ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

Факультет информационных технологий

Кафедра «Физика»

УТВЕРЖДАЮ

Декан мореходного

факультета

С. Ю. Труднев

__20__ г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Физика»

специальности
26.05.07 «Эксплуатация судового электрооборудования и средств автоматики» (уровень специалитет)

специализация: Эксплуатация судового электрооборудования и средств автоматики

Петропавловск-Камчатский 2021

Рабочая программа дисциплины составлена на основании Φ ГОС ВО специальности (направления подготовки) <u>26.05.07 «Эксплуатация судового электрооборудования и средств автоматики»</u> и учебного плана Φ ГБОУ ВО «КамчатГТУ»

Составитель рабочей программы

Доцент, к.ф.-м. н (должность, ученое звание, степень) (подпись)

Симахина М.А. (Ф.И.О.)

Рабочая программа рассмотрена на заседании кафедры

«Физика» (наименование кафедры)

Протокол № $_8$ от « $_15$ » $_$ марта $_2021$ года.

Зав.кафедрой «<u>15</u>» <u>марта</u> 20<u>21</u> г. А. И. Задорожный

ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ, ЕЕ МЕСТО В УЧЕБНОМ ПРОЦЕССЕ

Курс физики совместно с курсами высшей математики и информатики составляет основу теоретической подготовки специалистов с профессиональным высшим образованием любого профиля.

Задачей курса физики является формирование у студентов целостного представления о фундаментальных физических закономерностях, лежащих в основе физических теорий, образующих современную физическую картину мира. В этой связи необходимо дать студентам фундаментальные знания по основным разделам современной физики, отразить структуру данной области науки, раскрыть ее экспериментальные основы.

Цель изучения дисциплины — обеспечение фундаментальной физической подготовки, позволяющей будущим специалистам ориентироваться в научно-технической информации, использовать физические принципы и законы, а также результаты физических открытий в тех областях техники, в которых они будут трудиться. Изучение дисциплины должно способствовать формированию у студентов основ научного мышления, в том числе: пониманию границ применимости физических понятий и теорий; умению оценивать степень достоверности результатов теоретических и экспериментальных исследований; умению планировать физический и технический эксперимент и обрабатывать его результаты с использованием методов теории размерности, теории подобия и математической статистики.

Изучение дисциплины на лабораторных и практических занятиях будет знакомить студентов с техникой современного физического эксперимента, студенты научатся работать с современными средствами измерений и научной аппаратурой, а также использовать средства компьютерной техники при расчетах и обработке экспериментальных данных. Студенты научатся постановке и выбору алгоритмов решения конкретных задач из различных областей физики, приобретут начальные навыки для самостоятельного овладения новыми методами и теориями, необходимыми в практической деятельности современного инженера.

На практических занятиях студенты закрепляют и конкретизируют полученные теоретические знания путем решения прикладных качественных и количественных задач, получают навыки моделирования процессов и явлений.

На лабораторных занятиях студенты приобретают навыки в проведении измерений и физических экспериментов.

В результате изучения материалов курса физики студент должен

знать: основные законы классической механики; идеи и методы молекулярной физики и термодинамики; элементы классической и современной электродинамики; основные понятия теории колебаний и волновых процессов; структурные особенности строения материи,

уметь: использовать законы классической и современной физики для анализа природных и техногенных явлений; решать профессиональные типовые задачи, имеющие ярко выраженную физико-математическую основу; пользоваться научно-технической литературой физического содержания с целью самостоятельного знакомства с современным состоянием знаний;

понимать: взаимодействия механических, электромагнитных волн с веществом, взаимодействия ионизирующего излучения с веществом; общность физических законов в микро, макро и мега мирах; относительность физических явлений; проблематичность многих физических представлений; незаконченность построения физической картины Мира; взаимосвязь научных достижений с благополучием Цивилизации.

ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

При изучении курса «Физика» должны быть сформированы следующие компетеншии: • способность применять естественнонаучные и общеинженерные знания, аналитические методы в профессиональной деятельности (ОПК-2).

Планируемые результаты обучения при изучении физики, соотнесенные с планируемыми результатами освоения образовательной программы, а также с установленными индикаторами достижения компетенций, представлены в таблице 1.

Таблица 1. Планируемые результаты обучения при изучении дисциплины, соотнесенные с установленными индикаторами достижения компетенций и планируемыми результатами освоения образовательной программы

			mu ocoochun oopasooamenonou	1 1
Код и наимено- вание компе- тенции		Код и наименование индикатора достижения ОПК	Планируемый результат обучения по дисциплине	Код показа- теля освое- ния
	твеннонаучные и общеинженерные знания, аналитические методы в професси-	ИД-1 _{ОПК-2} : Знает основные законы естественнонаучных дисциплин,	 Знать категориальный аппарат естественнонаучных концепций на основе самостоятельного осмысления лекционного материала и изучения рекомендуемой литературы; 	3(ОПК-2)1
	тоды	связанные с профессио-	• основные понятия и фундаментальные законы естественнонаучных дисциплин;	3(ОПК-2)2
	ические ме	нальной дея- тельностью.	• основные математические приложения и физические законы, явления и процессы, на которых основаны принципы действия объектов профессиональной деятельности	3(ОПК-2)3
	і, аналит		• базовые теоретические и практические знания для решения профессиональных задач и повышения мастерства в профессиональном плане.	3(ОПК-2)4
	іе знания	ИД-3 _{ОПК-2} : Умеет применять основные	Уметь• чётко выражать соответствующей естественнонаучной терминологией свои идеи, мысли и убеждения;	У(ОПК-2)1
2	нерны	ственнонауч-	• использовать для решения прикладных задач соответствующий физико-математический аппарат;	У(ОПК-2)2
OIIK-2	щеинже	ных дисциплин, связанные в профессио-	 пользоваться современной научной и производ- ственной аппаратурой для проведения инженерных измерений и научных исследований; 	У(ОПК-2)3
	е и об	нальной дея- тельности.	 логически верно и аргументировано защищать результаты своих исследований; 	У(ОПК-2)4
	учны		 применять базовые теоретические знания для решения задач в своей профессиональной деятельности; 	У(ОПК-2)5
	ннона		• самостоятельно решать конкретные задачи из раз- личных разделов естественнонаучных дисциплин;	У(ОПК-2)6
	тве	ип о	Владеть	
	e	ИД-2 _{ОПК-2} :	• основами естественнонаучных знаний,	В(ОПК-2)1
	применять еслеятельности	Владеет навыка- ми применения основных зако- нов естествен-	шения естественнонаучных заданий, решения типо-	В(ОПК-2)2
	прим цеятел	нонаучных дис-	• базовыми теоретическими знаниями для решения профессиональных задач,	В(ОПК-2)3
	бен ной	циплин, связан- ные в професси- ональной дея-	 современными технологиями повышения и развития своих знаний. 	В(ОПК-2)4
	Спос	тельности.	• стремиться к повышению квалификации и мастерства на протяжении всей жизни.	В(ОПК-2)5

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Физика является дисциплиной базовой части образовательной программы. Изучение физики значительно упрощается при успешном усвоении предшествующего курса высшей математики. Изучаемые в курсе «физика» разделы являются базой для изучения таких дисциплин как экология, теоретическая механика, теория механизмов и машин, сопротивление материалов, детали машин и основы конструирования, гидравлика, теплотехника, материаловедение, технология конструкционных материалов, теоретические основы электротехники, общая электротехника и электроника, безопасность жизнедеятельности.

