ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

Факультет мореходный Кафедра «Энергетические установки и электрооборудование судов»

> УТВЕРЖДАЮ Декан мореходного факультета Труднев С.Ю. (22 »____12____2022 г.

РАБОЧАЯ ПРОГРАММА

Материаловедение и технология конструкционных материалов

по направлению подготовки 15.03.02. «Технологические машины и оборудование»

профиль: «Машины и аппараты пищевых производств»

Петропавловск-Камчатский 2022

«Технологические машины и оборудование», профиль: «Машины и аппараты пищевых
производств»
Составитель рабочей программы доцент кафедры ЭУ и ЭС
Заведующий кафедрой «Энергетические установки и электрооборудование судов» к.т.н., доцент
«_15»12 2022 г О.А. Белов

Рабочая программа составлена на основании ФГОС ВО направления подготовки 15.03.02.

1 Цели и задачи учебной дисциплины

Целью преподавания является познание природы и свойств материалов, связь между их составом, структурой и свойствами, закономерности их изменения при тепловых, химических, механических, электромагнитных, радиационных и других воздействиях, а также методов их упрочнения для наиболее эффективного использования в технике, ознакомление студента с основополагающими принципами производства заготовок и деталей машин, методами формообразования поверхностей, принципами разработки технологических процессов изготовления деталей машин.

Ключевыми вопросами изучения курса являются требования к качеству продукции, снижение материалоемкости и энергоемкости машиностроительных изделий, внедрение новых материалов и технологий обработки.

Основными задачами дисциплины являются

- изучение физическую сущность явлений, происходящих в материалах при воздействии, на них различных факторов в условиях производства и эксплуатации их влияние на структуру и свойства материалов;
 - изучение зависимости между составом, строением и свойствами материалов;
- изучение теории и практики различных способов упрочнения материалов, обеспечивающих высокую надежность и долговечность деталей машин, инструмента и других изделий;
- изучение основных группы металлических и неметаллических материалов, их свойств и области применения;

В результате изучения дисциплины студент должен: знать:

- строение и свойства конструкционных материалов, применяемых при ремонте, эксплуатации и техническом обслуживании, сущности явлений, происходящих в материалах в процессе технологии обработки и в условиях эксплуатации изделия;
- современные способы получения материалов и изделий из них с заданным уровнем эксплуатационных свойств;
- методы упрочнения и снижения металлоемкости изделия при одновременном достижении наиболее высокой технико-экономической эффективности;
- сущность методов получения основных металлических и неметаллических материалов, основные свойства материалов;
 - технологические методы получения и обработки заготовок деталей;
- принципиальные схемы типового оборудования, оснастки, инструментов и приспособлений;
 - критерии оценки совокупности свойств качества продукции; *уметь*:
 - анализировать структуру и свойства материалов;
 - оценивать состояние технических средств;
 - выявлять причины отказов;
- проводить выбор материалов для обеспечения ремонта, с учетом их свойств и параметров;
 - выбрать режим термической обработки с получением требуемых характеристик;
 - выбрать методы механической обработки детали, оборудование, инструмент.

Приобрести навыки:

- правильного выбора материалов с требуемым комплексом свойств;
- подборе инструмента, материалов режущего лезвия инструмента для конкретных условий механической обработки;
- назначении режимов резания при механической обработке деталей для получения необходимых форм и размеров;

- составлении технологических процессов изготовления деталей с учетом требований качества и условий эксплуатации.

2. Требования к результатам освоения дисциплины

Процесс изучения дисциплины «Материаловедение и технология конструкционных материалов» направлен на формирование *профессиональной компетенции*:

ОПК-7 способен применять современные экологичные и безопасные методы рационального использования сырьевых и энергетических ресурсов в машиностроении.

Перечень планируемых результатов обучения при изучении дисциплины приведен в таблице 1.

Таблица 1- Планируемые результаты обучения при изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы

Код компет енции	Планируем ые результаты освоения образовател ьной программы	Код наименования индикатора достижения профессиональной компетенции	Планируемый результат обучения по дисциплине	Код показателя освоения
ОПК-7	Способен применять современные экологичные и безотказные методы рационального использования сырьевых и энергетических ресурсов в машиностроении	ид-1 _{ОПК-7} Знать современные экологичные и безопасные методы использования сырьевых и энергетических ресурсов в машиностроении	Знать: - строение и свойства физико- химические, эксплуатационные, технологические конструкционных материалов, применяемых при ремонте, эксплуатации и техническом обслуживании, сущности явлений, происходящих в материалах в условиях эксплуатации изделия; - современные способы получения материалов и изделий из них с заданным уровнем эксплуатационных свойств; - нормативы технического обслуживания и ремонта.	3 (ОПК-7)1 3 (ОПК-7)2 3 (ОПК-7)3
	Способен применять современные э нального использования сырьевых и	ид-2 _{ОПК-7} Уметь применять современные экологичные и безопасные методы рационального использования сырьевых и энергетических ресурсов ид-3 _{ОПК-7} Владеть навыками рационального использования сырьевых и	Уметь: - анализировать структуру и свойства материалов; - оценивать состояние технических средств; - выявлять причины отказов в работе оборудования - проводить выбор материалов для обеспечения ремонта, с учетом их свойств и параметров эксплуатации.	У(ОПК-7)1 У(ОПК-7)2 У ОПК-7)3 У(ОПК-7)4
	Спс	энергетических ресурсов	Владеть: - навыками правильного выбора материалов с требуемым	B(ОПК-7)1 B(ОПК-7)2

	Планируем	Код наименования	Планируемый результат	Код
	ые	индикатора достижения	обучения	показателя
Код	результаты	профессиональной	по дисциплине	освоения
компет	освоения	компетенции		
енции	образовател			
	ьной			
	программы			
			комплексом свойств;	
			- навыками назначения	
			технологических параметров	
			обработки материалов для	
			получения требуемых	
			эксплуатационных свойств.	

3. Место дисциплины в структуре образовательной программы

Учебная дисциплина Б1.0.20 «Материаловедение и технология конструкционных материалов» является дисциплиной базовой части в структуре образовательной программы, непосредственно связана с такими дисциплинами, как, «Основы технологии машиностроения», «Детали машин и основы конструирования», «Метрология, стандартизация и сертификация», «Основы расчета и конструирования машин», «Электротехника и электроника».

Знания, умения и навыки, полученные обучающимися в ходе изучения дисциплины «Материаловедение и технология конструкционных материалов», необходимы для подготовки и сдачи государственного экзамена, а также для подготовки выпускной квалификационной работы.

4. Содержание дисциплины

Тематический план дисциплины для очной формы обучения в 3 семестре представлен в таблице 2

Таблица 2 – Тематический план дисциплины по очной форме обучения в 3 семестре

				Контактная работа по видам учебных занятий			ero	роль
Наименование разделов и тем	Всего часов	Аудиторные занятия	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	Формы текущего контроля	Итоговый контроль
Раздел 1. Атомно-кристаллическое строение вещества	11	8	4	2	2	3	Опрос, ЛБ*, Тест*	
Тема 1: Введение. Кристаллическое строение металлов.	1	1	1	-	-		Опрос, Тест*	
Тема 2: Формирование структуры металла при кристаллизации.	2	1	1	-		1	Опрос, Тест*	
Тема 3: Фазы и структура в металлических сплавах.	4	3	1	1	1	1	Опрос, ЛБ* Тест*	

Тама 4: Формирования агрупатурах							<u> </u>
Тема 4: Формирование структуры сплавов при кристаллизации.	4	3	1	1	1	1	Опрос,ЛБ*, Тест
Раздел 2. Деформация и разрушение металлов.	5	4	2	1	1	1	Опрос, ЛБ*, Тест*
Тема 1:Механические свойства металлов	3	3	1	1	1		Опрос, ЛБ* Тест*
Тема 2: Виды напряжений, упругая и пластическая деформация металлов.	2	1	1	-	-	1	Опрос, ЛБ*,Тест*
Раздел 3. Железо и сплавы на его основе	21	16	8	4	4	5	Опрос, ЛБ*, Тест*
Тема 1: Компоненты и фазы в системе железо-углерод.	3	2	2	-	-	1	Опрос, Тест*
Тема 2: Диаграмма состояния железо-цементит.	7	6	2	2	2	1	Опрос, Тест** РЗ
Тема 3: Чугун	5	4	2	1	1	1	Опрос, Тест*
Тема 4: Стали. Структурные классы легированных сталей.	8	6	2	2	2	2	Опрос, Тест** РЗ
Раздел 4. Основы теории	16	10	4	3	3	5	Опрос, ЛБ*,
термической обработки стали							Тест*
Тема 1: Превращения в сталях при нагреве и охлаждении	3	2	2		-	1	Опрос, Тест*
Тема 2: Технология термической обработки	8	5	1	2	2	3	Опрос, ЛБ* Тест** РЗ
Тема 3: Технология химико- термической и термомеханической обработки	4	3	1	1	1	1	Опрос, ЛБ*Тест*
Раздел 5. Цветные сплавы	15	12	6	4	4	3	
Тема 1: Медь и сплавы на ее основе	7	6	2	2	2	1	Опрос, ЛБ* Тест*
Тема 2: Алюминий и сплавы на его основе	5	4	2	1	1	1	Опрос, ЛБ* Тест*
Тема 3: Сплавы на основе магния, титана	1	1	1				Опрос, Тест*
Тема 4: Антифрикционные сплавы	4	3	1	1	1	1	Опрос, ЛБ* Тест*
Раздел 6. Материалы и сплавы с особыми свойствами	15	12	6		6	3	Опрос, ЛБ* Тест*
Тема 1: Материалы высокой проводимости и высокого сопротивления	6	6	2	2	2		Опрос, ЛБ* Тест*
Тема2: Магнитомягкие сплавы.	3	3	2	1			Опрос, ЛБ* Тест*
Тема 3Магнитотвердые сплавы	3	3	2		1		Опрос, ЛБ* Тест*
		l l					<u> </u>
Тема 4:диэлектрические материалы	2	2	2				Опрос, Тест*

