ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

Факультет информационных технологий, экономики и управления

Кафедра «Физика и высшая математика»

УТВЕРЖДАЮ

Декан технологического

факультета

Л. М. Хорошман

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Механика»

направление подготовки 20.03.02 «Природообустройство и водопользование» (уровень бакалавриата)

профиль «Природоохранное обустройство территорий», «Рекреационное природообустройство»

Рабочая программа дисциплины составлена на основании ФГОС ВО специальности (направления подготовки) _20.03.02 Природообустройство и водопользование.

Составитель рабочей программы	
доцент — Жапу	В. К. Панов
Рабочая программа рассмотрена на заседании кафедры «Физика (наименование кафедры)	а и высшая математика»
Протокол № <u>7</u> от « <u>14</u> » <u>декабря</u> 20 <u>22</u> года.	
Зав. кафедрой « <u>14</u> » <u>декабря</u> 20 <u>22</u> г.	А. И. Задорожный

1. Цели и задачи учебной дисциплины, ее место в учебном процессе

В рамках общепрофессиональной подготовки студенты в третьем семестре изучают дисциплину "Механика".

Эта дисциплина рассматривает общие закономерности механического движения тел и их равновесия, устанавливает общие приемы и методы решения вопросов, связанных с этим движением и равновесием. Рабочая программа предусматривает традиционный порядок изучения трех разделов теоретической механики: статика; кинематика; динамика.

В статике излагается учение о силах и об условиях равновесия материальных тел под действием системы сил. В кинематике рассматриваются общие геометрические свойства движения тел. В динамике изучаются законы движения материальных тел под действием сил.

Механика является важнейшей дисциплиной в образовании любого инженера, развивает логическое мышление, приводит к пониманию широкого круга явлений, относящихся к простейшей форме материи – к механическому движению.

Механика является научной основой общеинженерных и специальных технических дисциплин, изучаемых будущими инженерами. Она подготавливает студента к успешному изучению специальных дисциплин. Изучение данной дисциплины способствует расширению научного кругозора и повышению общей культуры будущего специалиста.

2. Требования к результатам освоения дисциплины

		I	
Код и наименова-	Код и наименование инди-	Планируемый результат обучения по дис-	Код показателя освое-
ние компетенции	катора достижения ОПК	циплине	кин
ОПК-2		Знать: законы механики;	3(ОПК-7)1
Способен принимать участие в научно- исследовательской деятельности на основе использования естественнонаучных и технических наук, учета требований экологической и производственной безопасности;	законы естественнонаучных дисциплин, связанные с профессиональной деятельностью. ИД-2 _{ОПК-2} : Владеет навыками применения основных законов естественнонаучных дисциплин, связанные в профессиональной деятельности. ИД-3 _{ОПК-2} : Умеет применять основные законы естественнонаучных дисциплин, связанные в про-	основные методы исследования механического движения; способы решения задач, относящихся к механическому взаимодействию тел в пространстве. Уметь: строить схемы нагрузок в различных системах; создавать системы отсчета, связанные с рассматриваемыми системами; устанавливать методы определения всех кинематических величин, характеризующих определенное движение. Владеть: умением применять теоретический материал к решению конкретных	3(ОПК-2)2 3(ОПК-2)3 У(ОПК-2)1 У(ОПК-2)2 У(ОПК-2)3

3. Место дисциплины в структуре образовательной программы

2.1. Связь с предшествующими дисциплинами.

Для изучения дисциплины «Механика» используются знания, полученные студентами при изучении дисциплин «Физика», «Высшая математика», «Инженерная графика».

2.2. Связь с последующими дисциплинами

Знания по дисциплине «Механика» используются при изучении таких дисциплин как сопротивление материалов, теория механизмов и машин, а также при выполнении расчетно-графических работ и курсовых проектов.

Дисциплина входит в обязательную часть образовательной программы.

4. Содержание дисциплины.