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 2 Тематический план дисциплины очной формы обучения

	.0B	анятия	рабо	онтакт ота по и ебных з тий	видам	ная ра-		нтроль циплине
Наименование разделов и тем	Всего часов			Формы текущего контроля	Итоговый контроль знаний по дисциплине			
	•	•		•			2 семе	естр
Раздел 1. Кинематика и динамика материаль- ной точки. Динамика твердого тела	60	24	12	12	6	36		
Лекция 1.1. Предмет и роль физики для специальности. Кинематика точки. Способы описания движения.	11	5	2	2	1	6		
Лекция 1.2. Кинематика поступательного и вращательного движения материальной точки.		5	2	2	1	6		
Лекция 1.3. Динамика материальной точки. Три закона Ньютона.		5	2	2	1	6		
Лекция 1.4. Центр масс. Работа упругой, гравитационной силы и силы тяжести. Закон сохранения энергии.	11	5	2	2	1	6		
Лекция 1.5. Импульс, закон сохранения импульса. Динамика твёрдого тела. Момент импульса. Закон сохранения момента импульса.		5	2	2	1	6	Контроль СРС, за-	
Лекция 1.6. Тяготение. Законы Кеплера. Космические скорости. Невесомость.	11	5	2	2	1	6	щита практиче-	
Раздел 2. Элементы механики жидкости и газа. Механические колебания и волны.		30	12	12	6	33	ских ра- бот	
Лекция 2.1. Элементы механики жидкостей и газов. Вязкость. Ламинарное и турбулентное течение жидкости. Уравнение Бернулли	11	5	2	2	1	6		
Лекция 2.2. Механические колебания и волны.	11	5	2	2	1	6		
Лекция 2.3. Энергия гармонического осциллятора. Векторная диаграмма. Сложение колебаний разных направлений. Биения. Фигуры Лиссажу.		5	2	2	1	6		
Лекция 2.4. Одномерная поперечная и продольная волны. Уравнения затухающих и вынужденных колебаний.	10	5	2	2	1	5		
Лекция 2.5. Волновые процессы.		5	2	2	1	5		
Лекция 2.6. Акустический эффект Доплера и его применение. Ультразвуки. Инфразвуки.	10	5	2	2	1	5		
Раздел 3. Основы молекулярной физики и тер- модинамики	51	25	10	10	5	26	Контроль СРС, за-	

Лекция 3.1. Молекулярно-Кинетическая теория идеальных газов. Методы исследования в молекулярной физике, основные понятия, принципы, определения. Уравнение состояния вещества.	10	5	2	2	1	5	щита практиче- ских ра- бот	
Лекция 3.2. Распределение Максвелла молекул идеального газа по скоростям и энергиям теплового движения. Барометрическая формула.	10	5	2	2	1	5		
Лекция 3.3. Распределение Больцмана частиц в силовом поле. Понятие о нормальном и инверсном распределениях. Длина свободного пробега молекул. Вакуумные условия.	10	5	2	2	1	5		
Лекция 3.4. Явления переноса. Движение тел в среде с сопротивлением.	10	5	2	2	1	5		
Лекция 3.5. Основы термодинамики. Основные понятия и определения. Первое начало термодинамики. Работа идеального газа. Теплоёмкость вещества. Адиабатный процесс. Уравнения Пуассона. Идеальная тепловая машина. Цикл Карно и его К.П.Д.	11	5	2	2	1	6		
Экзамен							Тестиро- вание, опрос	+
Всего	216	85	34	34	17	95		36
							3 сем	гстр
Раздел 1. Электричество	36	24	12	12	0	12		
Лекция 1.1. Электростатика. Закон сохранения электрического заряда. Закон Кулона.	6	4	2	2		2		
Лекция 1.2. Поведение диполя в однородном и неоднородном полях. Поляризация диэлектрика. Сегнетоэлектрики.	6	4	2	2		2		
Лекция 1.3. Распределение электрических зарядов на проводнике. Напряженность поля вблизи поверхности заряженного проводника. Электрическая ёмкость уединенного проводника. Конденсаторы.	6	4	2	2		2		
Лекция 1.4. Параллельное и последовательное соединение конденсаторов.	6	4	2	2		2	Контроль СРС, дис-	
Лекция 1.5. Электрический ток и его характеристики	6	4	2	2		2	куссия, решение	
Лекция 1.6 Закон Ома для участка цепи. Работа и мощность тока. Закон Джоуля — Ленца. Последовательное и параллельное соединение проводников. Правила Кирхгофа.	6	4	2	2		2	задач, проверка конспек- тов лек-	
Раздел 2. Электромагнетизм	36	24	12	12	0	12	ций, те- стирова-	
Лекция 2.1. Магнетизм. Характеристики магнитного поля.	6	4	2	2		2	ние, за-	
Лекция 2.2. Магнитное поле движущегося заряда. Закон Ампера. Магнитные моменты атомов. Намагниченность вещества. Ферромагнетики и их свойства.	6	4	2	2		2	щита практиче- ских и лабора- торных	
Лекция 2.3. Закон электромагнитной индукции. Индуктивность. Энергия магнитного поля.	6	4	2	2		2	работ,	
Лекция 2.4. Электромагнитные колебания.	6	4	2	2		2		
Лекция 2.5. Электромагнитные волны. Лекция 2.6. Электромагнитные волны. Диффе-	6	4	2	2		2		
ренциальное уравнение электромагнитной волны.	6	4	2	2		2		
Раздел 3. Оптика. Элементы квантовой физи- ки. Ядерная физика	36	20	10	10	0	16		
Лекция 3.1. Законы геометрической оптики. Интерференция световых волн.	6	4	2	2		2		
Лекция 3.2. Принцип Гюйгенса-Френеля, метод зон Френеля. Дифракция Френеля на круглом	6	4	2	2		2		

отверстии и препятствии. Дифракция Фраунго-							
фера на одной щели.							
Лекция 3.3. Дисперсия света. Поглощение света. Поляризованный свет. Закон Малюса.	6	4	2	2		2	
Лекция 3.4. Квантовая природа излучения. Тепловое излучение.		4	2	2		2	
Лекция 3.5. Элементы атомной физики.		2	1	1		4	
Лекция 3.6. Элементы ядерной физики.	6	2	1	1		4	
Экзамен							+
Всего	144	68	34	34	0	40	36

Таблица 3.