материалы							Тест*	
Тема 1:Особенности строения.	2	2	2.				Опрос, Тест*	
	2	2	2				Тест*	
Тема 2:Термопластичные	3	2	2.			1	Опрос, Тест*	
полимеры	3		4			1	Тест*	
Тема 3:Реактопласты	3	2	2			1	Опрос, Тест*	
	3	2	2			1	Тест*	
Контроль 36ч.								
всего	144	68	34	17	17	76		
	Диф. за	чет- 3	3 сем.	•		•		

^{*} P3 – решение задач, ЛБ – подготовка лабораторной работы; Тест – подготовка к тестированию.

Тематический план дисциплины для очной формы обучения в 4 семестре представлен в таблице 3

Таблица 3 – Тематический план дисциплины по очной форме обучения в 4 семестре

Наименование разделов и тем	Всего	Аудиторные занятия	ра вида	нтакти м учеб анятий	10 бных й	Самостоятельная работа	Формы текущего контроля	Итоговый контроль знаний по лиспиплине
	часов	Аудиторі	Лекции	Практические занятия	Лабораторные работы	Самост ра	Формы теку	Итоговый ко по лю
Раздел 8. Основы металлургического производства	4	2	2	-	1	2	Опрос, Тест*	
Тема 1: современное состояние металлургического производства. Производство чугуна	2	1	1	-	-	1	Опрос, Тест*	
Тема 2: Производство стали и цветных сплавов	2	1	1			1	Опрос, Тест*	
Раздел 9. Основы литейного производства.	10	6	2	4	1	4	Опрос, ПЗ*, Тест*	
Тема 1: Физические основы производства отливок. Изготовление отливок в песчаные формы	5	3	1	2	-	2	Опрос, ПЗ* Тест*	
Тема 2: Изготовление отливок специальными способами литья.	5	3	1	2		2	Опрос, ПЗ* Тест*	
Раздел 10. Основы обработки металлов давлением	10	6	2	4	-	4	Опрос, ПЗ*, Тест*	
Тема 1Физико-механические основы обработки металлов давлением	5	3	1	2	-	2	Опрос, ПЗ*Тест*	
Тема 2:Изготовление машиностроительных профилей.	5	3	1	2	-	2	Опрос, П3*Тест*	

Раздел 11. Основы сварочного производства	14	8	2	6	-	6	Опрос, П3*Тест*	
Тема 1: Физико-химические основы получения сварных соединений	5	3	1	2	-	2	Опрос, ПЗ*Тест*	
Тема 2: Дуговая сварка плавлением. Технологические особенности сварки различных металлов и сплавов.	5	3	1	2	1	2	Опрос, П3*Тест*	
Тема 3:Технологичность сварных соединений.	4	-	-	2		2	Опрос, ПЗ*Тест*	
Раздел 12.Физико-механические основы обработки конструкционных материалов резанием.	72	10	10	22	-	40	Опрос, ПЗ*Тест*	
Тема 1: Методы формообразования поверхностей деталей машин.	9	1	1	-	-	8	Опрос, Тест*	
Тема 2: Инструментальные материалы.	9	1	1	-	-	4	Опрос, Тест*	
Тема 3: Металлорежущие станки.	14	6	1	4	-	4	Опрос, П3*Тест*	
Тема 4: Обработка заготовок на токарных, сверлильных, фрезерных, зубообрабатывающих станках.	34	18	4	14	1	16	Опрос, ПЗ*Тест*	
Тема 5: Обработка заготовок на шлифовальных станках. Методы отделочной обработки:	5	1	1	-	ı	4	Опрос, Тест*	
Тема 6: Технологические особенности проектирования и изготовления деталей из композиционных материалов.				2		4	Опрос, ПЗ*,Тест*	
итого	108	51	17	34	-	57		36
Экз	амен - 4	семест	гр	<u>I</u>		1	<u>'</u>	

Тематический план дисциплины для заочной формы обучения представлен в таблице 4

Таблица 4 – Тематический план дисциплины для заочной формы обучения

		занятия	рабо	онтактн ота по ві ных зан	идам	ная	оле	роль
Наименование разделов и тем	Всег о часо в	Аудиторные зан	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	Формы текущего контроля	Итоговый контроль знаний по дисциплине
Раздел 1. Атомно-кристаллическое строение вещества	16					16	Опрос	
Тема 1: Введение. Кристаллическое строение металлов.	4					4	Опрос	
Тема 2: Формирование структуры металла при кристаллизации.	4					4	Опрос	

т 2 ж	1	T	T		ı	ı	Т	
Тема 3: Фазы и структура в	4					4	Опрос	
металлических сплавах.					-		1	
Тема 4: Формирование структуры	4					4	Опрос,	
сплавов при кристаллизации.							1	
Раздел 2. Деформация и разрушение	18				2	18	Опрос	
металлов. Тема 1:Механические свойства							Ormaa	
	9	2				7	Опрос	
металлов								
Тема 2: Виды напряжений, упругая и	9					9	Опрос	
пластическая деформация металлов.								
Раздел 3. Железо и сплавы на его	22	2	2		2	20	Опрос	
ОСНОВЕ							•	
Тема 1: Компоненты и фазы в системе	5					5	Опрос	
железо-углерод.	I						-	
Тема 2: Диаграмма состояния железо-	5					5	Опрос	
цементит.	_	_					_	
Тема 3: Чугун	6	2				4	Опрос	
Тема 4: Стали. Структурные классы	6	2				4	Опрос	
легированных сталей.								
Раздел 4. Основы теории	18	2		2		16	Опрос	
термической обработки стали	10					10		
Тема 1: Превращения в сталях при	6					6	Опрос	
нагреве и охлаждении							F	
Тема 2: Технология термической	6					6	Опрос	
обработки							1	
Тема 3: Технология химико-								
термической и термомеханической	6					6	Опрос	
обработки	1.0					1.4		
Раздел 5. Цветные сплавы	16	1	2			3	0	
Тема 1: Медь и сплавы на ее основе	4	1	1			3	Опрос	
Тема 2: Алюминий и сплавы на его	4	1	1			3	Опрос	
ОСНОВЕ								
Тема 3: Сплавы на основе магния,	4					4	Опрос	
титана	4					4	Ormaa	
Тема 4: Антифрикционные сплавы	4					4	Опрос	
Раздел 6. Материалы и сплавы с особыми свойствами	15				2	15	Опрос,	
Тема 1: Материалы высокой проводимости и высокого								
сопротивления	6					3	Опрос	
Сопротивления								
Тема2: Магнитомягкие сплавы.	3					4	Опрос	
Тема ЗМагнитотвердые сплавы	3					4	Опрос	
Тема 4:диэлектрические материалы	2					4	Опрос	
Раздел 7. Неметаллические	8					8	Опрос	
материалы							î	
Тема 1:Особенности строения.	2					2	Опрос	
Тема 2:Термопластичные полимеры	3					3	Опрос	
Тема 3:Реактопласты	3					3	Опрос	
Раздел 8. Основы металлургического	4					4	Опрос	
производства							Onpoc	
Тема 1: современное состояние								
металлургического производства.	2			-	-	2	Опрос	
Поизводство чугуна								
Тема 2: Производство стали и цветных	2					2	Опрос	
сплавов					1	_	P	

Раздел 9 Основы литейного								
производства.	10					10	Опрос	
Тема 1:Физические основы								
производства отливок. Изготовление	5					5	Опрос	
отливок в песчаные формы							J. P. C.	
Тема 2: Изготовление отливок	_					_	Опрос	
специальными способами литья.	5					5	1	
Раздел 10. Основы обработки	10		2			6	0	
металов давлением	10		2		-	6	Опрос	
Тема 1Физико-механические основы	5					5	Опрос	
обработки металлов давлением	3					3	Опрос	
Тема 2:Изготовление	5					5	Ormaa	
машиностроительных профилей.	3					3	Опрос	
Раздел 11. Основы сварочного	14	Α	2		2	10	Опрас	
производства	14	4	2		2	10	Опрос	
Тема 1: Физико-химические основы	_					_		
получения сварных соединений	5					5	Опрос	
Тема 2: Дуговая сварка плавлением.								
Технологические особенности сварки	5				_	5	Опрос	
различных металлов и сплавов.							onpo c	
Тема 3:Технологичность сварных								
соединений.	4	-	-			2	Опрос	
Раздел 12.Физико-механические								
основы обработки конструкционных	72				2	72	Опрос	
материалов резанием.							1	
Тема 1: Методы формообразования						10	0	
поверхностей деталей машин.						10	Опрос,	
Тема 2: Инструментальные материалы.						10	Опрос	
						10	Olipoc	
Тема 3: Металлорежущие станки.						10	Опрос	
Тема 4: Обработка заготовок на								
токарных, сверлильных, фрезерных,						16	Опрос	
зубообрабатывающих станках.								
Тема 5: Обработка заготовок на								
шлифовальных станках. Методы						16	Опрос	
отделочной обработки:								
Тема 6: Технологические особенности								
проектирования и изготовления						10	0	
деталей из композиционных						10	Опрос	
материалов.								
итого	252	22	10	2	10	230		
				<u>I</u>	1	<u> </u>	<u>l</u>	
	экзамен - Зкурс							

Лекция

Рассматриваемые вопросы. Предмет, цели и задачи дисциплины «Материаловедение и технология конструкционных материалов». Место дисциплины в системе технических наук. Структура, содержание дисциплины и ее взаимосвязь с другими учебными дисциплинами.

