведенная схема трансмиссии автомобиля.
- 9. Нагрузочные режимы. Их характеристика.
- 10. Назначение и требования к сцеплению.
- 11. Классификация фрикционных сцеплений.
- 12. Анализ конструкций однодисковых сцеплений.
- 13. Анализ конструкций полуцентробежных и гидравлических сцеплений.
- 14. Анализ конструкций центробежных и электромагнитных сцеплений.
- 15. Рабочий процесс сцепления.
- 16. Меры, направленные на обеспечение плавности сцепления.
- 17. Меры, направленные на обеспечение полноты включения сцепления.
- 18. Защита трансмиссии от перегрузок в сцеплении.
- 19. Меры, направленные на обеспечение постоянного нажимного усилия и минимальные затраты на управление.
 - 20. Оценочные показатели коробок передач.
 - 21. Анализ конструкций двухвальных коробок передач.
 - 22. Анализ конструкций трехвальных коробок передач.
 - 23. Назначение, место установки, оценка делителя.
 - 24. Способы включения передач в коробках передач, их оценка.
 - 25. Назначение, рабочий процесс синхронизатора.
 - 26. Необходимость применения бесступенчатых передач, их типы.
- 27. Анализ конструкции фрикционной бесступенчатой передачи с гибкой связью (клиноременной передачей).
 - 28. Анализ конструкции торового вариатора.
 - 29. Назначение, устройство и работа гидромуфты.
 - 30. Назначение, устройство и работа гидротрансформатора.
 - 31. Мероприятия, повышающие КПД гидротрансформатора.
 - 32. Назначение, требования, классификация карданных передач.
 - 33. Кинематические связи в карданном шарнире.
 - 34. Силовые связи в карданном шарнире.
- 35. Анализ конструкций шарниров неравных угловых скоростей. Анализ конструкций полукарданных шарниров неравных угловых скоростей.
 - 36. Анализ конструкций шарниров равных угловых скоростей "Вейс".
 - 37. Анализ конструкций шарниров равных угловых скоростей "Рцеппа".
 - 38. Анализ конструкций шарниров равных угловых скоростей "Бирфильд".
 - 39. Анализ конструкций шарниров равных угловых скоростей "ГКН".
 - 40. Анализ конструкций шарниров равных угловых скоростей "Лебро".
 - 41. Анализ конструкций кулачковых шарниров равных угловых скоростей.
 - 42. Назначение главных передач, требования к ним, классификация.
 - 43. Анализ конструкций червячных главных передач.
 - 44. Анализ конструкций цилиндрических главных передач.
 - 45. Анализ конструкций конических главных передач.
 - 46. Анализ конструкций гипоидных главных передач.
 - 47. Анализ конструкций двойных центральных главных передач.

- 48. Анализ конструкций двойных разнесенных главных передач.
- 49. Анализ конструкций центральных двухступенчатая главных передач.
- 50. Предварительный натяг подшипников: назначение, способы получения.
- 51. Особенности смазки главных передач.
- 52. Назначение дифференциалов, требования к ним, классификация.
- 53. Влияние дифференциала на проходимость автомобиля.
- 54. Влияние дифференциала на устойчивость автомобиля.
- 55. Анализ конструкции симметричного конического дифференциала.
- 56. Анализ конструкции симметричного цилиндрического дифференциала.
- 57. Назначение, классификация межосевого дифференциала.
- 58. Назначение и способы блокировки межосевых дифференциалов.
- 59. Анализ конструкции шестеренного пульсирующего дифференциала.
- 60. Анализ конструкции кулачкового дифференциала свободного хода.
- 61. Анализ конструкции дифференциала с постоянным моментом трения. Привести схему.
- 62. Анализ конструкции дифференциала с моментом трения, пропорциональный крутящему моменту.
 - 63. Анализ конструкции червячных и гидравлического дифференциалов.
 - 64. Анализ конструкции кулачкового дифференциала повышенного трения.
 - 65. Назначение полуосей, требования к ним, классификация. Привести схемы.
 - 66. Анализ конструкций полуосей.
 - 67. Классификация рулевых управлений.
 - 68. Основные технические параметры рулевых управлений.
 - 69. Классификация рулевых механизмов.
- 70. Параметры оценки рулевых механизмов Анализ конструкции шестеренных рулевых механизмов.
 - 71. Анализ конструкции червячных рулевых механизмов.
 - 72. Анализ конструкции винтовых рулевых механизмов.
 - 73. Анализ конструкции травмобезопасных рулевых механизмов.
 - 74. Требования к рулевых приводов. Виды и оценка шарниров в приводе.
 - 75. Оценка применения рулевых усилителей.
 - 76. Критерии оценки рулевых усилителей.
 - 77. Анализ конструктивных схем рулевых усилителей.
 - 78. Назначение, требования и состав тормозного управления.
 - 79. Классификация и параметры оценки тормозных механизмов.
 - 80. Анализ конструкции дисковых тормозных механизмов.
 - 81. Анализ конструкций барабанных тормозных механизмов.
 - 82. Анализ конструкции механического привода тормозов.
 - 83. Анализ конструкций гидравлического привода тормозов.
 - 84. Анализ конструкций пневматического привода тормозов.
 - 85. Статические регуляторы тормозных усилий: назначение, анализ конструкций.
 - 86. Динамические регуляторы тормозных усилий: назначение, анализ конструкций.
 - 87. Антиблокировочная система: назначение, задачи, классификация.

7. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

7.1. Основная литература:

1. Автотранспортные средства. Основы конструирования : учебное пособие / составители А. В. Буянкин, В. Г. Ромашко. — Кемерово : КузГТУ имени Т.Ф. Горбачева, 2021. — 205 с. — ISBN 978-5-00024-013-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/193891. — Режим доступа: для авториз. пользователей.

7.2. Дополнительная литература:

- 1. Гринчар, Н. Г. Расчет и проектирование бульдозеров : учебное пособие / Н. Г. Гринчар, П. В. Шепелина. Москва : РУТ (МИИТ), 2020. 174 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/175993. Режим доступа: для авториз. пользователей.
- 2. Конструкция автомобилей и тракторов : Учебник для вузов / Силаев Γ . В. 3-е изд. ; испр. и доп. Москва : Юрайт, 2022. 404 с. (Высшее образование). Режим доступа: Электронно-библиотечная система Юрайт, для авториз. пользователей. URL: https://urait.ru/bcode/490514. ISBN 978-5-534-07661-5 : 1229.00.

7.3 Методические указания

Анализ конструкций и основы расчета базовых шасси машин. Методические указания для выполнения практических работ для студентов по направлению подготовки 15.03.02 «Технологические машины и оборудование» очной и заочной форм обучения» / А.В. Костенко.— Петропавловск-Камчатский: КамчатГТУ

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ»

- 1. Российское образование. Федеральный портал: [Электронный ресурс]. Режим доступа: http://www.edu.ru
- 2. Электронно-библиотечная система «eLibrary»: [Электронный ресурс]. Режим доступа: http://www.elibrary.ru
- 3. Электронно-библиотечная система «Буквоед»: [Электронный ресурс]. Режим доступа:http://91.189.237.198:8778/poisk2.aspx
- 4. Электронно-библиотечная система «Лань» [Электронный ресурс]. Режим доступа: https://e.lanbook.com/
- 5. Образовательная платформа «ЮРАЙТ» [Электронный ресурс]. Режим доступа: https://urait.ru/

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Методика преподавания данной дисциплины предполагает чтение лекций, проведение практических занятий, групповых и индивидуальных консультаций по отдельным специфическим проблемам дисциплины. Предусмотрена самостоятельная работа студентов, а также прохождение аттестационных испытаний промежуточной аттестации (экзамен).

Лекции посвящаются рассмотрению наиболее важных и общих вопросов.

Целью проведения практических занятий является закрепление знаний обучающихся, полученных ими в ходе изучения дисциплины на лекциях и самостоятельно.

При изучении дисциплины используются интерактивные методы обучения, такие как:

- проблемная лекция, предполагающая изложение материала через проблемность вопросов, задач или ситуаций. При этом процесс познания происходит в научном поиске, диалоге и сотрудничестве с преподавателем в процессе анализа и сравнения точек зрения;
- лекция-визуализация —подача материала осуществляется средствами технических средств обучения с кратким комментированием демонстрируемых визуальных материалов (презентаций).

10. КУРСОВОЙ ПРОЕКТ (РАБОТА)

По дисциплине не предусмотрено выполнение курсового проекта (работы).

11. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИ-ПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННО-СПРАВОЧНЫХ СИСТЕМ

11.1. Перечень информационных технологий, используемых при осуществлении образовательного процесса

- электронные образовательные ресурсы, представленные выше;
- использование слайд-презентаций;
- интерактивное общение с обучающимися и консультирование посредством электронной почты.

11.2. Перечень программного обеспечения, используемого при осуществлении образовательного процесса

При освоении дисциплины используется лицензионное программное обеспечение:

- текстовый редактор Microsoft Word;
- пакет Microsoft Office;
- электронные таблицы Microsoft Excel;
- презентационный редактор Microsoft Power Point.

11.3. Перечень информационно-справочных систем

- справочно-правовая система Консультант-плюс http://www.consultant.ru/online
- справочно-правовая система Гарант http://www.garant.ru/online

12. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- для проведения занятий лекционного типа, практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации используется аудитория 7-111 с комплектом учебной мебели на 30 посадочных мест;
- для проведения практических и лабораторных занятий используется аудитория 3-112: набор мебели на 15 посадочных мест, стенды со справочно-информационными материалами; макеты узлов и агрегатов машин и оборудования; стенды с элементами деталей машин и оборудования.
- для самостоятельной работы обучающихся кабинетом для самостоятельной работы №7-103, оборудованный 1 рабочей станцией с доступом к сети «Интернет» и в электронную информационно-образовательную среду организации, и комплектом учебной мебели на 6 посадочных места и аудиторией для самостоятельной работы обучающихся 3-302, оборудованный 4 рабочими станциями с доступом к сети «Интернет» и в электронную информационнообразовательную среду организации, и комплектом учебной мебели на 6 посадочных мест;
 - доска аудиторная;
 - мультимедийное оборудование (ноутбук, проектор);
 - презентации в Power Point по темам курса.