Тематический план дисциплины заочной формы обучения Контактная работа Самостоятельная гроль знаний по по видам учебных Аудиторные за-Итоговый кон-Всего часов занятий Формы нятия Практиче-ские заня-Наименование разделов и тем Лабора-торные текущего Лекции работы контроля 1 курс Раздел 1. Физические основы механики Лекция 1. Кинематика поступательного и вращательного движения. Динамика точки 41 4 2 2 37 и вращения Раздел 2. Колебания и волны. Лекция 2. Кинематика и динамика меха-43 6 2 37 нических колебаний Контроль Раздел 3. Основы молекулярной физи-СРС, защита практи-3. ческих Лекция Молекулярно-кинетическая pa-41 4 2 2 37 теория идеальных газов. бот, проверка РГЗ Раздел 4. Электричество и электромаг-Лекция 4. Электростатическое поле и его характеристики. Проводники в электростатическом поле. Конденсаторы. Электриче-46 6 2 2 2 40 ский ток. Магнетизм. Электромагнитные колебания и волны Тестирова-Экзамен ние, опрос 180 20 8 8 4 151 9 2 курс Раздел 1. Оптика. 59 8 4 2 2 51 Лекция 1.1. Законы геометрической опти-2 1 0.5 0,5 Лекция 1.2. Интерференция световых волн. Принцип Гюйгенса-Френеля, метод 2 1 0,5 0,5 Контроль зон Френеля. СРС, защита практи-Лекция 1.3. Дифракция Френеля на кругческих ралом отверстии и препятствии. Дифракция 2 1 0,5 0,5 бот, про-Фраунгофера на одной щели. верка РГЗ Лекция 1.4. Дисперсия света. Поглощение света. Поляризованный свет. Закон Малю-2 1 0,5 0,5 са. . Поляризация света. Раздел 2. Элементы квантовой физики 57 6 3 1,5 1 51 Лекция 2.1. Теория атома водорода по 2 1 0,5 0,5

Бору.

Лекция 2.2. Элементы квантовой механи- ки		2	1	0,5	0,5			
Лекция 2.3. Элементы физики твердого тела		2	1	0,5				
Раздел 3. Элементы физики атомного ядра и частиц.	55	2	1	0,5	1	53		
Лекция 3.1. Элементы физики атомного ядра и частиц.		2	1	0,5	1			
Экзамен							Тестирова- ние, опрос	+
Всего	180	16	8	4	4	155		9

Описание содержания дисциплины по разделам и темам.

Второй семестр

Раздел 1. Кинематика и динамика материальной точки. Динамика твердого тела Лекция 1.1. Введение. Предмет и роль физики для специальности. Механика. Кинематика точки.

Рассматриваемые вопросы: Предмет, объект, цели и задачи дисциплины. Программа курса, ее реализация во времени. Требования к итоговой аттестации. Литература. Механика. Механическое движение, основные понятия и определения в классической механике. Кинематика точки. Векторный способ описания движения.

Практическое занятие 1.1. Кинематические уравнения движения. Равноускоренное движение. Криволинейное движение.

Форма занятия: решение типовых задач

Типовое задание:

Литература: [5], [6], [9], [12]-[16]

Лабораторное занятие 1 Элементы теории ошибок и погрешностей (1М).

Литература: [7].

Лекция 1.2. Кинематика поступательного и вращательного движения материальной точки. *Рассматриваемые вопросы:* Координатный и естественный способы описания движения. Кинематика вращательного движения. Связь между линейными и угловыми величинами.

Практическое занятие 1.2. Координатный и естественный способы описания движения. Кинематика вращательного движения.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 1.3. Динамика материальной точки. Три закона Ньютона.

Рассматриваемые вопросы: Первый закон Ньютона. Масса. Сила. Принцип относительности Галилея. Второй закон Ньютона. Третий закон Ньютона. Силы в механике.

Практическое занятие 1.3. Силы в механике. Второй закон Ньютона.

Форма занятия: решение типовых задач

Типовое задание:

Литература: [5], [6], [9], [12]-[16]

Лабораторное занятие 2. Проверка основного закона динамики поступательного движения на машине Атвуда (2M).

Литература: [7].

Лекция 1.4. Центр масс. Работа упругой, гравитационной силы и силы тяжести. Закон сохранения энергии.

Рассматриваемые вопросы: Центр масс. Работа упругой, гравитационной силы и силы тяжести. Закон сохранения энергии. Потенциальные и диссипативные силы. Мощность. Кинетическая энергия. Потенциальная энергия.

Практическое занятие 1.4. Работа, мощность, энергия. Закон сохранения энергии.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лабораторное занятие 3. Изучение законов сохранения импульса и механической энергии на баллистическом маятнике (3M).

Литература: [7].

Лекция 1.5. Импульс, закон сохранения импульса. Динамика твёрдого тела. Момент импульса. Закон сохранения момента импульса.

Рассматриваемые вопросы: Импульс, закон сохранения импульса. Абсолютно упругий и абсолютно неупругий удар. Момент инерции. Кинетическая энергия вращения. Момент силы. Основное уравнение динамики вращения твердого тела. Координатный и естественный способы описания движения. Кинематика вращательного движения. Связь между линейными и угловыми величинами.

Практическое занятие **1.5.** Закон сохранения импульса. Момент инерции. Момент силы. Основное уравнение динамики вращения твердого тела. Момент импульса. Закон сохранения момента импульса. Законы Кеплера. Невесомость. Поле тяготения, напряженность, потенциал и работа в поле тяготения. Космические скорости.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 1.6. Тяготение. Законы Кеплера. Космические скорости. Невесомость.

Рассматриваемые вопросы: Тяготение. Законы Кеплера. Космические скорости. Инерциальные и неинерциальные СО. Силы инерции. Законы Кеплера. Сила тяжести и вес. Невесомость. Поле тяготения, напряженность, потенциал и работа в поле тяготения. Первая, вторая и третья космические скорости. НСО. Силы инерции при поступательном и вращательном движении СО.

Практическое занятие 1.6. Контрольная работа рубежного рейтинга.

Литература: [5], [6], [9], [12]-[16]

Раздел 2. Элементы механики жидкости и газа. Механические колебания и волны.

Лекция 2.1. Элементы механики жидкостей и газов. Вязкость. Ламинарное и турбулентное течение жидкости. Уравнение Бернулли

Рассматриваемые вопросы: Элементы механики жидкостей и газов. Давление в жидкости и газе. Уравнение неразрывности. Уравнение Бернулли. Вязкость. Ламинарное и турбулентное течение жидкости. Методы определения вязкости. Движение тел в жидкостях и газах.

Практическое занятие 2.1. Элементы механики жидкостей и газов. Давление в жидкости и газе. Уравнение неразрывности.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лабораторная работа 4. Измерение момента инерции вращающегося тела на маятнике Обербека (4м)

Литература: [7].

Лекция 2.2. Механические колебания и волны.

Рассматриваемые вопросы: Механические колебания и волны. Кинематика гармонических колебаний. Динамика гармонических колебаний: пружинный, математический и физический маятники. Периоды колебаний математического и физического маятников

Практическое занятие 2.2. Кинематика гармонических колебаний. Динамика гармонических колебаний: пружинный, математический и физический маятники.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 2.3. Энергия гармонического осциллятора. Векторная диаграмма. Сложение колебаний разных направлений. Биения. Фигуры Лиссажу.

Рассматриваемые вопросы: Энергия гармонического осциллятора. Векторная диаграмма. Сложение колебаний одного направления. Биения. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.

Практическое занятие 2.3. Сложение колебаний. Затухающие колебания. Вынужденные колебания, резонанс.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лабораторная работа 5. Применение основного закона динамики к гармоническим колебаниям. Изучение диссипативного влияния воздуха на колебания математического маятника. (1к).

Литература: [9].