Общая характеристика и структурные методы исследования металлов. Атомно-кристаллическая структура металлов. Дефекты кристаллической решётки металлов;

Тема 1.2. Формирование структуры металла при кристаллизации.

Лекиия

Рассматриваемые вопросы. Гомогенная кристаллизация. Гетерогенная кристаллизация. Энергия Гиббса. Центры кристаллизации. Рост кристаллов. Строение металлического слитка. Величина зерна. Модифицирование. Полиморфные превращения. Условия протекания превращений.

Тема 1.3. Фазы и структура в металлических сплавах. *Лекиия*

Рассматриваемые вопросы. Твёрдые растворы замещения, внедрения, упорядоченные, неупорядоченные. Условия образования. Химические соединения, интерметаллические, электронные. Фазы Лавеса. Структура сплавов.

Тема1. 4. Формирование структуры сплавов при кристаллизации. *Лекиия*

Рассматриваемые вопросы. Процесс кристаллизации и фазовые превращения в сплавах. Флуктуация концентрации. Видманштеттовая структура. Принцип размерного и структурного соответствия. Диаграммы фазового равновесия. Диаграмма состояния сплавов, образующих неограниченные твёрдые растворы Диаграммы состояния сплавов, образующих ограниченные твёрдые растворы. Диаграммы состояния сплавов, компоненты которых имеют полиморфные превращения.

Лабораторные работы раздела 1:

Лабораторная работа 1.2. Тема: «Микроскопический метод исследования металлов и сплавов. (Микроанализ)».

Содержание занятия.

Освоить технологию приготовления микрошлифов, изучить микроструктуры шлифов до и после травления при помощи металлографического микроскопа. Уяснить принцип выявления структур и практическое значение данного метода.

Самостоятельная работа под руководством преподавателя (СРП)

Примеры практических заданий и сами задания приводятся в учебно-методическом пособии по дисциплине.

Контрольные вопросы

- 1. Что такое макроструктура?
- 2. Какими способами изучают макроструктуру?
- 3. Для каких целей применяют анализ макроструктуры?
- 4. Как подготавливают образцы для микроанализа?
- 5. Как выявляют: а) макроструктуру; б) макростроение литого сплава; г) волокнистое строение стали; д) глубину закаленного и цементованного слоев?
- 61. Какие задачи решают с помощью микроанализа?
- 7. Строение металлов и их свойства.
- 8. В чем заключается методика приготовления микрошлифов?
- 9. Какие реактивы применяются для обработки шлифа?
- 10. Что такое полиморфизм?
- 11. Что такое анизотропия?
- 12. Дефекты кристаллического строения.
- 13. Условия образования твердых растворов.
- 14.Охарактеризуйте эвтектическое превращение в сплавах.
- 15.Охарактеризуйте эвтектоидное превращение в сплавах.

Литература [1,2,3]

Раздел 2. Деформация и разрушение металлов.

Тема 2.1. Деформация и разрушение металлов. *Лекция*

Рассматриваемые вопросы.

Виды напряжений, упругая и пластическая деформация металлов. Текстура деформации. Деформационное упрочнение поликристаллического металла. Сверхпластичность, сверхпластическая структурная деформация. Разрушение металлов. Транскристаллитное и интеркристаллитное разрушение. Хладноломкость, критическая температура хрупкости, порог хладноломкости. Влияние нагрева на структуру деформированного металла. Возврат, полигонизация, перекристаллизация. Холодная и горячая деформация.

Тема2.2. Механические свойства металлов *Лекиия*

Рассматриваемые вопросы.

Общая характеристика механических свойств. Конструктивная прочность металлических материалов. Механические свойства, определяемые при статических нагрузках на растяжение, сжатие, изгиб, вязкость разрушения. Трещиностойкость. Твёрдость металлов по Ролквеллу, Бринеллю, Виккерсу. Микротвердость. Испытания при динамических, циклических нагрузках. Порог хладноломкости. Усталость, выносливость, живучесть. Изнашивание металлов. Методы испытания на износ.

Лабораторные работ раздела 2:

Лабораторная работа 2.1. «Определение твердости» Содержание занятия.

Изучение методов определения твердости на твердомерах Роквелла, Бринелля, приобретение навыков подготовки приборов и образцов для измерения твердости, сравнительная оценка различных методов измерения твердости. Подготовить твердомеры к проведению измерений. Для каждого образца снять не менее 10 показаний твердости. Обработать показания согласно методике.

Самостоятельная работа под руководством преподавателя (СРП)

Примеры практических заданий и сами задания приводятся в учебно-методическом пособии по дисциплине.

Контрольные вопросы

- 1. Назовите способы определения твердости.
- 2. Какова размерность твердости, определяемой различными методами?
- 3. По какой формуле определяются числа твердости при испытании металла по методам Бринелля, Роквелла, Виккерса?
- 4. Как проводится испытание на твердость на приборе Роквелла?
- 5. Определите приближенно прочность стали, имеющей твердость 41 HRC.
- 6. По данным числам твердости найдите самый твердый металл: 4 440 HB, 52 HRC, 71 HRA.
- 7.Определите твердость металлического образца по Виккерсу, если при нагрузке 98 Н получится отпечаток с длиной диагонали 0,21 мм. Можно ли твердость данного образца измерить на приборе Бринелля?
- 8. Изменение структуры сплава при возврате.
- 9. Изменение структуры сплава при полигонизации.

10 Температурный порог между горячей и холодной пластической деформациями.

Литература [1,2,3]

Раздел 3. Железо и сплавы на его основе

*Тема 3.1*Железо и сплавы на его основе *Лекиия*

Рассматриваемые вопросы.

Компоненты и фазы в системе железо-углерод Диаграмма состояния железо-цементит. Фазовые и структурные изменения в сплавах железо-цементит после затвердевания. Превращения феррито - карбидной структуры в аустенит. Изотермическое превращение аустенита. Перлитное превращение. Термокинетические диаграммы переохлажденного аустенита. Влияние углерода и постоянных примесей: кремния, марганца, серы и фосфора на свойства стали

Тема 3.2 Чугун *Лекция*

Рассматриваемые вопросы.

Серый и белый чугуны. Структура: форма графитовых включений, металлическая матрица, фосфидная эвтектика. Ферритные, феррито-перлитные, перлитные чугуны. Модифицированные, антифрикционные чугуны. Свойства, применение.

Высокопрочные чугуны. Технология получения. Структура, свойства, применение Ковкий чугун. Технология графитизирующего отжига. Структура, свойства, применение Специальные чугуны жаростойкие, жаропрочные, коррозионностойкие, аустенитные. Структура, свойства, применение.

Тема 3.3 Конструкционные стали. Структурные классы углеродистых и легированных сталей.

Лекция

Рассматриваемые вопросы. Классификация сталей по составу, структуре, качеству и назначению. Углеродистые стали обыкновенного качества, качественные и высококачественные. Легированные конструкционные стали. Легирующие элементы в стали. Влияние легирующих элементов на полиморфные превращения и свойства сталей. Структура и свойства легированного феррита и аустенита. Изотермическое превращение аустенита в легированных сталях. Структурные классы легированных сталей. Свойства и применение.

Практическая работа раздела 3

Практическая работа 3.1. «Анализ диаграммы железо- углерод»

Содержание занятия. Изучить линии, точки и области диаграммы железоцементит, ее фазы и структуры; превращения в сплавах с различным содержанием углерода при нагревании и охлаждении; применение фаз Гиббса и правила отрезков. Вычертить диаграмму железо-цементит (рис. 17), обозначить все структурные составляющие диаграммы. Отметить на диаграмме сплав заданного состава согласно варианта задания. Построить кривую охлаждения (в интервале температур от 1600° C до 18° C) или нагревания в интервале температур от 18° C до 1600° C, согласно задания, применяя правило фаз Гиббса, и описать процессы, происходящие при нагреве или охлаждении. Определить количественное соотношение фаз и содержание углерода в фазах при заданной температуре, применяя правило отрезков коноды.