Очная форма обучения

	Всего часов	занятия	Контактная работа по видам учебных занятий			тьная	его кон-	нтроль
Наименование разделов и тем		Аудиторные з	Лекции	Семинары (практические занятия)	Лабораторные работы	Самостоятельная работа	Формы текущего кон- троля	Итоговый контроль знаний по дисциплине
Раздел 1.Статика							Расчётно-	
	64	34	12	18	4	30	графическая работа	
Тема 1. Системы сил. Сложение, разложение. проекции.	16	10	4	6		6	Р3	
Тема 2. Момент силы.	14	6	2	2	2	8	Р3	
Тема 3. Равновесие системы сил.	20	12	4	6	2	8	Р3	
Тема 4. Расчёт конструкций.	12	4	2	2		8	Р3	
Раздел 2. Кинематика.	67	32	12	12	8	35	Расчётно- графическая работа	
Тема 5. Характеристики движения.	33	18	6	8	4	15	Р3	
Тема 6. Плоское движение.	34	14	6	4	4	20	Р3	
Раздел 3. Динамика.	49	19	10	4	5	30	Расчётно- графическая работа	
Тема 7. Уравнения движения точки.	23	8	4	2	2	15	Р3	
Тема 8. Законы сохранения.	26	11	6	2	3	15	Р3	
Экзамен	36							36
Всего	216	85	34	34	17	95		36

5. Описание содержания дисциплины.

Модуль 1.

Лекция 1. Основные понятия и определения статики.

Введение. Цели и задачи дисциплины, ее место в учебном процессе. Механическое движение. Равновесие. Материальная точка. Абсолютно твердые и деформируемые тела. Сила – вектор. Система сил. Эквивалентность сил. Аксиомы статики. Связи и их реакции.

Лекция 2. Плоская система сходящихся сил.

Геометрический метод сложения сил, приложенных в одной точке. Проекция силы на ось и на плоскость. Аналитическое определение значения и направления равнодействующей плоской системы сходящихся сил (метод проекций). Условия равновесия системы сходящихся сил. Последовательность решения задач на равновесие плоской системы сходящихся сил.

Практическое занятие 1. Плоская система сходящихся сил. Сложение сил. Проекции сил. Решение задач из [5].

Лабораторное занятие 1. Равновесие плоской сходящейся системы сил. Решение задач из [5]. **Лекция 3.** Плоская система произвольных сил. Пара сил и её действие на тело. Эквивалентность пар.

Сложение и равновесие пар сил на плоскости. Момент силы относительно точки (центра). Условия равновесия плоской системы произвольных сил. Статически определимые и статически неопределимые системы тел (конструкции).

Практическое занятие 2. Плоская произвольная система сил. Решение задач из [5].

Лабораторное занятие 2. Момент силы относительно центра. Момент пары сил.

Лекция 4. Пространственная система сил.

Теорема о параллельном переносе силы. Приведение пространственной системы сил к данному центру. Частные случаи приведения. Теорема о моменте равнодействующей (теорема Вариньона). Условия равновесия пространственной системы сил.

Практическое занятие 3. Равновесие плоской произвольной системы сил.

Лабораторное занятие 3. Связи и их реакции. Виды связей. Решение задач из [5].

Лекция 5. Трение. Законы трения скольжения. Реакции шероховатых связей. Коэффициент трения, угол трения. Равновесие тел с учетом сил трения. Трение качения.

Лекция 6. Центр тяжести твердого тела.

Центр параллельных сил и его координаты. Центр тяжести твердого тела. Координаты центров тяжести однородных тел. Способы определения центров тяжести однородных тел.

Практическое занятие 4. Определение положения центра тяжести однородных тел. Решение задач из [5].

Самостоятельная работа студента по модулю 1.

- 1. Изучение лекционного материала.
- 2. Подготовка к практическим занятиям решение домашних задач.
- 3. Выполнение индивидуальных расчётно-графических заданий С1, С8из [2].

Модуль 2.

Лекция 7. Кинематика точки

Введение в кинематику. Способы задания движения точки. Вектор скорости точки. Вектор ускорения точки. Оси естественного трехгранника, касательное и нормальное ускорение точки. Частные случаи движения точки.

Практическое занятие 5. Закон движения точки. Траектория. Пройденный путь и перемещение точки. Решение задач из [5].

Лекция 8. Простейшие движения твердого тела

Поступательное движение твердого тела. Вращение тела вокруг неподвижной оси. Угловая скорость и угловое ускорение тела. Скорости и ускорения точек тела при вращательном движении.

Лабораторное занятие 4. Характеристики движения точки.

Практическое занятие **6.** Определение скорости и ускорения точки при различных способах задания движения. Решение задач из [5]

Лекция 9. Плоскопараллельное движение тела

Уравнения плоскопараллельного движения. Разложение на поступательное и вращательное. Определение скоростей точек плоской фигуры. Мгновенный центр скоростей. Теорема о проекциях скоростей двух точек тела. Определение ускорений точек плоской фигуры. Мгновенный центр ускорений.

Лабораторное занятие 5. Определение скоростей точек плоской фигуры. Мгновенный центр скоростей.

