ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ (ФГБОУ ВО «КАМЧАТГТУ»)

Факультет информационных технологий, экономики и управления

Кафедра «Физики и высшей математики»

УТВЕРЖДАЮ Декан факультета информационных технологий, экономики и управления /И.А. Рычка/

«OI» gerasper 2021 r.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Физика»

по направлению •09.03.03 Прикладная информатика (уровень бакалавриат)

направленность (профиль): Прикладная информатика в экономике

Рабочая программа дисциплины составлена на основании ФГОС ВО направления подготовки 09.03.03 «Прикладная информатика» и учебного плана ФГБОУ ВО «КамчатГТУ»

Доцент, к.ф.-м. н

(должность, ученое звание, степень)

Симахина М.А. (Ф.И.О.)

Рабочая программа рассмотрена на заседании кафедры

«Физика и высшая математика» (наименование кафедры)

Протокол № 6 от 29.11. 2021 г

Заведующий кафедрой «29» ноября 2021 г.

(подпись)

Задорожный А.И. (.О.И.Ф)

1. ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ

Основная цель преподавания физики в техническом вузе — заложить фундаментальные основы инженерной подготовки, определяющей успешную деятельность инженера, менеджера, руководителя во всех областях, связанных с использованием техники.

Задачей курса физики является формирование у студентов целостного представления о фундаментальных физических закономерностях, лежащих в основе физических теорий, образующих современную физическую картину мира.

Также основными задачами изучения дисциплины являются:

- освоение современных базовых физических идей, принципов и методов, на которых основано современное научное мировоззрение и культура организационно-технического мышления;
- ознакомление с современной научной аппаратурой и методикой физического исследования, позволяющее развить навыки экспериментального технического поиска;
- выработка у студентов приемов и навыков решения конкретных задач из разных областей физики, помогающих в дальнейшем решать инженерные и организационноэкономические задачи.

Целью физического образования специалиста является:

- изучение дисциплины является обеспечение фундаментальной физической подготовки, позволяющей будущим специалистам ориентироваться в научно-технической информации, использовать физические принципы и законы, а также результаты физических открытий в тех областях техники, в которых они будут трудиться.
- формирование у студентов основ научного мышления, в том числе: пониманию границ применимости физических понятий и теорий; умению оценивать степень достоверности результатов теоретических и экспериментальных исследований; умению планировать физический и технический эксперимент и обрабатывать его результаты с использованием методов теории размерности, теории подобия и математической статистики.
- изучение основных физических явлений и идей курса физики и овладение на необходимом для инженера уровне фундаментальными понятиями, законами, теориями физики, правильным пониманием границ применимости физических понятий, законов и теорий;
- формирование у студентов навыков современного научного мышления, необходимых основ теоретической и практической (экспериментальной) подготовки для успешного освоения физики и последующих специальных технических дисциплины и обеспечения возможности ориентироваться в нарастающем потоке научной и технической информации, характерном для современной эпохи HTP;
- овладение приемами и методами решения задач из различных областей физики и формирование умения выделить конкретное физическое содержание в прикладных задачах, применения знаний основ фундаментальных теорий к их рациональному решению.

Изучение дисциплины на семинарских занятиях будет знакомить студентов с техникой современного физического эксперимента, студенты научатся работать с современными средствами измерений и научной аппаратурой, а также использовать средства компьютерной техники при расчетах и обработке экспериментальных данных. Студенты научатся постановке и выбору алгоритмов решения конкретных задач из различных областей физики, приобретут начальные навыки для самостоятельного овладения новыми методами и теориями, необходимыми в практической деятельности современного инженера.

На практических занятиях студенты закрепляют и конкретизируют полученные теоретические знания путем решения прикладных качественных и количественных задач, получают навыки моделирования процессов и явлений.