Лабораторные работы раздела 3

Лабораторная работа 3.1. «Структура и свойства углеродистых сталей» Содержание занятия.

Привести нижнюю левую часть диаграммы состояния железо – цементит и указать на ней вертикальными пунктирными линиями положение исследуемых сталей. Привести зарисовки структур исследуемых сплавов в прямоугольных рамках размером 60х40 мм с указанием наименования изображенных структурных составляющих и увеличения, при котором проводилось исследование. Указать наименование стали и дать характеристику качеству структуры. При наличии качественной структуры определить величину зерна, примерное содержание углерода и указать область применения исследуемого сплава в промышленности. При наличии дефектной структуры указать, каковы причины их возникновения, как она влияет на механические свойства и каким образом устраняется. В заключение отметить классы исследуемых сталей (доэвтектоидный, эвтектоидный и др.), их структуру, количество фаз в структуре.

Лабораторная работа 3.2. «Структура и свойства чугунов» Содержание занятия.

Изучить и зарисовать микроструктуры шлифов литейных чугунов, применяемых при изготовлении деталей судовых и рыбопромысловых механизмов. Определить содержание углерода в свободном состоянии (в виде графита) и в металлической основе. Проанализировать связь между механическими свойствами и структурами чугунов. Определить области их применения. Получить у преподавателя шлиф поршневого кольца и дать оценку структуры по ГОСТ 3443-87, оцениваемые параметры.

Графит:

- форма графитовых включений;
- размер графитовых включений;
- распределение включений;
- количество включений;
- тип структуры металлической основы
- количество перлита;
- степень дисперсности.

Фосфидная эвтектика:

- распределение;
- диаметр ячеек сетки;
- площадь наибольших включений.

Самостоятельная работа под руководством преподавателя (СРП)

Примеры практических заданий и сами задания приводятся в учебно-методическом пособии по дисциплине.

Контрольные вопросы

- 1. Дайте определение фазам феррит и аустенит.
- 2 Дайте определение фазам перлит и цементит.
- 3 Что такое ледебурит.
- 4 Какое превращение происходит по линии ЕСГдиаграммы?
- 5 Какое превращение происходит по линии PSK длиаграммы?
- 6 По какой линии диаграммы можно проследить изменение концентрации углерода в аустените в процессе охлаждения?
- 7. Сколько углерода содержится в перлите?
- 8. Сколько углерода содержится в ледебурите?
- 9. Превращения в стали при равномерном нагреве.
- 10.Превращения в стали при равномерном охлаждении.

- 11. Углеродистые стали (определение, маркировка).
- 12 Как классифицируются стали по структуре?
- 13 Влияние количества углерода и величины зерна на механические свойства стали.
- 14.Определение структурных составляющих сталей.
- 15. Дефектные структуры в сталях.
- 16. Применение углеродистых сталей.
- 17. Назовите виды примесей в сталях и дайте их краткую характеристику.
- 18. Чем опасны красноломкость и хладноломкость стали?
- 19. Какие стали относятся к легированным?
- 20. Назовите способы классификации сталей.
- 21 Классификация стали по качеству.
- 22. Какова особенность классификации качественных углеродистых сталей.
- 23. Как маркируются легированные стали?
- 24.Влияние легирующих элементов на полиморфные превращения и свойства сталей.
- 25.Структурные классы легированных сталей.
- 26. В чем разница между передельными и литейными чугунами?
- 27. Каким фактором определяется форма существования углерода в чугунах?
- 28. Какую роль играет магний и церий в высокопрочных чугунах?
- 28. Какие химические элементы улучшают литейные свойства чугуна?
- 30. Чем определяется отбеливание чугуна?
- 31. Какими химическими элементами легируются чугуны?
- 32. От каких условий зависит металлическая основа ковких чугунов?
- 33. Классификация чугунов по форме графитовых включений.

Литература [1,2,3]

Раздел 4. Основы теории и технологии термической и химико-термической обработки стали

Тема 4.1 Основы теории термической обработки стали *Лекиия*

Рассматриваемые вопросы. Превращения ферритно-карбидной структуры в аустенит.

Превращения переохлаждённого аустенита. Диаграмма изотермического превращения. Мартенситное превращение в стали. Промежуточное (бейнитное) превращение. Термокинетические диаграммы превращения переохлажденного аустенита. Превращения мартенсита и остаточного аустенита при нагреве (отпуск стали). Коагуляция карбидов.

Тема 4.2 Технология термической обработки стали Лекиия

Рассматриваемые вопросы. Отжиг 1рода: диффузионный, рекристаллизационный, высокий отпуск, для снятия остаточных напряжений. Отжиг 11 рода: полный, неполный, изотермический. Нормализация. Закалка. Выбор температуры, охлаждающей среды. Закаливаемость и прокаливаемость. Способы закалки. Отпуск: высокий, средний, низкий. Дефекты, возникающие, при термической обработке стали. Термомеханическая обработка: низкотемпературная, высокотемпературная. Поверхностная закалка.

Тема 4.3 Химико-термическая обработка. *Лекция*

Рассматриваемые вопросы. Процессы, протекающие при химико-термической обработке. Цементация, механизм образования и строение нитроцементованного слоя. Технология газовой цементации и твердым карбюризатором. Термическая обработка

после цементации.и свойства цементованных деталей. Нитроцементация. Технология, назначение. Азотирование. Технология, назначение. Цианирование. Технология, назначение. Борировавние, силицирование. Диффузионная металлизация.

Лабораторных работ раздела 4:

Лабораторная работа 4.1. «Термическая обработка углеродистых сталей» Содержание занятия.

Получить образец из отожженной стали марки У10, зачистить на наждачной шкурке поверхность образца с одной стороны и на ней произвести определение твердости по Роквеллу (шкала В).2. Приготовить шлиф и исследовать структуру образца под микроскопом. Составить режим закалки и произвести закалку образца по этому режиму. С одной стороны закаленного образца удалить обезуглероженный слой, полученный в процессе нагрева под закалку – сначала напильником, а потом наждачной шкуркой – и на этой поверхности произвести определение твердости по Роквеллу (шкала С). Приготовить шлиф и исследовать его структуру под микроскопом. В начале приготовления шлифа необходимо удалить с поверхности обезуглероженный слой. Составить режим отпуска и по нему произвести отпуск закаленного образца. Зачистить поверхность образца с одной стороны и произвести на ней определение твердости по Роквеллу (шкала С).

Самостоятельная работа под руководством преподавателя (СРП)

Примеры практических заданий и сами задания приводятся в учебно-методическом пособии по дисциплине.

Контрольные вопросы

- 1. В чем заключается термообработка стали, её основные виды.
- 2. Температуры, соответствующие критическим точкам (Ac_1 , A_1 , Ac_3 , A_3 , Acm) по диаграмме $Fe Fe_3C$.
- 3. Процесс изменения структуры стали при нагреве до температуры закалки.
- 4. Как влияет перегрев и недогрев стали на ее механические характеристики?
- 5. Какова цель выдержки деталей при температуре нагрева?
- 6. Опишите процесс изменения структуры стали при охлаждении с различной скоростью.
- 7. Охлаждающие среды, использующиеся при термической обработке.
- 8. Структура стали и ее механические свойства после закалки и отпуска.
- 9. Стали подвергаемые поверхностной закалке.
- 10. Назначение химико-термической обработки.
- 11. Технология цементации, структура и свойства цементированного слоя.
- 12. Технология азотирования, структура и свойства азотированного слоя.
- 13. Нитроцементация и цианирование, технология, назначение.
- 14. Технология термомеханической обработки: низкотемпературной, высокотемпературной.

Литература [1,2,3]

4 семестр

Раздел 5. Цветные сплавы

Тема5.1 Медь и сплавы на ее основе Лекиия

Рассматриваемые вопросы. Латуни простые и сложные: деформируемые, литейные. Влияние цинка на механические свойства латуней. Бронзы. Влияние олова на

механические свойства бронз. Классификация: оловянистые, алюминиевые, кремнистые, свинцовые, бериллиевые, хромистые, никелевые. Свойства, применение.

Тема5.2 Алюминий и сплавы на его основе *Лекиия*

Рассматриваемые вопросы. Алюминий. Классификация алюминиевых сплавов. Сплавы литейные: Al - Si, Al - Cu, Al – Mg, жаропрочные. Деформируемые термически упрочняемые: дуралюмины, ковочные, высокопрочные, жаропрочные, свойства, маркировка, применение. Термическая обработка алюминиевых сплавов: закалка, старение, диффузионный отжиг и рекристаллизационный

Тема 5.3 Сплавы на основе магния, титана *Лекиия*

Рассматриваемые вопросы. Деформируемые титановые сплавы. Титановые сплавы литейные. Термическая обработка титановых сплавов. Сплавы на основе магния литейные и деформируемые.

Тема 5.4 Антифрикционные сплавы и материалы Лекиия

Рассматриваемые вопросы. Антифрикционность. Требования к антифрикционным Антифрикционные сплавы, классификация по структуре, свойства. сплавам. Подшипниковые сплавы на оловянной, свинцовой, И цинковой основах. Антифрикционные сплавы на медной основе. Неметаллические антифрикционные материалы.