Лекция 10. Сложное движение точки

Относительное, переносное и абсолютное движения точки. Теорема о сложении скоростей. Сложение ускорений при сложном движении. Теорема Кориолиса.

Определение угловой скорости и углового ускорения. Скорости и ускорения точек тела при поступательном и вращательном движении тела. Решение задач из [5]

Самостоятельная работа студента по модулю 2.

- 1. Изучение лекционного материала.
- 2. Подготовка к практическим занятиям решение домашних задач.
- 3. Выполнение индивидуальных расчётно-графических заданий К1, К2 из [2].

Модуль 3.

Лекция 11. Основные положения динамики и уравнения движения точки

Законы и задачи динамики. Дифференциальные уравнения движения материальной точки и их интегрирование. Относительное движение точки. Виды колебательных движений материальной точки.

Лекция 12. Система материальных точек (механическая система).

Силы внешние и внутренние. Центр масс системы материальных точек. Момент инерции твердого тела относительно оси. Радиус инерции. Дифференциальные уравнения движения механической системы. Теорема о движении центра масс.

Лабораторное занятие 6. Момент инерции твердого тела относительно оси. Радиус инерции.

Практическое занятие 6. Абсолютное, относительное и переносное движение твердого тела. Решение задач из [5]

Лекция 13. Теоремы об изменении количества движения материальной точки и системы

Количество движения материальной точки и механической системы. Теорема об изменении количества движения точки и механической системы. Моменты количества движения материальной точки и системы относительно неподвижного центра и оси. Главный момент количества движения системы.

Пабораторное занятие 7. Моменты количества движения материальной точки и системы относительно неподвижного центра и оси.

Лекция 14. Теоремы об изменении кинетической энергии точки и механической системы.

Работа силы. Мощность. Теорема об изменении кинетической энергии материальной точки. Кинетическая энергия системы. Потенциальная энергия. Закон сохранения механической энергии. Механический коэффициент полезного действия.

Практическое занятие 7. Дифференциальные уравнения движения точки. Решение задач из [5]

Лекция 15. Машины и механизмы; кинематический и силовой анализ, взаимозаменяемость, передачи механического движения, проектирование передач.

Лабораторное занятие 8. Закон сохранения механической энергии. Механический коэффициент полезного действия.

Лекция 16. Валы и оси; нагрузки, расчетные схемы; подшипники качения и скольжения; механизмы для передачи движения в герметизированное пространство.

Лекция 17. Методы расчета сосудов и соединительных соединений; расчетные передачи; разъемные и неразъемные соединения; муфты, их подбор и конструирование.

Практическое занятие 8. Теоремы об изменении количества движения материальной точки и системы. Кинетический момент. Решение задач из [5]

Самостоятельная работа студента по модулю 3.

- 1. Изучение лекционного материала.
- 2. Подготовка к практическим занятиям решение домашних задач.
- 3. Выполнение индивидуальных расчётно-графических заданий Д1, Д2 из [2].

Самостоятельная работа студента заочной формы обучения: контрольная работа из [10].

Курсовой проект не предусмотрен.

6. Оценочные средства для проведения промежуточной аттестации.

Перечень вопросов к промежуточной аттестации.

- 1. Основные понятия и определения. Аксиомы статики. Связи, реакции связей. Простейшие теоремы статики.
- 2. Система сходящихся сил. Приведение к равнодействующей силе. Условия равновесия системы сходящихся сил. Многоугольник сил. Проекции силы на оси декартовых координат. Уравнение равновесия сил.
- 3. Теория пар сил. Пара сил. Момент пары сил. Эквивалентность пар.
- 4. Момент силы относительно точки и оси. Алгебраический и векторный момент силы относительно точки. Момент силы относительно оси с векторным моментом силы относительно точки. Теорема Вариньона.
- 5. Условия равновесия плоской системы сил. Три формы записи уравнений равновесия. Теорема о моменте равнодействующей
- 6. Сложение параллельных сил. Уравнение равновесия параллельных сил.
- 7. Центр тяжести. Определение и формулы для вычисления центров тяжести. Методы определения центров тяжести. Центры тяжести простейших тел. Геометрические характеристики плоских сечений.
- 8. Трение скольжения. Угол и конус трения. Равновесие тела на шероховатой поверхности. Трение качения.
- 9. Естественный, координатный, векторный способы задания движения точки. Траектория. Уравнения движения точки.
- 10. Скорость точки, вектор скорости точки. Определение скорости при задании ее движения векторным, координатным, естественным способом. Естественный трехгранник.
- 11. Ускорение точки. Ускорение точки в декартовых координатах. Ускорение точки при естественном способе задания движения точки.
- 12. Касательное и нормальное ускорения точки. Частные случаи движения точки.
- 13. Вращение твердого тела вокруг неподвижной оси. Угол поворота, угловая скорость и угловое ускорение.
- 14. Скорость и ускорение точек тела при вращении. Векторы угловой скорости и углового ускорения. Частные случаи вращения твердого тела.
- 15. Плоское движение твердого тела. Уравнение плоского движения твердого тела. Разложение на поступательное и вращательное движения. Угловая скорость и угловое ускорение тела при плоском движении. Мгновенный центр скоростей.
- 16. Вычисление угловой скорости при плоском движении тела. Ускорение точек тела.
- 17. Законы динамики. Дифференциальные уравнения движения материальной точки. Две основные задачи динамики точки.
- 18. Работа силы. Мощность. Теорема об изменении кинетической энергии точки. Теорема об изменении момента количества движения точки.
- 19. Теорема об изменении кинетической энергии механической системы.
- 20. Кинетическая энергия тела при поступательном, вращательном и плоскопараллельном движении.