Лекция 2.4. Одномерная поперечная и продольная волны. Уравнения затухающих и вынужденных колебаний.

Рассматриваемые вопросы: «Механизм» одномерной поперечной и продольной волны. Уравнение механической волны. Волновое уравнение. Длина волны. Фазовая скорость.

Уравнение затухающих колебаний. Характеристики затухания. Уравнение вынужденных колебаний, резонанс.

Практическое занятие 2.4. Волновые процессы, уравнение бегущей волны.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 2.5. Волновые процессы.

Рассматриваемые вопросы: Волновые процессы. Продольные и поперечные волны. Уравнение бегущей волны.

Практическое занятие 2.5. Сложение взаимно перпендикулярных колебаний. Затухающие механические колебания. Интерференция волн. Стоячие волны. Звуковые волны. Эффект Доплера в акустике.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лабораторное занятие 6. Определение электроемкости конденсатора баллистическим гальванометром (29).

Литература: [8].

Лекция 2.6. Акустический эффект Доплера и его применение. Ультразвуки. Инфразвуки. «Голос моря».

Рассматриваемые вопросы: Интерференция волн. Стоячие волны. Звуковые волны. Эффект Доплера в акустике.

Лабораторная работа 7. Снятие вольт-амперной характеристики полупроводникового диода.

Литература: [8].

Практическое занятие 2.6. Контрольная работа РР

Литература: [5], [6], [9], [12]-[16]

Раздел 3. Основы молекулярной физики и термодинамики

Лекция 3.1. Молекулярно-Кинетическая теория идеальных газов. Методы исследования в молекулярной физике, основные понятия, принципы, определения. Уравнение состояния вещества.

Рассматриваемые вопросы: Основные понятия молекулярной физики. Идеальный и реальный газ. Статистический и термодинамический методы изучения состояний систем с большим числом частиц.

Практическое занятие 3.1. Основные законы молекулярно-кинетической теории.

Основное уравнение МКТ. Барометрическая формула.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лабораторное занятие 8. Определение сопротивления мостиком Уитстона (3э).

Литература: [8].

Лекция 3.2. Распределение Максвелла молекул идеального газа по скоростям и энергиям теплового движения. Барометрическая формула.

Рассматриваемые вопросы: Основное уравнение МКТ. Распределение Максвелла.

Практическое занятие 3.2. Функция распределения молекул по скоростям и энергиям. Явления переноса. Уравнение Фика.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 3.3. Распределение Больцмана частиц в силовом поле. Понятие о нормальном и инверсном распределениях. Длина свободного пробега молекул. Вакуумные условия.

Рассматриваемые вопросы: Функция распределения молекул по скоростям и энергиям. Закон Максвелла. Опыт Штерна. Распределение Больцмана.

Практическое занятие 3.3. Первый закон термодинамики. Работа идеального газа. Цикл Карно.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лабораторная работа 9. Определение термоэлектродвижущей силы термопары(4э). Литература: [8].

Лекция 3.4. Явления переноса. Движение тел в среде с сопротивлением.

Рассматриваемые вопросы: Явления переноса. Уравнение Фика для самодиффузии.

Уравнения Ньютона и Фурье. Движение тел в среде с сопротивлением.

Практическое занятие 3.4. Второе начало термодинамики. Уравнение Ван-дер-Ваальса.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 3.5. Основы термодинамики. Основные понятия и определения. Первое начало термодинамики. Работа идеального газа. Теплоёмкость вещества. Адиабатный процесс. Уравнения Пуассона. Идеальная тепловая машина. Цикл Карно и его К.П.Д.

Рассматриваемые вопросы: Понятие о степенях свободы молекул. Внутренняя энергия. Распределение энергии по степеням свободы. Первый закон термодинамики. Работа идеального газа. Количество теплоты. Теплоёмкость вещества. Применение первого начала термодинамики к изопроцессам. Адиабатный и политропный процессы. Уравнение Пуассона. Круговой процесс (цикл). Обратимые и необратимые процессы.

Практическое занятие 3.5. Контрольная работа

Литература: [5], [6], [9], [12]-[16]

Третий семестр

Раздел 1. Электричество

Лекция 1.1. Электростатика. Закон сохранения электрического заряда. Закон Кулона.

Рассматриваемые вопросы: Электростатика. Закон сохранения электрического заряда. Закон Кулона. Напряженность электрического поля. Потенциал электростатического поля. Связь напряженности и потенциала.

Практическое занятие 1.1. Закон сохранения электрического заряда. Закон Кулона. Напряженность электрического поля.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 1.2. Поведение диполя в однородном и неоднородном полях. Поляризация диэлектрика. Сегнетоэлектрики.

Рассматриваемые вопросы: Поведение диполя в однородном и неоднородном полях. Дипольные моменты молекул диэлектрика. Теорема Гаусса для электростатического поля в вакууме. Поляризация диэлектрика. Электрическое смещение. Сегнетоэлектрики.

Практическое занятие 1.2. Потенциал электростатического поля. Связь напряженности и потенциала.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 1.3. Распределение электрических зарядов на проводнике. Напряженность поля вблизи поверхности заряженного проводника. Электрическая ёмкость уединенного проводника. Конденсаторы.

Рассматриваемые вопросы: Проводники в электростатическом поле. Распределение электрических зарядов на проводнике. Напряженность поля вблизи поверхности заряженного проводника. Электрическая ёмкость уединенного проводника. Взаимная ёмкость проводников. Конденсаторы. Емкость плоского, сферического и цилиндрического конденсатора.

Практическое занятие 1.3. Поле в диэлектрической среде. Электроёмкость уединённого проводника. Конденсаторы.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 1.4. Параллельное и последовательное соединение конденсаторов.

Рассматриваемые вопросы: Параллельное и последовательное соединение конденсаторов. Энергия системы неподвижных точечных зарядов, уединённого проводника, заряженного конденсатора, электростатического поля.

Практическое занятие 1.4. Соединение конденсаторов. Энергия электростатического поля, системы зарядов, конденсатора.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 1.5. Электрический ток и его характеристики

Рассматриваемые вопросы: Электрический ток и его характеристики. Классическая электронная теория электропроводности металлов. Сила тока. Плотность тока. Сторонние силы. ЭДС и напряжение.

Практическое занятие 1.5. Сила тока. Плотность тока. Закон Ома. Работа и мощность тока. Закон Джоуля — Ленца. Сопротивление проводников. Правила Кирхгофа.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 1.6. Закон Ома для участка цепи. Работа и мощность тока. Закон Джоуля – Ленца. Последовательное и параллельное соединение проводников. Правила Кирхгофа.

Рассматриваемые вопросы: Сопротивление проводников. Вектор плотности тока. Закон Ома для однородного и неоднородного участка цепи. Работа и мощность тока. Закон Джоуля — Ленца. Последовательное и параллельное соединение проводников. Правила Кирхгофа для разветвленных цепей.

Практическое занятие 1.6. Контрольная работа.

Литература: [5], [6], [9], [12]-[16]

Раздел 2. Электромагнетизм

Лекция 2.1. Магнетизм. Характеристики магнитного поля.