Лабораторные работы раздела 5:

Лабораторная работа 5.1. «Структура и свойства цветных сплавов» Содержание занятия.

Просмотреть, изучить и зарисовать видимые под микроскопом микроструктуры латуней, бронз. Указать стрелками различные структурные составляющие, присутствующие в сплаве, и описать форму их выделения (зернистая, игольчатая и т. д.). Указать, к какой группе относится сплав: к однофазной или двухфазной. Определить положение изучаемого сплава на диаграмме состояния. Для этого надо провести на этих диаграммах вертикальные линии, соответствующие рассматриваемым сплавам, и дать описание процессов превращений, происходящих при охлаждении. Воспользовавшись графиком изменения свойств в зависимости от содержания компонентов, стандартами и справочными данными, описать основные механические характеристики, химический состав и область применения заданных сплавов. Сформулировать выводы.

Самостоятельная работа под руководством преподавателя (СРП)

Примеры практических заданий и сами задания приводятся в учебно-методическом пособии по дисциплине.

Контрольные вопросы

- 1. Какие сплавы называются латунями?
- 2 Легирующие элементы, входящие в состав латуней.
- 3. Маркировка латуней.
- 4. От чего зависят структура и свойства латуней?
- 5. В чем состоит сущность процесса обесцинкования латуней?
- 6. Где применяются литейные латуни?
- 7. От чего зависят свойства деформируемых латуней?

- 8. Какими недостатками обладают латуни?
- 9. Где применяются деформируемые латуни?
- 10. Какие сплавы называются бронзами?
- 11. Легирующие элементы, входящие в состав бронз.
- 12. Свойства оловянистых бронз.
- 13. Где применяются оловянистые бронзы?
- 14. Изменение свойства оловянных бронз при изменении содержания в них олова.
- 15. Как маркируются бронзы?
- 16. Свойства алюминиевых бронз, применение.
- 17. Достоинства и недостатки кремниевых бронз.
- 18. Виды термообработки, применяемые для упрочнения бронз.
- 19. Свойства антифрикционных материалов.
- 20. Чем вызван низкий коэффициент трения металлофторопластовых материалов?
- 21. Алюминиевые сплавы термически не упрочняемые.
- 22. Алюминиевые сплавы термически упрочняемые?
- 23. Какие сплавы называют дюралюминами и как они маркируются?
- 24. Какие сплавы называют силуминами и как они маркируются?
- 25. Как влияет содержание Si на механические свойства силуминов?
- 26. Применение литейных алюминиевых сплавов.
- 27. Применение деформируемых алюминиевых сплавов?

Литература [1,2,3]

Раздел 6. Материалы и сплавы с особыми свойствами

Тема 6.1 Сплавы с особыми физическими свойствами. Основные сведения о проводниковых материалах

Лекция

Рассматриваемые вопросы. Материалы высокой проводимости. Стали и сплавы с высоким электрическим сопротивлением. Сплавы для тензорезисторов. Материалы для подвижных и неподвижных контактов(припои)

Тема 6.2. Магнитные материалы. Магнитомягкие сплавы. Лекиия

Рассматриваемые вопросы. Основные сведения о магнитных свойствах. Классификация магнитных материалов. Низкочастотные магнитомягкие материалы: электротехнические стали, пермаллои, альсиферы. Высокочастотные магнитомягкие материалы: магнитодиэлектрики, ферриты.

Тема 6.3. Магнитотвердые сплавы Лекция

Рассматриваемые вопросы. Магнитотвердые сплавы: легированные стали закаленные на мартенсит, литые высококоэрцитивные сплавы. Металлокерамические и металлопластические магниты. Магнитотвердые ферриты, сплавы на основе редкоземельных элементов, пластически деформируемые магнитотвердые сплавы.

Тема 6.4. Диэлектрические материалы Лекиия

Рассматриваемые вопросы. Поляризация диэлектриков. Свойства д/э материалов (электрическая прочность, диэлектрические потери). Классификация д\э по нагревостойкости. Пробой диэлектриков. Физико-химические свойства диэлектриков.

7.4. Какие факторы влияют на удельное сопротивление проводника?

Лабораторные работы раздела 6:

Лабораторная работа 6.1. «Исследование влияния температуры на материалы с различным удельным электрическим сопротивлением» Содержание занятия.

Измерить электросопротивление R образцов: меди, константана, манганина и нихрома. Результаты опытов занести в табл. 12. Вычислить удельное электросопротивление ρ этих образцов. Измерить в той же последовательности электросопротивление образцов при температурах: 100, 80, 60, 40, 20°C. Результаты опытов занести в табл. Построить графическую зависимость электросопротивления образцов от температуры.

Самостоятельная работа под руководством преподавателя (СРП)

Примеры практических заданий и сами задания приводятся в учебно-методическом пособии по дисциплине.

Контрольные вопросы

- 1. Какие материалы относятся к ферромагнетикам?
- 2. Где используются магнитомягкие материалы и как они разделяются по назначению?
- 3. Как структура и способы обработки влияют на магнитные свойства железа?
- 4. Какие магнитные характеристики должны иметь магнитомягкие материалы и какие элементы оказывают существенное влияние на их свойства?
- 5. С какой целью в электротехнические стали вводят кремний и как он влияет на их свойства?
- 6. Какие кремнистые электротехнические стали вы знаете, их состав и свойства?
- 7. Какие сплавы относятся к пермаллоям, их характерные свойства и применения?
- 8. Какую сталь называют магнитоанизотропной и почему?
- 9. Перечислите магнитотвёрдые материалы; какими магнитными свойствами они должны обладать и где их используют?
- 10. Как влияет величина зерна на магнитные свойства материала?
- 11. Какие материалы относят к проводникам?
- 12. Область применения проводниковых материалов.
- 13. Что называют удельным сопротивлением проводника?

Литература [1,2,3]

Раздел 7. Неметаллические материалы

Тема.7.1 Неметаллические материалы Лекиия

Рассматриваемые вопросы. Особенности строения. Классификация по составу, полярности и др. параметрам. Термопластичные полимеры. Реактопласты. Композиционные материалы.

Самостоятельная работа под руководством преподавателя (СРП)

Примеры практических заданий и сами задания приводятся в учебно-методическом пособии по дисциплине.

Контрольные вопросы

- 1. Что такое полимеры?
- 2. Классификация полимеров по форме макромолекул.

- 3. Классификация полимеров по отношению к нагреву.
- 4. Классификация полимеров по полярности и природе происхождения.
- 5. Какие материалы называются пластмассами?
- 6. Приведите примеры материалов, которые относятся к пластмассам.
- 7.Особенноста структуры композиционных материалов

Раздел 8. Основы металлургического производства

Тема 1. Современное металлургическое производство.

Лекция.

Рассматриваемые вопросы.

Производство чугуна. Доменный процесс. Основные физико-химические процессы получения чугуна в современных доменных печах

Тема 2 Производство стали и цветных металлов

Лекиия.

Рассматриваемые вопросы. Производство стали в электропечах. Особенности плавки стали в различных плавильных агрегатах. Строение стального слитка. Способы разливки стали. Производство меди. Производство алюминия. Способы выплавки и рафинирования. Характеристика применяемого оборудования. Материалы, получаемые методом порошковой металлургии.

Раздел 9. Основы литейного производства.

<u>Тема 1: Физические основы производства отливок. Изготовление отливок в песчаные</u> формы

Лекция.

Рассматриваемые вопросы. Понятие о литейном производстве. Классификация способов изготовления отливок. Сведения о литейных сплавах. Литейные сплавы их плавка и заливка в формы. Затвердевание отливок. Выбор рационального способа изготовления отливок. Изготовление отливок в песчаные формы Изготовление литых заготовок в разовых формах. Технологические требования к конструкции литых деталей. Принципы разработки модельного комплекта по чертежу. Выбивка, очистка и обрубка отливок. Дефекты отливок, меры их предупреждения и способы устранения.

Тема 2: Изготовление отливок специальными способами литья.

Лекиия

Рассматриваемые вопросы. Центробежное литьё. Литье по выплавляемым моделям.

Точное литьё, литьё в оболочковые формы, литье в кокиль и др. Изготовление отливок из различных сплавов: производство отливок из чугуна, стали, алюминиевых сплавов, медных, магниевых, титановых и др. Конструирование литых деталей с учётом литейных свойств сплавов. Выбор рационального способа изготовления отливок.

Особенности конструирования литых деталей, получаемых специальными способами литья.

Тематика практических работ раздела 9.

Практическая работа 1.1. Тема: «Разработка технологического процесса изготовления отливки в разовой песчано-глинистой форме».