В результате изучения материалов курса физики студент должен знать:

- основные законы классической механики;
- идеи и методы молекулярной физики и термодинамики;
- элементы классической и современной электродинамики;
- основные понятия теории колебаний и волновых процессов;
- структурные особенности строения материи;

уметь:

- использовать законы классической и современной физики для анализа природных и техногенных явлений;
- решать профессиональные типовые задачи, имеющие ярко выраженную физикоматематическую основу;
- выделить конкретное физическое содержание в прикладных задачах;
- решать конкретные задачи из различных областей физики: механики, термодинамики и молекулярной физики, электродинамики, оптики и квантовой физики;
- пользоваться научно-технической литературой физического содержания с целью самостоятельного знакомства с современным состоянием знаний;

понимать:

- особенности взаимодействия классической и современной физики;
- общность физических законов в микро, макро и мега мирах;
- относительность физических явлений;
- проблематичность многих физических представлений;
- незаконченность построения физической картины Мира;
- взаимосвязь научных достижений с благополучием Цивилизации.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование следующих общепрофессиональных компетенций:

1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности. (ОПК-1);

Планируемые результаты обучения при изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы, представлены в таблице №1.

Таблица №1

Код компе- тенции	Планируемые результаты освоения образовательной программы	Планируемый результат обу- чения по дисциплине	Код пока- зателя освоения
ОПК-1	Способен применять есте- ственнонаучные и общеин- женерные знания, методы математического анализа и моделирования, теоретиче- ского и экспериментально- го исследования в профес- сиональной деятельности.	 энать: основные законы классической механики; идеи и методы молекулярной физики и термодинамики; элементы классической и современной электродинамики; основные понятия теории колебаний и волновых процессов; структурные особенности строения материи; 	3(ОПК-1)1

уметь:	У(ОПК-1)1
 использовать законы классической и современной физики для анализа природных и техногенных явлений; выделить конкретное физическое содержание в прикладных задачах; пользоваться научно-технической литературой физического содержания с целью самостоятельного знакомства с современным состо- 	y(Olik-1)1
янием знаний;	H/OHM 4)4
 понимать: взаимодействия механических, электромагнитных волн с веществом, взаимодействия ионизирующего излучения с веществом особенности взаимодействия классической и современной физики; общность физических законов в микро, макро и мега мирах; относительность физических явлений; проблематичность многих физических представлений; незаконченность построения физической картины Мира; взаимосвязь научных достижений с благополучием Цивилизации. 	П(ОПК-1)1

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Физика является относится к обязательной части в структуре образовательной программы. Изучаемые в курсе «Физика» разделы являются базой для изучения физических основ вычислительные системы, сети и телекоммуникации; информационные системы и технологии; информационная безопасность; безопасность жизнедеятельности; геотермальных процессов.

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Тематический план дисциплины

2 семестр

•	0B	e 3a-			м учебных			. КОН- ий по ине
Наименование разделов и тем	Всего часо	Аудиторны нятия	Лекции	Практиче- ские заня- тия	Лабора- торные работы	Самостоятел работа	Формы текущего контроля	Итоговый кс троль знаний дисциплин
1	2	3	4	5	6	7	8	9
Раздел 1. Основы механики	51	24	8	8	8	27	Контроль	

Всего	144	54	18	18	18	54		36
Экзамен	36						Тестирова- ние, опрос	36
стики							T	
и его основные характери-	12	6	2	2	2	6		
Лекция 2.5 . Магнитное поле								
теристики.								
поле и его основные харак-	12	6	2	2	2	6		
Лекция 2.4. Электрическое								
ских колебаний.	11				2		работ,	
тия и уравнения механиче-	11	6	2	2	2	5	бораторных	
альных газов. <i>Лекция 2.3.</i> Основные поня-							практиче-	
Лекция 2.2. Основное уравнение нение молекулярно- кинетической теории иде-	11	6	2	2	2	5	лекций, тестирова- ние, защита	
чении вещества. Пакция 2.2 Основное угор							верка кон-	
тия молекулярной физики. Идеальный и реальный газ. Статистический и термодинамический методы при изу-	11	6	2	2	2	5	Контроль СРС, дис- куссия, ре- шение за- дач, про-	
Лекция 2.1. Основные поня-							-	
ния и волны и электромаг- нетизм								
зика , механические колеба-	57	30	10	10	10	27		
Раздел 2. Молекулярная фи-								
динамики вращательного движения тела Работа сил.	14	6	2	2	2	8	бораторных работ,	
Лекция 1.4. Основной закон							ских и ла-	
Лекция 1.3 Законы Ньютона.	12	6	2	2	2	6	практиче-	
дого тела. Виды сил в природе.	13	6	2	2	2	7	лекций, тестирова- ние, защита	
Лекция 1.2 Кинематика вращательного движения твер-							верка кон-	
Основные понятия физики.							дач, про-	
физики для специальности.	12	6	2	2	2	6	куссия, ре-	
<i>Лекция 1.1.</i> Предмет и роль							СРС, дис-	