Рассматриваемые вопросы: Магнетизм. Природа магнитных явлений. Характеристики магнитного поля: магнитная индукция, вращающий момент сил, вектор напряженности, магнитная проницаемость. Закон Био-Савара-Лапласа. Применение закона Био-Савара-Лапласа: поле прямого проводника с током, поле в центре и на оси кругового проводника с током.

Практическое занятие 2.1. Закон Био-Савара-Лапласа и его применение. Магнитное поле движущегося заряда.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 2.2. Магнитное поле движущегося заряда. Закон Ампера. Магнитные моменты атомов. Намагниченность вещества. Ферромагнетики и их свойства.

Рассматриваемые вопросы: Магнитное поле движущегося заряда. Закон Ампера. Взаимодействие параллельных токов. Сила Лоренца. Работа по перемещению контура с током

в магнитном поле. Магнитные моменты атомов. Намагниченность вещества. Ферромагнетики и их свойства.

Практическое занятие 2.2. Закон Ампера. Взаимодействие параллельных токов.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 2.3. Закон электромагнитной индукции. Индуктивность. Энергия магнитного поля.

Рассматриваемые вопросы: Закон электромагнитной индукции. Правило Ленца. Вихревые токи. Индуктивность. Явление самоиндукции. Время релаксации. Взаимная индукция. Трансформаторы. Энергия магнитного поля.

Практическое занятие 2.3. Сила Лоренца. Работа по перемещению контура с током в магнитном поле.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 2.4. Электромагнитные колебания.

Рассматриваемые вопросы: Электромагнитные колебания. Свободные незатухающие колебания в электрическом колебательном контуре. Свободные затухающие колебания в электрическом колебательном контуре.

Практическое занятие 2.4. Электромагнитная индукция. Электромагнитные колебания.

Форма занятия: решение типовых задач.

Литература: [5], [6], [9], [12]-[16]

Лекция 2.5. Электромагнитные волны.

Рассматриваемые вопросы: Электромагнитные волны. Экспериментальное получение электромагнитных волн. Основные характеристики и свойства электромагнитных волн.

Практическое занятие 2.5. Электромагнитные волны. Энергия и импульс электромагнитных волн.

Форма занятия: решение задач

Литература: [5], [6], [9], [12]-[16]

Лекция 2.6. Электромагнитные волны.

Рассматриваемые вопросы: Дифференциальное уравнение электромагнитной волны. Энергия и импульс электромагнитных волн.

Практическое занятие 2.6. Контрольная работа рубежного рейтинга

Литература: [5], [6], [9], [12]-[16]

Раздел 3. Оптика. Элементы квантовой физики. Ядерная физика

Лекция 3.1. Законы геометрической оптики. Интерференция световых волн.

Рассматриваемые вопросы: Законы геометрической оптики: прямолинейного распространения света; независимости световых пучков; отражения; преломления. Тонкие линзы. Построение изображений в тонких линзах и сферических зеркалах. Интерференция световых волн. Методы наблюдения интерференции: метод Юнга; Зеркала Френеля; бипризма Френеля. Интерференция в тонких плёнках, кольца Ньютона.

Практическое занятие 3.1. Законы геометрической оптики. Интерференция световых волн. Интерференция в тонких плёнках, кольца Ньютона.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 3.2. Принцип Гюйгенса-Френеля, метод зон Френеля. Дифракция Френеля на круглом отверстии и препятствии. Дифракция Фраунгофера на одной щели.

Рассматриваемые вопросы: Дифракция. Принцип Гюйгенса-Френеля, метод зон Френеля. Зонные пластинки. Дифракция Френеля на круглом отверстии и диске. Дифракция Фраунгофера на одной щели. Дифракционный спектр. Дифракционная решётка. Дифракция на кристаллах. Формула Вульфа — Брэггов.

Практическое занятие 3.2. Метод зон Френеля. Дифракция. Дифракционная решётка. Дифракция на кристаллах.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 3.3. Дисперсия света. Поглощение света. Поляризованный свет. Закон Малюса.

Рассматриваемые вопросы: Дисперсия света. Нормальная и аномальная дисперсия. Волновой пакет. Групповая скорость. Поглощение света. Закон Бугера. Эффект Доплера. Красное смещение. Поляризованный свет. Плоскость поляризации. Эффект Фарадея. Эффект Доплера. Закон Малюса. Явление Брюстера.

Практическое занятие 3.3. Поглощение света. Эффект Доплера. Закон Малюса. Явление Брюстера.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 3.4. Квантовая природа излучения. Тепловое излучение.

Рассматриваемые вопросы: Квантовая природа излучения. Тепловое излучение. Закон Кирхгофа. Законы теплового излучения черного тела. Виды фотоэффекта, законы фотоэффекта, уравнение Эйнштейна для внешнего фотоэффекта. Масса и импульс фотона. Давление света.

Практическое занятие 3.4. Фотоэффект, уравнение Эйнштейна для внешнего фотоэффекта. Масса и импульс фотона.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 3.5. Элементы атомной физики.

Рассматриваемые вопросы: Модель атома Томсона и Резерфорда. Линейчатый спектр водорода. Формула Бальмера. Модель атома Бора. Постулаты Бора. Боровский радиус. Главное квантовое число. Гипотеза де Бройля. Волны де Бройля. Самопроизвольное и вынужденное излучение. Оптический квантовый генератор.

Практическое занятие **3.5.** Модель атома Томсона и Резерфорда. Радиоактивность. Закон радиоактивного распада. α -, β - и γ — излучение и их свойства. Реакция деления. Цепная реакция. Ядерный реактор.

Форма занятия: решение типовых задач

Литература: [5], [6], [9], [12]-[16]

Лекция 3.6. Элементы ядерной физики.

Рассматриваемые вопросы: Дефект массы. Энергия связи ядра. Магические числа. Ядерные силы. Капельная и оболочечная модель ядра. Радиоактивность. Закон радиоактивного распада. α -, β - и γ – излучение и их свойства. Реакция деления. Цепная реакция. Ядерный реактор. Реакция синтеза. Термоядерный реактор.

Практическое занятие 3.5. Контрольная работа

Литература: [5], [6], [9], [12]-[16]

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ CAMOCTOЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа студентов по дисциплине «Физика» является важной составляющей частью подготовки студентов по специальности 26.05.07 «Эксплуатация судового электрооборудования и средств автоматики» и выполняется в соответствии с учебным планом КамчатГТУ.

Самостоятельная работа студентов ставит своей целью:

- 1. изучение материалов, законспектированных в ходе лекции;
- 2. подготовка к практическим занятиям;
- 3. развитие навыков ведения самостоятельной работы;
- 4. приобретение опыта систематизации полученных результатов исследований, формулировку новых выводов и предложений как результатов выполнения работы;

- 5. развитие умения использовать научно-техническую литературу и нормативнометодические материалы в практической деятельности;
- 6. поиск и проработка материалов из Интернет-ресурсов, научных публикаций;
- 7. приобретение опыта защиты результатов самостоятельной работы;
- 8. формирование навыка оперативного реагирования на разные мнения, которые могут возникать при обсуждении тех или иных научных проблем.
- 9. подготовка к текущему и итоговому (промежуточная аттестация) контролю знаний по дисциплине (зачет; экзамен).

Основная доля самостоятельной работы студентов приходится на подготовку к практическим занятиям и домашней контрольной работе, тематика которых полностью охватывает содержание курса. Самостоятельная работа по подготовке к семинарским занятиям предполагает умение работать с первичной информацией.