Содержание занятия. Научиться по чертежу готовой детали разрабатывать чертёж отливки, модели, стержневого ящика и формы в сборе. Для заданного чертежа детали выполнить

следующее: а) выбрать плоскость разъёма модели и формы с указанием положения отливки в форме В (верх) и Н (низ); б) выполнить эскиз отливки с обозначением размеров припусков, уклонов, усадки металла и стержней; в) выполнить эскиз модели с указанием габаритных размеров; г) начертить эскиз стержневого ящика без указания размеров; д) привести эскиз собранной литейной формы в разрезе с указанием её элементов; е) дать краткое описание последовательных операций по изготовлению литейной формы и отливки. Основой для разработки технологического процесса изготовления отливки является чертёж детали. На чертеж детали в соответствии с ГОСТ 3.1125–88 наносят технологические указания, необходимые для изготовления модельного комплекта, формы и стержня, и получают чертёж отливки с модельно – литейными указаниями.

Раздел 10. Основы обработки металлов давлением

<u>Тема 1. Физико-механические основы обработки металлов давлением</u> *Лекиия*

Рассматриваемые вопросы. Классификация ОМД. Физико-механические основы обработки металлов давлением. Влияние ОМД на структуру и свойства металла. Влияние условий деформирования на процесс ОМД. Изготовление поковок машиностроительных деталей. Виды поковок. Ковка, горячая объёмная штамповка, ротационные способы изготовления поковок. Структура технологического процесса горячей объёмной штамповки. Жидкая штамповка. Холодная объёмная штамповка.

Тема 2 Изготовление машиностроительных профилей.

Рассматриваемые вопросы. Виды машиностроительных профилей. Производство прокатанных профилей, прессованных профилей. Волочение машиностроительных профилей. Прогрессивные технологии штамповки деталей из порошков. Виды изготавливаемых деталей. Холодное выдавливание из спечённых порошковых заготовок, выдавливание с активными силами трения, формование тонкостенных втулок из железного порошка, дополнительное легирование заготовок и др. Технико-экономические показатели и критерии выбора рациональных способов обработки металлов давлением. Выбор способа получения заготовок из различных сплавов. Технико-экономические показатели ОМД.

Тематика практических работ раздела 10:

Практическая работа 3. Тема: «Разработка технологического процесса изготовления поковки»

Содержание занятия. Закрепить знания, полученные на теоретических занятиях по обработке металлов давлением. Разработать технологический процесс получения поковки горячей Объемной штамповкой на кривошипном горячештамповочном прессе в открытом штампе. В соответствии с вариантом задания начертить эскизы заданной готовой детали, поковки и открытого штампа. Выбрать температурный интервал обработки. Определить время нагрева заготовки. Произвести расчет параметров горячей объемной штамповки. Проектирование технологического процесса горячей объёмной штамповки заключается в разработке чертежа (эскиза) поковки, выполняемого на основании чертежа (эскиза) готовой детали и расчёте основных параметров штамповки, которые заносятся в таблицу.

Раздел 11. Основы сварочного производства

Тема 1: Физико-химические основы получения сварных соединений

Лекиия

Рассматриваемые вопросы. Физико-химические основы получения сварных соединений. Классификация видов сварки. Свариваемость. Сварочные напряжения. Сварка давлением Технологические особенности сварки различных металлов и сплавов. Свариваемость углеродистых и легированных сталей, чугуна, меди и её сплавов, алюминия и его сплавов.

<u>Тема 2: Дуговая сварка плавлением. Технологические особенности сварки различных</u> металлов и сплавов.

Лекция

Рассматриваемые вопросы. Дуговая сварка плавлением. Сущность процесса, источники сварочного тока. Основные металлургические процессы в сварочной ванне. Ручная дуговая сварка. Автоматическая дуговая сварка под слоем флюса. Дуговая сварка в защитных газах. Плазменная сварка. Электрошлаковая сварка. Лазерная сварка.

Тема 3: Технологичность сварных соединений.

Лекция

Рассматриваемые вопросы. Технологичность сварных соединений. Понятие технологичности. Выбор металла, сплава. Выбор типа сварного соединения. Выбор формы свариваемых элементов. Выбор способа и вида сварки. Выбор способа уменьшения сварочных деформаций и напряжения.

Тематика практических работ раздела 11:

Практическая работа 1. Тема: «Расчет режима ручной дуговой сварки»

Содержание занятия. Приобрести практические навыки в выборе электродов и расчете режимов ручной дуговой сварки. Рассчитать режим ручной дуговой сварки. Для расчета параметров РДС исходные данные взять, согласно номера варианта, заданного преподавателем. Выбрать диаметр электрода. Определить величину сварочного тока по формуле Определить напряжение на дуге по формуле. Выбрать тип и марку электрода. Полученные данные занести в таблицу.

Практическая работа 2. Тема: «Расчет сварного соединения»

Содержание занятия Выбрать оборудование, сварочные материалы и рассчитать режим сварки для заданной сварной конструкции. Общие методические указания. Задание состоит из двух вопросов. Первый относится к изучению способа сварки, а второй – к разработке схем технологических процессов сварки изделий. По первому вопросу задания следует дать краткое описание сущности рассматриваемого процесса, его технологических особенностей. По второму – разработать схему технологического процесса сварки с указанием порядка наложения сварных швов и вида соединения, приварка обечайки к днищу конструкции угловым кольцевым швом. Выполнить расчеты основных технологических параметров в соответствии с вариантом задания указанного преподавателем.

Раздел 12. Физико-механические основы обработки конструкционных материалов резанием.

Лекция 5.

Тема 1. Методы формообразования поверхностей деталей машин.

Лекция

Рассматриваемые вопросы. Физико-механические основы обработки конструкционных материалов резанием. Схемы обработки резанием. Методы формообразования поверхностей деталей машин. Режимы резания, геометрия срезаемого слоя,

шероховатость поверхности. Физическая сущность процесса резания. Обрабатываемость конструкционных материалов резанием. Технологичность конструкций деталей машин. особенности проектирования изготовления Технологические И деталей ИЗ композиционных материалов. Технологические требования К конструкциям изготовляемых деталей, особенности дополнительной механической обработки заготовок.

<u>Тема 2. Инструментальные материалы.</u>

Лекция

Рассматриваемые вопросы.

Инструментальные материалы. Свойства. Инструментальные стали, твёрдые сплавы и др.

Тема 3. Металлорежущие станки.

Лекция

Рассматриваемые вопросы. Металлорежущие станки. Классификация, приводы, кинематические схемы металлорежущих станков. Техника безопасности и охрана окружающей среды.

<u>Тема 4. Обработка заготовок на токарных, сверлильных, фрезерных, зубообрабатывающих</u> станках.

Лекция

Рассматриваемые вопросы. Обработка заготовок на токарных, сверлильных, фрезерных, зубообрабатывающих станках. Типы станков токарной группы, режущий инструмент, технологическая оснастка токарных станков. Технологические требования к конструкциям изготовляемых деталей. Характеристика метода сверления, типы станков, инструмент, оснастка, схемы обработки. Характеристика метода фрезерования типы станков, инструмент, оснастка, схемы обработки. Характеристика формообразования фасонных профилей, типы зубообрабатывающих станков, инструмент, оснастка, схемы обработки.

Тема 5: Обработка заготовок на шлифовальных станках. Методы отделочной обработки.

Лекиия

Рассматриваемые вопросы. Обработка заготовок на шлифовальных станках. Характеристика метода шлифования, режимы резания, инструмент, оснастка, схемы обработки. Методы отделочной обработки: полирование, притирка, хонингование, суперфиниш и др. Методы обработки заготовок без снятия стружки: пластическое деформирование, обкатывание и раскатывание, алмазное выглаживание, калибровка отверстий и др.

<u>Тема 6: Технологические особенности проектирования и изготовления деталей из композиционных материалов.</u>

Лекция

Рассматриваемые вопросы. Технологические особенности проектирования и изготовления деталей из композиционных материалов. Технологические требования к конструкциям изготовляемых деталей, особенности дополнительной механической обработки заготовок.

Тематика практических работ раздела 5:

Практическая работа 1. Тема: «Условные обозначения в кинематических схемах станков».

Содержание занятия. Ознакомиться с принципами классификации и нумерации металлорежущих станков, с условными обозначениями в кинематических схемах станков, получить навыки в составлении и чтении кинематических схем станков. Изучить принципы классификации и нумерации металлорежущих станков. Изучить условные обозначения в кинематических схемах станков. С макета настольно-фрезерного станка составить кинематическую схему. Пользуясь условными обозначениями построить кинематическую схему настольно-фрезерного станка (исходные данные к вариантам индивидуальных заданий к практической работе). Подсчитать передаточные отношения передач, входящих в зацепление, общее передаточное отношение, число оборотов на шпинделе в соответствии со своим вариантом. Составить уравнение главного движения кинематической цепи по заданию преподавателя.

Практическая работа 2 Тема: «Устройство токарно-винторезного станка».

Содержание занятия. Изучить технологию формообразования поверхностей заготовок на токарно-винторезном станке. Подсчитать скорость резания по диаметру заготовки и ее частоте вращения. Подсчитанную скорость резания указать в схеме обработки. Изучить устройство токарно-винторезного станка 1К62.

Практическая работа 3. Тема: «Устройство вертикально сверлильного станка и работы, выполняемые на нем».