7. Рекомендуемая литература

Основная литература:

- 1. Яблонский А.А., Никифорова В.М. Курс теоретической механики. Учебник для вузов /Издательство: Интеграл-Пресс 2006.
- 2. Яблонский А.А.. Сборник заданий для курсовых работ по теоретической механике. М.: Интерел-пресс, 2005.

Дополнительная литература

- 3. Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах. Часть 1. Часть 2.- М.: Наука, 1984
- 4. Тарг С.М.. Краткий курс теоретической механики. М.: Высшая школа, 1998.
- 5. Кепе О.Э.. Сборник коротких задач по теоретической механике. М.: Высшая школа, 1998.
- 6. Т.В. Крылова Теоретическая механика. Часть 1. Статика.
- 7. Часть 2. Кинематика. Петропавловск-Камчатский: КамчатГТУ, 2007.
- 8. Т.В. Крылова. Теоретическая механика. Часть 3. Динамика. Петропавловск-Камчатский: КамчатГТУ, 2007.
- 9. Т.В. Крылова. Теоретическая механика. Учебное пособие для аудиторной и самостоятельной работы. Петропавловск-Камчатский: КамчатГТУ, 2008.
- 10. Теоретическая механика: Методические рекомендации по изучению дисциплины для студентов инженерных специальностей и направлений очной и заочной форм обучения / В. К. Панов. Петропавловск-Камчатский: КамчатГТУ, 2010. 24 с. (http://shpoint/sites/kstu) Текст: электронный.

ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИН-ТЕРНЕТ»

- 1. Библиотека Единое окно доступа к образовательным ресурсам [Электронный ресурс]. Электрон. дан. Режим доступа: http://window.edu.ru/window/library. Загл. с экрана.
- 2. Российское образование. Федеральный портал [Электронный ресурс]. Электрон. дан. Режим доступа: http://www.edu.ru
- 3. Федеральная ЭБС «Единое окно доступа к образовательным ресурсам» URL: http://window.edu.ru

8. Методические указания для обучающихся по освоению дисциплины

В рамках усвоения учебной дисциплины "Механика " предусмотрены следующие виды учебных занятий:

- лекционного типа;
- семинарского типа;
- групповых консультаций;
- самостоятельной работы,

а также прохождение аттестационных испытаний промежуточной аттестации.

В ходе лекций студентам следует подготовить конспекты лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины; проверять термины и понятия с помощью словарей, энциклопедий, справочников с выписыванием толкований в тетрадь; обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удаётся разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, практическом занятии. Уделить внимание понятиям, которые обозначены обязательными для каждой темы дисциплины.

На учебных занятиях семинарского типа студенты выполняют проработку рабочей программы: пользуясь конспектом лекций, решают задачи.

Самостоятельная работа студентов по дисциплине включает такие виды работы как:

- 1. изучение материалов, законспектированных в ходе лекции;
- 2. изучение литературы, проработка и конспектирование источников;
- 3. решение домашней контрольной работы (РГР).

В ходе освоения дисциплины "Механика" студенты набирают максимально 100 баллов посредством выполнения предусмотренных видов учебно-познавательной деятельности.

9. Материально-техническое обеспечение дисциплины

- аудитория 2-314 на 24 посадочных места, столы, стулья, доска, мел в изобилии;
- стержень, нерастяжимая нить, растяжимая нить, шайба, мяч, угольник.