Таблица 4. Распределение часов СРС по различным видам учебной деятельности

Очная форма обучения							
Семестр	Вид учебной деятельности	Кол-во часов					
	Изучение лекционного материала	10					
	Составление конспекта лекций	15					
	Подготовка к практическим занятиям	15					
2 семестр	Подготовка к лабораторным работам	15					
	Решение комплекта домашних задач	20					
	Подготовка к промежуточной аттестации	20					
	Всего часов	95					
	Изучение лекционного материала	5					
	Составление конспекта лекций	5					
3 семестр	Подготовка к практическим занятиям	5					
3 cemecip	Подготовка к лабораторным работам	5					
	Решение комплекта домашних задач	10					
	Подготовка к промежуточной аттестации	10					
	Всего часов	40					
	Заочная форма обучения						
курс	Вид учебной деятельности	Кол-во часов					
	Изучение лекционного материала	30					
	Составление конспекта лекций	30					
1 курс	Подготовка к практическим и лабораторным занятиям	30					
	Решение комплекта домашних задач	31					
	Подготовка к промежуточной аттестации	30					
	Всего часов	151					
	Изучение лекционного материала	30					
	Составление конспекта лекций	30					
2 курс	Подготовка к практическим и лабораторным занятиям	30					
	Решение комплекта домашних задач	35					
	Подготовка к промежуточной аттестации	30					
	Всего часов	155					

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине «Физика» представлен в приложении к рабочей программе дисциплины и включает в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения

- образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций;

методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Перечень вопросов к промежуточной аттестации (экзамен).

Второй семестр

- 1. Основные представления о макро и микромире. Основные понятия физики.
- 2. Кинематические уравнения поступательного движения материальной точки. Скорости и ускорения.
- 3. Кинематическое уравнение вращательного движения. Угловые скорости и ускорения и связь их с линейными характеристиками.
- 4. Масса, сила, импульс. Инерциальные и неинерциальные системы отсчета.
- 5. Виды сил в природе.
- 6. Законы Ньютона. Второй закон как основной закон динамики поступательного движения.
- 7. Момент инерции, момент силы, момент импульса. Основной закон динамики вращательного движения.
- 8. Закон сохранения импульса. Уравнение моментов. Закон сохранения момента импульса
- 9. Работа постоянной и переменной силы. Мощность. Работа вращающегося тела.
- 10. Связь работы и кинетической энергии поступательного и вращательного движения.
- 11. Связь работы и потенциальной энергии тела в гравитационном поле земли и при упругой деформации.
- 12. Связь силы и потенциальной энергии через градиент. Потенциальные кривые. Устойчивое и неустойчивое равновесие.
- 13. Применение законов сохранения импульса и механической энергии к абсолютно упругому и неупругому ударам шаров.
- 14. Границы применимости законов классической механики. Взаимосвязь массы и энергии. Формула Эйнштейна.
- 15. Преобразования Галилея. Постулаты СТО.
- 16. Преобразования Лоренца. Следствия. Сокращение линейного размера. Замедление времени.
- 17. Зависимость массы от скорости в релятивистской динамике. Понятие об общей теории относительности.
- 18. Давление в жидкостях и газах. Закон Паскаля. Закон Архимеда. Подъемная сила.
- 19. Уравнение неразрывности. Уравнение Бернулли.
- 20. Молекулярно-кинетический и термодинамический подходы к изучению вещества. Уравнение Менделеева Клапейрона и основное уравнение молекулярно-кинетической теории.
- 21. Уравнение Ван-дер-Ваальса. Критические параметры. Сжижение газов.
- 22. Следствия из основного уравнения молекулярно-кинетической теории. Молекулярно-кинетическое толкование температуры. Средняя квадратичная скорость молекул.
- 23. Понятие о распределении Максвелла молекул идеального газа по скоростям их теплового движения.
- 24. Барометрическая формула. Распределение Больцмана. Понятия и нормальном и инверсном распределениях частиц по энергиям.
- 25. Средняя длина свободного пробега молекул, среднее число столкновений.

- 26. Явления переноса: диффузия, внутреннее трение, теплопроводность. Уравнения Фика, Ньютона, Фурье.
- 27. Гипотеза Больцмана о равномерном распределении энергии по степеням свободы молекул. Теплоемкости идеальных газов.
- 28. Внутренняя энергия. Количество теплоты. Первое начало термодинамики. Работа в изопроцессах.
- 29. Адиабатный процесс. Уравнения Пуассона.
- 30. Идеальная тепловая машина. Цикл Карно. К.П.Д. цикла Карно. Энтропия. Второе начало термодинамики.
- 31. Основные понятия механических колебаний. Дифференциальное уравнение свободных незатухающих колебаний груза на пружине и его решение.
- 32. Дифференциальное уравнение свободных незатухающих колебаний для математического и физического маятников. Периоды.
- 33. Графики смещения, скорости и энергии свободных незатухающих механических колебаний.
- 34. Представление колебаний в геометрической форме и в форме комплексных чисел.
- 35. Сложение одинаково направленных колебаний. Биения.
- 36. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- 37. «Механизм» механической поперечной и продольной волны. Длина волны.
- 38. Уравнение одномерной механической волны. Волновое уравнение. Фазовая скорость.
- 39. Уравнение стоячей волны и его анализ. Собственные частоты колебаний струны.
- 40. Волновой пакет. Групповая скорость.
- 41. Элементы акустики. Поглощение звука.
- 42. Акустический эффект Доплера.
- 43. Строение твердых тел. Классификация твердых тел по типам решеток и типам связей.

Третий семестр

- 1. Закон сохранения электрического заряда. Закон Кулона.
- 2. Напряженность электрического поля. Поток вектора напряженности. Принцип суперпозиции.
- 3. Электрический диполь, его поведение в однородном и неоднородном поле.
- 4. Теорема Остроградского Гаусса для электрического поля в вакууме. Циркуляция вектора напряженности электростатического поля.
- 5. Потенциал электростатического поля. Связь напряженности и потенциала.
- 6. Электрическое поле в диэлектрической среде. Дипольные моменты молекул диэлектрика. Полярные и неполярные диэлектрики.
- 7. Поляризация диэлектрика. Электрическое смещение.
- 8. Сегнетоэлектрики.
- 9. Распределение электрических зарядов на проводнике. Напряженность поля вблизи поверхности заряженного проводника.
- 10. Электрическая ёмкость уединенного проводника. Взаимная ёмкость проводников.
- 11. Конденсаторы. Емкость плоского, сферического и цилиндрического конденсатора. Параллельное и последовательное соединение конденсаторов.
- 12. Энергия системы неподвижных точечных зарядов, уединённого проводника, заряженного конденсатора, электростатического поля.
- 13. Электрический ток и его характеристики. Сила и плотность тока. Классическая электронная теория электропроводности металлов.
- 14. Закон Ома в дифференциальной форме. Закон Джоуля Ленца. Закон Видемана Франца.
- 15. Работа выхода электрона из металла. Электронная эмиссия.
- 16. Сторонние силы. ЭДС. Напряжение.