Содержание занятия. Изучение технологии формообразования поверхностей заготовки на вертикально-сверлильном станке. Наглядные пособия по вертикально-сверлильному станку со штатными приспособлениями: комплект сверл; комплект измерительных средств. Изучить вертикально-сверлильный станок. Вычертить эскиз сверла, замерить его размеры и углы, указать их на эскизе. Зарисовать схемы обработки на вертикально-сверлильном станке инструментом по заданию преподавателя.

Практическая работа 4. Тема: «Консольно - фрезерный станок и работы, выполняемые на нем».

Содержание занятия. Изучение технологии фрезерования поверхностей заготовок, ознакомление с универсальной делительной головкой, типами фрез в процессе проведения практических работ на фрезерном станке. Изучить кинематическую схему консольнофрезерного станку 6Р82. Изучить технологию формообразования поверхностей заготовок на консольно-фрезерном станке 6Р82. Привести схему обработки фрезой (выданной преподавателем) Изучить кинематическую схему универсальной делительной головки.

Рассчитать число оборотов рукоятки делительной головки для простого деления по заданию преподавателя.

Практическая работа 5 Тема: «Геометрия токарного резца».

Содержание занятия. Изучение основных углов режущей части резца. Изучение влияния углов на процесс резания и качество обработанной поверхности. Ознакомиться с измерительным прибором. Измерить углы α , β , γ , δ , ϵ , ϕ , ϕ_1 . Результаты измерений занести в протокол. Составить отчет о работе. Вычертить схему обработки детали предложенным резцом. На схеме указать обрабатываемую и обработанную поверхности, поверхность резания, главную режущую кромку, направление главного движения (заготовки) и движения подачи (резца). Измерить и внести в протокол измерений основные размеры резца: длину резца L, сечение резца В \times H. Измерить углы резца используя настольный угломер. Данные занести в протокол измерений.

Практическая работа 6 Тема: «Технология обработки металлов».

Содержание занятия. Согласно варианта задания выполнить: определение типа производства в зависимости от производственной программы выпуска деталей, материал детали и его свойства, выбор вида заготовки и способа ее получения (литье, обработка давлением, сварка). Составить технологический маршрута изготовления детали.

Выбрать необходимое оборудование и технологическую оснастку (приспособления для закрепления заготовки), режущий и измерительный инструмент. Составить развернутый технологический процесс изготовления детали с заполнением операционных карт механической обработки детали.

6. Учебно-методическое обеспечение для самостоятельной работы обучающихся

Согласно требованиям нормативных документов, самостоятельная работа студентов является обязательным компонентом образовательного процесса, так как она обеспечивает закрепление получаемых на лекционных занятиях знаний путем приобретения навыков осмысления и расширения их содержания, навыков решения актуальных проблем формирования общекультурных и профессиональных компетенций, научно-исследовательской деятельности, подготовки к семинарам, лабораторным работам, сдаче зачетов и экзаменов. Основной целью самостоятельной работы студентов является улучшение профессиональной подготовки специалистов, направленное на формирование системы фундаментальных и профессиональных знаний, умений и навыков, которые они могли бы свободно и самостоятельно применять в практической деятельности.

Самостоятельная работа в рамках образовательного процесса в вузе решает следующие задачи:

- закрепление и расширение знаний, умений, полученных студентами во время аудиторных и внеаудиторных занятий, превращение их в стереотипы умственной и физической деятельности;
- приобретение дополнительных знаний и навыков по дисциплине;
- формирование и развитие знаний и навыков, связанных научно-исследовательской деятельностью;
- развитие ориентации и установки на качественное освоение образовательной программы;
- развитие навыков самоорганизации;
- формирование самостоятельности мышления, способности к саморазвитию, самосовершенствованию и самореализации;
- выработка навыков эффективной самостоятельной профессиональной теоретической, практической и учебно-исследовательской деятельности;
- развитие умения использовать научно-техническую литературу и нормативно-методические материалы в практической деятельности;
- углубление и расширение профессиональных знаний студентов, формирование у них интереса к учебно-познавательной деятельности.

Самостоятельная работа студентов включает в себя:

- изучение теоретического материала и составление конспекта лекций, если студент отсутствовал на паре или что-то упустил;
- подготовка к лабораторным занятиям, ответ на вопросы в конце каждой лекции;
- поиск и проработка материалов из Интернет-ресурсов, научных публикаций при подготовке материала к научно-практической конференции ВУЗа;
- подготовка к итоговому контролю знаний по дисциплине (зачет).

Аудиторная и внеаудиторная СРС выполняется в соответствии с методическими указаниями - *Трибунская Р. М.* Материаловедение: Учебное пособие к лабораторному

практикуму и самостоятельной работе/ Р.М. Трибунская— Петропавловск - Камчатский: КамчатГТУ, 2018. – 164с.

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине «Материаловедение и технология конструкционных материалов» представлен в приложении к рабочей программе дисциплины и включает в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций;
- методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

3 семестр

Вопросы для проведения промежуточной аттестации по дисциплине (зачет)

- 1. Атомно-кристаллическое строение веществ. Типы кристаллических решеток, их параметры.
- 2. Кристаллизация. Полиморфизм. Анизотропия.
- 3. Методы испытания материалов.
- 4. Основы теории сплавов. Диаграмма состояния сплавов с образованием неограниченных твердых растворов.
- 5. Диаграмма состояния сплавов с полным отсутствием растворимости элементов
- 6. Диаграмма состояния сплавов с образованием ограниченных твердых растворов.
- 7. Диаграмма состояния сплавов с образованием устойчивого химического соединения.
- 8. Связь свойств сплавов с типом диаграммы. Закон Курнакова.
- 9. Твердость. Методы определения твердости.
- 10. Диаграмма состояния железо-углерод. Структурные составляющие железоуглеродистых сплавов.
- 11. Стали углеродистые. Классификация по структуре и назначению, маркировка.
- 12. Чугуны. Классификация, маркировка.
- 13.Серый чугун. Структура, свойства, применение.
- 14. Ковкий чугун. Структура, свойства, применение
- 15.Высокопрочный чугун с шаровидным графитом. Структура, свойства, применение.
- 16.Высокопрочный чугун с вермикулярным графитом. Структура, свойства, применение.
- 17.Стали легированные. Классификация, маркировка.
- 18. Основы теории термической обработки. Виды ТО, технология.
- 19. Закалка, технологи, назначение. Виды закалки. Структурные превращения при закалке.
- 20.Отпуск, технология, назначение. Виды отпуска. Структурные превращения при отпуске.
- 21.Отжиг, виды отжига, технология, назначение.
- 22. Нормализация, технология, назначение.
- 23. Химико-термическая обработка, виды ХТО.
- 24. Цементация, технология, назначение.
- 25. Нитроцементация, технология, назначение.
- 26. Азотирование, технология, назначение.

- 27. Бронзы. Состав, свойства, маркировка, применение,
- 28. Латуни. Состав, свойства, маркировка, применение.
- 29. Алюминий и сплавы на его основе (литейные)
- 30. Алюминий и сплавы на его основе (деформируемые, термически упрочняемые)
- 31. Алюминий и сплавы на его основе (деформируемые, термически не упрочняемые)
- 32. Антифрикционные сплавы и материалы (металлические, неметаллические).
- 33. Критерии хладостойкости материалов.
- 34. Хладостойкие сплавы.
- 35. Сплавы высокой проводимости, высокого сопротивления.
- 36. Магнитомягкие материалы
- 37. Магнитотвердые сплавы
- 38. Термопластичные полимеры.
- 39. Термореактивные полимеры.
- 40. Резины. Классификация, состав, свойства, применение.

4 семестр

Вопросы для проведения промежуточной аттестации по дисциплине (экзамен)

- 1. Определение, цель дисциплины, ее роль и место в конструкторско-технологической подготовке инженера.
- 2. Технологическая подготовка производства в машиностроении.
- 3. Этапы технологической подготовки производства, оставление технического задания, подготовка эскизного и рабочего проекта.
- 4. Оценка технологичности конструкции: технологические возможности оборудования.
- 5. Разработка технологических процессов обработки деталей и сборки изделий с технико-экономическим обоснованием.
- 6. Проектирование технологической оснастки.
- 7. Управление подготовкой производства (календарные планы, сроки).
- 8. Технологические характеристики типовых заготовительных процессов, методов обработки и сборки при изготовлении машин.
- 9. Разработка технологических процессов механической обработки и сборки. Технико-экономическое обоснование принятых технологических решений.
- 10. Сварка и пайка. Общая характеристика сварочного производства. Основные способы сварки.
- 11. Физические основы получения сварочного соединения. Понятие о свариваемости.
- 12. Специальные методы сварки. Электрошлаковая сварка. Контактная газовая сварка. Сварка. Область ее использования.
- 13. Пайка, особенности ее применения в отрасли.
- 14. Литейное производство. Технология изготовления литейных форм и стержней. Модельные комплекты. Формовочные и стержневые смеси и их свойства. Понятие о литниковой системе.
- 15. Литейные свойства сплавов.
- 16. Производство отливок из чугуна, стали, цветных сплавов и область их применения. Литье в песчаные формы.
- 17. Обработка металлов давлением. Понятие о пластичности металлов и сплавов, подвергающиеся обработке давлением.
- 18. Сущность и способы обработки металлов давлением.
- 19. Оборудование и инструмент, применяемые для ковки, штамповки, прокатки, прессования и волочения.