Всего | 144 | 54 | 18 | 18 | 54 | 18 | Тематический план дисциплины заочной формы обучения

1 курс

Наименование разделов и тем	Всего часов	Аудиторные за- нятия		Практиче- ские заня- тия тия	ж й ж ебных	Самостоятельная работа	Формы текущего контроля	Итоговый кон- троль знаний по дисциплине
1	2	3	4	5	6	7	8	9
Раздел 1. Молекулярная физика и термодинамика.	43	2	1	1	0	41	Контроль СРС, за- щита практиче- ских и ла-	
Лекция 1.1. Молекулярно- кинетическая теория газов	43	2	1	1	0	41	боратор- ных работ,	

Раздел 2. Электричество и элек-							проверка РГЗ	
тромагнетизм	92	10	3	3	4	82	Контроль СРС, за-	
Пекция 2.1. Электрический ток, сила и плотность тока. Закон Ома. Работа и мощность тока. Правила Кирхгофа.	45	4	1	1	2	41	щита практиче- ских и ла- боратор-	
Лекция 2.2. Магнитное поле. Электромагнитная индукция. Магнитные свойства вещества.	47	6	2	2	2	41	ных работ, проверка РГЗ	
Экзамен	9						Тестиро- вание, опрос	9
Всего	144	12	4	4	4	123		9

4.2. Описание содержания дисциплины по разделам и темам

Второй семестр.

Раздел 1. Основы механики

Лекция 1.1. Предмет и роль физики для специальности. Основные понятия физики.

Рассматриваемые вопросы: Макро- и микромир. Основные представления о пространстве-времени. Классическая механика, релятивистская механика, квантовая механика. Элементы кинематики материальной точки. Кинематические уравнения поступательного движения.

Практическое занятие 1.1. Кинематика поступательного движения материальной точки (1)

Литература: [5], [6], [9], [12], [13], [17], [18]

Лабораторное занятие 1.1 Элементы теории погрешностей (1M).

Литература: [7]

Лекция 1.2 Кинематика вращательного движения твердого тела.

Рассматриваемые вопросы: Тангенциальное и нормальное ускорения. Угловая скорость, угловое ускорение и связь их с линейными величинами. Инерциальные и неинерциальные системы отсчета. Масса, импульс, сила. Виды сил в природе.

Практическое занятие 1.2 Кинематика поступательного движения материальной точки (2)

Литература: [5], [6], [9], [12], [13], [17], [18]

Лабораторное занятие 1.2. Проверка основного закона динамики поступательного движения на машине Атвуда (2M).

Литература: [7]

Лекция 1.3 . Законы Ньютона.

Рассматриваемые вопросы: Законы Ньютона. Второй закон Ньютона как основное уравнение движения. Закон сохранения импульса в замкнутой системе. Момент инерции твердого тела, момент силы, момент импульса. Моменты инерции некоторых тел. Теорема Штейнера.

Практическое занятие 1.3 Динамика поступательного движения материальной точки

Литература: [5], [6], [9], [12], [13], [17], [18]

Лабораторное занятие 1.3. Изучение законов сохранения импульса и механической энергии на баллистическом маятнике (3M). Защита лабораторных работ 1м, 2м.

Литература: [7]

Лекция 1.4. Основной закон динамики вращательного движения. Работа сил.

Рассматриваемые вопросы: Основной закон динамики вращательного движения тела относительно неподвижной оси. Работа постоянной и переменной силы и связь ее с кинетической энергией поступательного и вращательного движения. Кинетическая и поступательная энергия. Мощность.

Практическое занятие 1.4 Работа и энергия в механике

Литература: [5], [6], [9], [12], [13], [17], [18]

Лабораторное занятие 1.4. Изучение диссипативного влияния среды на колебания математического маятника.