- 17. Закон Ома для однородного и неоднородного участка цепи. Сопротивление проводников
- 18. Работа и мощность тока. Закон Джоуля Ленца для участка цепи.
- 19. Правила Кирхгофа.
- 20. Природа магнитных явлений: естественные и искусственные магниты, опыт Эрстеда. Характеристики магнитного поля: магнитный момент, вектор магнитной индукции, напряженность. Принцип суперпозиции для магнитного поля.
- 21. Закон Био-Савара-Лапласа и его применение для поля прямого и кругового проводника с током.
- 22. Закон Ампера. Взаимодействие параллельных токов.
- 23. Магнитное поле движущегося заряда. Действие магнитного поля на движущийся заряд, сила Лоренца.
- 24. Основные законы магнитного поля: теорема Гаусса и циркуляция вектора В.
- 25. Поток вектора магнитной индукции. Работа при перемещении контура с током в магнитном поле.
- 26. Магнитные моменты электронов и атомов. Диа- и парамагнетизм.
- 27. Намагниченность, закон полного тока для магнитного поля в веществе.
- 28. Ферромагнетики и их свойства.
- 29. Закон электромагнитной индукции. Правило Ленца.
- 30. Явление самоиндукции, индуктивность, ЭДС самоиндукции, взаимная индукция.
- 31. Энергия магнитного поля, объёмная плотность энергии.
- 32. Система уравнений Максвелла, материальные уравнения.
- 33. Электромагнитные волны: их свойства, экспериментальное получение, энергия.
- 34. Законы геометрической оптики. Построение изображений в тонких линзах и сферических зеркалах.
- 35. Монохроматичность и когерентность света. Интерференция. Оптическая разность хола.
- 36. Интерференция в тонких пленках, кольца Ньютона.
- 37. Принцип Гюйгенса Френеля. Зоны Френеля.
- 38. Дифракция Френеля и Фраунгофера.
- 39. Дифракция на кристаллах. Формула Вульфа Брэггов.
- 40. Дисперсия света.
- 41. Взаимодействие света с веществом, поглощение света веществом, закон Бугера.
- 42. Эффект Доплера. Красное смещение.
- 43. Поляризованный свет, плоскость поляризации, закон Малюса. Явление Брюстера.
- 44. Тепловое излучение. Закон Кирхгофа, излучательная и поглощательная способность тел.
- 45. Законы теплового излучения черного тела: закон Стефана Больцмана, закон смещения Вина.
- 46. Фотоэффект.
- 47. Масса и импульс фотона.
- 48. Модель атома Томсона и Резерфорда.
- 49. Линейчатый спектр водорода. Формула Бальмера.
- 50. Модель атома Бора. Постулаты Бора. Боровский радиус. Главное квантовое число.
- 51. Гипотеза де Бройля. Волны де Бройля
- 52. Самопроизвольное и вынужденное излучение. Инверсное состояние. Оптический квантовый генератор.
- 53. Зонная теория твердого тела. Проводники, диэлектрики и полупроводники. Контактная разность потенциалов. ТермоЭДС. Термопара.
- 54. Дефект массы. Энергия связи ядра. Магические числа. Ядерные силы. Капельная и оболочечная модель ядра.
- 55. Радиоактивность. Закон радиоактивного распада.

- 56. α -, β и γ излучение и их свойства.
- 57. Реакция деления. Цепная реакция. Ядерный реактор.
- 58. Реакция синтеза. Термоядерный реактор.

7. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

7.1. Основная литература

- 1. Детлаф А. А., Яворский Б. М. Курс физики: Учебное пособие для втузов/ А.А.Детлаф, Б. М. Яворский.- 6-е изд. Стер.- М.: Академия, 2007. 720с. (97 экз.)
- 2. Трофимова Т. И. Курс физики: Учебное пособие для вузов. М.: Академия, 2004 542с. (332 экз.)

7.2. Дополнительная литература

- 3. Исаков А. Я. Физика. Курс лекций в 5-ти частях. Петропавловск-Камчатский: КамчатГТУ, 2000. (48 экз.)
- 4. Исаков А. Я., Исакова В. В. Справочные физические величины. Петропавловск-Камчатский: КамчатГТУ, 2003. (137 экз.)
- 5. Иваницкая Ж.Ф. Механика и молекулярная физика методические указания к выполнению индивидуальных заданий, 2012 г. http://shpoint/sites/kstu
- 6. Иродов И.Е. Задачи по общей физике. Уч.пособие для вузов. 8-е изд.-М:Бином: Лаборатория Знаний, 2010.-431 с. (20 экз.)
- 7. Иваницкая Ж. Ф., Блинова Ю. Н. Физика. Основные законы классической механики: Сборник методических указаний к лабораторным работам для студентов и курсантов технических специальностей. Петропавловск-Камчатский: КамчатГТУ, 2007. http://shpoint/sites/kstu
- 8. Иваницкая Ж. Ф. Физика. Электромагнетизм. Методические указания к лабораторным работам. Петропавловск-Камчатский: КамчатГТУ, 2015. http://shpoint/sites/kstu
- 9. Исаков А. Я., Иваницкая Ж.Ф. Физика. Индивидуальные задания: учебное пособие. Петропавловск-Камчатский: КамчатГТУ, 2006. http://shpoint/sites/kstu
- 10. Иваницкая Ж.Ф. Физика. Электромагнитные колебания. Сборник методических указаний к лабораторным работам. Петропавловск-Камчатский: КамчатГТУ, 2002. http://shpoint/sites/kstu
- 11. Иваницкая Ж.Ф. Физика. Квантовая теория излучения. Сборник методических указаний к лабораторным работам. Петропавловск-Камчатский: КамчатГТУ, 2001.– http://shpoint/sites/kstu
- 12. Иваницкая Ж.Ф.. Механика, молекулярная физика и термодинамика. Методические указания к выполнению индивидуальных заданий. Петропавловск-Камчатский: КамчатГТУ, 2011. http://shpoint/sites/kstu
- 13. Иваницкая Ж.Ф.. Электромагнетизм, геометрическая и волновая оптика, атомная и ядерная физика. Методические указания к выполнению индивидуальных заданий. Петропавловск-Камчатский: КамчатГТУ, 2013. http://shpoint/sites/kstu
- 14. Савельев. И. В. Курс общей физики в 5-и книгах. Учебное пособие. М.: Астель, 2004. (72 экз.)
- 15. Трофимова Т. И. Сборник задач по физике. М.: Высшая школа, 1999. (336 экз.)
- 16. Чертов А. Г., Воробьев А. А. Задачник по физике. М.: Физматлит, 2007.(74 экз.)

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ»

- 1. Демо-версия компьютерного курса «Открытая Физика» http://www.physicon.ru/
- 2. Online- лаборатория по физике Режим доступа: http://www.college.ru/laboratory/MainMenu.php3.

- 3. Универсальная энциклопедия Кирилла и Мефодия: http://mega.km..ru/bes 98/index/asp.
- 4. Путеводитель «В мире науки» Режим доступа: http://www.uic.ssu.samara.ru.
- 5. Электронно-библиотечная система «eLibrary»: [Электронный ресурс]. Режим доступа: http://www.elibrary.ru
- 6. Электронная библиотека образовательных ресурсов. Режим доступа: http://infoteka.spb.ru

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

В рамках усвоения учебной дисциплины «Физика» предусмотрены следующие виды учебных занятий:

- лекционного типа;
- семинарского типа;
- групповых консультаций;
- индивидуальных консультаций;
- самостоятельной работы,

а также прохождение аттестационных испытаний промежуточной аттестации.