- 20. Производство труб и специальных профилей.
- 21. Обработка металлов резанием. Поверхности заготовок и координатные плоскости.
- 22. Элементы токарного проходного резца и углы.
- 23. Режим резания. Выбор режимов резания.
- 24. Тепловые явления при резании металлов. Силы резания, мощность.
- 25. Металлорежущие станки. Классификация металлорежущего оборудования, маркировка.
- 26. Приводы и передачи, применяемые в станках.
- 27. Токарно-винторезный станок 1К62. Технологическая характеристика станка и его основные узлы.
- 28. Кинематическая цепь главного движения станка 1К62.
- 29. Уравнение кинематической цепи подачи. Работы, выполняемые на токарновинторезных станках.
- 30. Сверление. Схема сверления и рассверливания. Режим резания.
- 31. Части и элементы спирального сверла.
- 32. Сверлильные и расточные станки. Общий вид вертикально-сверлильного станка.
- 33. Фрезерование. Режим резания при фрезеровании.
- 34. Работы, выполняемые на фрезерных станках.
- 35. Фрезерные станки. Основные узлы горизонтально-фрезерного станка.
- 36. Делительные головки. Способы деления.
- 37. Строгальные, долбежные, протяжные станки.
- 38. Схема протягивания. Режим резания при протягивании, инструмент.
- 39. Зубонарезание. Методы зубонарезания, инструмент.
- 40. Схема нарезания зубчатых колес. Основные движения.
- 41. Шлифование. Абразивные материалы.
- 42. Виды шлифования. Основные движения при шлифовании.
- 43. Технология сварки. Способы сварки.
- 44. Технология производства резинотехнических изделий.
- 45. Отделочные методы обработки. Их роль в обеспечении качества деталей.
- 46. Тонкое шлифование, точение, хонингование (схемы обработки, режим резания, качество поверхности).
- 47. Доводка. Суперфиниширование. Упрочнение поверхностей деталей.
- 48. Метрологические основы дисциплины. Оценка точности обработки деталей статистическими методами.
- 49. Определение настроечных размеров при обработке, выбор метода обеспечения заданных параметров точности при сборке машин.
- 50. Качество продукции. Формирование показателей качества поверхности тел вращения. Показатели качества изделия, детали.
- 51. Надежность, долговечность, работоспособность, безотказность.
- 52. Технико-экономические расчеты при обосновании технологических решений.

7. Рекомендуемая литература

7.1. Основная литература

- 1. Под ред. Арзамасова Б.Н. Материаловедение и технология конструкционных материалов. М.: МГТУ им. Н.Э. Баумана, 2009. 460 с.
- 2. Сильман Г.И. Материаловедение. М.: Издательский центр «Академия», 2008. 335 с.
- 3. Фетисов Г.П., Карпман М.Г., Матюнин В.М. и др. Материаловедение и технология конструкционных материалов. М.: Металлургия, 2001. –480 с.

7.2. Дополнительная литература

- 4. Дальский А.М. и др. Технология конструкционных материалов. М.: Машиностроение, 2002. 512 с.
- 5. Арзамасов Б.Н. Материаловедение. М.: МГТУ им. Н.Э. Баумана, 2003. 646 с
- 6. Лахтин Ю.М., Леонтьева В.П. Материаловедение. М.: Машиностроение, 1990. 320 с.
- 7. Под ред. М.Л. Берштейна, А.Г. Рахштадта. Металловедение и термическая обработка стали. М.: Металлургия, 2001, 393 с.
- 8. Под ред. А.С. Зубченко. Марочник сталей и сплавов М.: Машиностроение, 2003, 783 с.

7.3. Методические указания

- 1. Материаловедение: Учебно-методическое пособие к выполнению лабораторных и самостоятельных работ. / Р.М.Трибунская. Петропавловск-Камчатский: КамчатГТУ, 2019. 164 с.
- 2. Материаловедение. Материаловедение и технология конструкционных материалов: Учебно-методическое пособие к выполнению практических и самостоятельных работ. / P.M.Трибунская. Петропавловск-Камчатский: КамчатГТУ, 2014. 132 с.
- 3 Технология конструкционных материалов. Учебное пособие для студентов очной и заочной форм обучения/ Трибунская Р.М., Звонарева О.В. Петропавловск-Камчатский: Камчат Γ ТУ, 2013. 144 с.

8. Перечень ресурсов информационно-телекоммуникационной сети «интернет»

- 1. Библиотека Единое окно доступа к образовательным ресурсам [Электронный ресурс]. Электрон. дан. Режим доступа: http://window.edu.ru/window/library. Загл. с экрана.
- 2.Федеральная ЭБС «Единое окно доступа к образовательным ресурсам» URL: http://window.edu.ru
- 3.Электронная библиотека. Интернет-проект «Высшее образование». [Электронный ресурс]. Электрон. дан. Режим доступа: http://www.gaudeamus.omskcity.com/PDF_library_economic_finance.html— Загл. с экрана.
- 4.Электронные каталоги AUEC MAPKSQL: «Книги», «Статьи», «Диссертации», «Учебнометодическая литература», «Авторефераты», «Депозитарный фонд». URL: http://www.vzfei.ru/rus/library/elect_lib.html .— Загл. с экрана.
- 5.Электронно-библиотечная система «eLibrary»: [Электронный ресурс]. Режим доступа: http://www.elibrary.ru
- 6. http://hoster.bmstu.ru/~mt8/index.php?do=static&page=library официальный сайт ("Материаловедение") факультета МТ (Машиностроительные Технологии) МГТУ им. Н.Э. Баумана, Москва.
- 7..<u>http://mt.bmstu.ru/kafmt13.php</u> официальный сайт кафедры ("Технологии обработки материалов") факультета МТ (Машиностроительные Технологии) МГТУ им. Н.Э. Баумана, Москва

9. Методические указания для обучающихся по освоению лисшиплины

Методика преподавания данной дисциплины предполагает чтение лекций, проведение лабораторных занятий, групповых и индивидуальных консультаций по отдельным (наиболее сложным) специфическим проблемам дисциплины. Предусмотрена

самостоятельная работа студентов, а также прохождение аттестационных испытаний промежуточной аттестации (экзамен).

Лекции посвящаются рассмотрению наиболее важных концептуальных вопросов: о классификации и свойствах материалов. В ходе лекций обучающимся следует подготовить конспекты лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины; проверять термины, понятия с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь; обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на лабораторном или на практическом занятии.

Целью лабораторных и практических занятий является приобретение обучающимися опыта решения учебно-исследовательских и реальных практических задач на основе изученного теоретического материала; экспериментальное подтверждение и проверка существенных теоретических положений, умение решать практические задачи.

10. Курсовой проект

Не предусмотрен

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационно-справочных

Перечень информационных технологий, используемых в образовательном процессе

- электронные образовательные ресурсы, представленные в рабочей программе;
- использование слайд-презентаций;
- интерактивное общение с обучающимися и консультирование посредством ресурсов сети Интернет (общение на форумах, в социальных сетях, посредством электронной почты)

Перечень программного обеспечения, используемого в образовательном процессе:

- текстовые, табличные и графические редакторы пакета Microsoft Office;
- программы подготовки и просмотра презентаций;
- интернет-браузеры;
- почтовые клиенты (программы обмена электронной почтой);

Перечень информационно-справочных систем:

- справочно-правовая система «Консультант-плюс» http://www.consultant.ru/online
- справочно-правовая система «Гарант» http://www.garant.ru/online
- информационно-справочная система «Техэксперт» http://docs.cntd.ru
- информационно-справочная система «NormaCS» http://www.normacs.ru

12. Материально-техническое обеспечение дисциплины

Для проведения лабораторных работ используются специализированная лаборатория «Материаловедение»1-204

- комплект учебно-наглядных пособий «Материаловедение»;
- объемные модели металлической кристаллической решетки;
- образцы металлов (стали, чугуна, цветных металлов и сплавов);
- образцы неметаллических материалов.
- -Оборудование лаборатории и рабочих мест лаборатории:

Электронный микроскоп

Твердомер для испытания твердости металлов по методу Роквелла (пресс Роквелла) ТК-2, Бринелля Дефектоскоп Детали с видами химико-термической обработки (комплект) ОТ-24 Образцы черных и цветных металлов и их сплавов Стенды электрорадиоматериалов Металлографические микроскопы Шлифовальные станки Муфельная печь Сушильный шкаф Материалы для приготовления микрошлифов (наждачная бумага, паста Гойи, реактивы для травления Наборы инструментов: резцы, сверла, метчики, зенкеры, зенковки, развертки, фрезы. Угломеры. Дополнения и изменения в рабочей программе за / учебный год В рабочую программу по дисциплине _____ для специальности (тей) _____ вносятся следующие дополнения и изменения:

Атласы микроструктур металлов и сплавов

Дополнения и изменения внес	
	(должность, Ф.И.О.,
подпись)	
Рабочая программа пересмотрена и одобрен	на на заседании кафедры
	r.
Заведующий кафедрой	
	(подпись)
(Ф.И.О.)	