Промежуточная аттестация проходит в виде экзамена.

В ЭИОС «MOODLE» университета в разделе дисциплины «Физика» по направлению 26.05.07 «Эксплуатация судового электрооборудования и средств автоматики» (уровень бакалавриат) представлены: конспекты лекций, варианты практических и контрольных работ, примеры оформления и решения задач, образец оформления титульного листа тетради для контрольной и лабораторных работ.

Лекции и практические занятия могут оформляться в одной тетради, так как темы практических занятий соответствуют лекционному материалу. Конспекты лекций должны быть написаны кратко, схематично. Студент должен последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины; проверять термины и понятия с помощью словарей, энциклопедий, справочников с выписыванием толкований в тетрадь; обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удаётся разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на практическом занятии. Уделить внимание понятиям, которые обозначены обязательными для каждой темы дисциплины.

Домашняя контрольная работа оформляется в отдельной тетради, снабжённой титульным листом, образец которого представлен как на стенде кафедры «Физика», так и на портале ЭИОС «МООDLE» университета в разделе дисциплины «Физика» по направлению 26.05.07 «Эксплуатация судового электрооборудования и средств автоматики». В конце изучения курса тетрадь с домашней контрольной сдается на кафедру «Физика». Также, в обязательном порядке, отчёт о данной контрольной работе должен быть представлен в ЭИОС университета в виде файла формата doc или pdf.

Лабораторные работы выполняются на лабораторных занятиях студентом индивидуально или в группе. Отчёт о выполнении лабораторной работы оформляется в отдельной тетради с титульным листом. При оформлении обязательно указывается номер и название работы, её цель, приборы и оборудование, а также краткий конспект теоретической части и данные эксперимента с необходимыми расчётами. Графики и расчёты к лабораторным работам можно выполнять в программе Microsoft Exel или Mathcad, тогда отчёт предоставляется только в электронном виде.

Перед выполнением лабораторной работы студенты должны получить допуск к ней.

Для оценивания знаний студентов, полученных при изучении курса «Физика», используется рейтинговая система оценки знаний. За различные виды учебной деятельности предусмотрено различное количество баллов, которые в итоге суммируются.

Таблица 5. Распределение баллов по разделам дисциплины

	1	Г		Гаспреоеление баллов по разбелам бисциплины
Форма учебного занятия	Кол-во занятий в се- местре	Кол-во баллов за одно занятие	Всего баллов	
			2 c	еместр
Лекция	17	1	17	Предоставить конспекты лекций можно после занятия или в конце семестра. При отсутствии студента на занятии, он может зайти на портал ЭИОС университета на курс «Физика» и законспектировать самостоятельно материал лекции из предоставленных файлов курса.
Практическое занятие	17	1	17	За решение задачи у доски студент получает 1 балл. В конце каждой пары студент предоставляет тетрадь с решениями на проверку преподавателю — получает 1 балл.
Лабораторная работа	9	4	36	За допуск к лабораторной работе ставится 2 балла, а за выполнение и защиту – 2 балла
Самостоятельная работа	8 задач	2	16	Решение домашней контрольной работы, включающей в себя 8 задач. За наличие решения задачи в тетради – 0,5 балла, при защите каждой задачи – 1,5 балла
Контрольная работа	2	7	14	Контрольная работа включает в себя ответы на вопросы и решение задач или прохождение теста по вариантам.
Итого:			100	
			3 c	еместр
Лекция	17	1	17	Предоставить конспекты лекций можно после занятия или в конце семестра. При отсутствии студента на занятии, он может зайти на портал ЭИОС университета на курс «Физика» и законспектировать самостоятельно материал лекции из предоставленных файлов курса.
Практическое занятие	17	1	17	За решение задачи у доски студент получает 1 балл. В конце каждой пары студент предоставляет тетрадь с решениями на проверку преподавателю — получает 1 балл.
Лабораторная работа	-	-	-	-
Самостоятельная работа	20 задач	2	40	Решение домашней контрольной работы, включающей в себя 20 задач. За наличие решения задачи в тетради – 0,5 балла, при защите каждой задачи – 1,5 балла
Контрольная работа	2	13	26	Контрольная работа включает в себя ответы на вопросы и решение задач или прохождение теста по вариантам.
Итого:			100	

Для прохождения промежуточной аттестации (экзамен) необходимо суммарно набрать соответствующее количество баллов. Перевод баллов из 100-бальной системы в 4-х балльную систему показан ниже в таблице 6.

Таблица 6 Перевод баллов из 100-балльной системы в 4- и 2- балльную

Количество баллов по суммарному рей-	0-43	44 – 62	63 – 81	82 – 100
тингу				
Экзаменационная оценка по 4-балльной системе	Неудовлетворительно	Удовлетворительно	Хорошо	Отлично

Выходной рейтинг составляет 25% от рейтинга по дисциплине, что составляет 25 баллов. Экзаменационный билет содержит два теоретических вопроса и задачу. За ответ на каждый вопрос присваивается максимум 10 баллов, за решение задачи – 5 баллов. Итоговая оценка определяется по результатам сдачи экзамена с учётом суммарного рейтинга.

Студенты, набравшие менее 25% от суммарного рейтинга, что составляет *19* баллов, не допускаются к экзамену.

Студенты, пропустившие занятия по уважительной причине могут взять у преподавателя дополнительное индивидуальное задание в виде решения задач (1 балл за 1 задачу) и сделать конспекты пропущенных им лекций, воспользовавшись материалом из ЭИОС.

10. КУРСОВОЙ ПРОЕКТ (РАБОТА)

Выполнение курсового проекта (работы) не предусмотрено учебным планом.

11. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕ-МЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕ-НИЯ И ИНФОРМАЦИОННО-СПРАВОЧНЫХ СИСТЕМ

Перечень информационных технологий, используемых в образовательном процессе:

- электронные образовательные ресурсы, представленные в рабочей программе;
- использование слайд-презентаций;
- интерактивное общение с обучающимися и консультирование посредством ресурсов сети Интернет (общение на форумах, в социальных сетях, посредством электронной почты)

Перечень программного обеспечения, используемого в образовательном процессе:

- текстовые, табличные и графические редакторы пакета Microsoft Office;
- программы подготовки и просмотра презентаций;
- интернет-браузеры;
- почтовые клиенты (программы обмена электронной почтой);

12. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1. для проведения лекционных и семинарских занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, самостоятельной работы используются учебные аудитории № 2-315, 2-314, 2-215 с комплектом учебной мебели;
- 2. для проведения лабораторных занятий, групповых и индивидуальных консультаций используются учебные аудитории № 2-215, 2-224 с комплектом лабораторных установок;
- 3. в аудитории № 2-315 установлены технические средства обучения и мультимедийное оборудование для представления учебной информации: цифровой проектор, интерактивная доска, акустическая система, ноутбук с доступом в информационнотелекоммуникационную сеть «Интернет» и в ЭИОС университета;