Литература: [7]

Раздел 2. Молекулярная физика, механические колебания и волны и электромагнетизм Лекция 2.1. Основные понятия молекулярной физики

Рассматриваемые вопросы: Молярность. Плотность вещества. Идеальный и реальный газ. Статистический и термодинамический методы при изучении вещества. Закон Бойля-Мариота. Закон Авогадро, Закон Дальтона. Уравнение менделеева-Клапейрона. Уравнение состояния идеального газа. Основное уравнение молекулярно - кинетической теории и следствия из него. Молекулярно-кинетическое толкование температуры.

Практическое занятие 2.1. Молекулярно-кинетическая теория идеальных газов Литература: [5], [6], [9], [12], [13], [17], [18]

Пабораторное занятие 2.1. Вводное занятие к практикуму по электромагнетизму. Питература: [8]

Лекция 2.2. Основное уравнение молекулярно-кинетической теории идеальных газов. *Рассматриваемые вопросы:* Распределение Максвелла молекул идеального газа по скоростям. Барометрическая формула. Распределение Больцмана частиц в силовом поле. Понятие о нормальном и инверсном распределениях.

Практическое занятие 2.2. Барометрическая формула. Распределения молекул по скоростям и энергиям.

Литература: [5], [6], [9], [12], [13], [17], [18]

Лабораторное занятие 2.2. Определение емкости конденсатора баллистическим гальванометром (2э)

Литература: [8]

Лекция 2.3. Основные понятия и уравнения механических колебаний.

Рассматриваемые вопросы: Дифференциальные уравнения свободных незатухающих колебаний: математического, физического и пружинного маятника. Периоды колебаний. Графики колебаний смещения, скорости, энергии. Сложение гармонических колебаний одинаковой частоты.

Практическое занятие 2.3. Кинематика и динамика свободных механических колебаний.

Литература: [5], [6], [9], [12], [13], [17], [18]

Лабораторное занятие 2.3. Определение сопротивления мостиком Уитстона (3э). Литература: [8]

Лекция 2.4. Электрическое поле и его характеристики

Рассматриваемые вопросы: Электрический заряд. Закон сохранения заряда. Закон Кулона. Взаимодействие распределенных зарядов. Электрическое поле и его силовая характеристика - вектор напряженности. Принцип суперпозиции полей.

Практическое занятие 2.4. Сложение гармонических колебаний

Литература: [5], [6], [9], [12], [13], [17], [18]

Лабораторное занятие 2.4. Снятие вольт-амперной характеристики полупроводни-кового диода.

Литература: [8]

Лекция 2.5. Магнитное поле и его основные характеристики.

Рассматриваемые вопросы: Контур с током. Магнитная индукция. Вектор напряженности. Закон Био-Савара-Лапласса. Закон Ампера. Сила Лоренца.

Практическое занятие 3.3. Контрольная работа.

Литература: [5], [6], [9], [12], [13], [17], [18]

Лабораторное занятие 2.5. Сравнение шкал звуковых генераторов по фигурам Лиссажу (3κ) .

Литература: [10]

Подробное описание содержания практических занятий приведено в приложении ФОС по данной дисциплине.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДЛЯ CAMOCTOЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

5.1. Внеаудиторная самостоятельная работа курсантов / студентов

Самостоятельная работа студентов по дисциплине «Физика» является важной составляющей частью подготовки студентов по специальности 09.03.03 «Прикладная информатика» и выполняется в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) и учебным планом КамчатГТУ.

Самостоятельная работа студентов ставит своей целью:

- 1. изучение материалов, законспектированных в ходе лекции;
- 2. подготовка к практическим занятиям;
- 3. развитие навыков ведения самостоятельной работы;
- 4. приобретение опыта систематизации полученных результатов исследований, формулировку новых выводов и предложений как результатов выполнения работы;
- 5. развитие умения использовать научно-техническую литературу и нормативнометодические материалы в практической деятельности;
 - б. поиск и проработка материалов из Интернет-ресурсов, научных публикаций;
 - 7. приобретение опыта защиты результатов самостоятельной работы;
- 8. формирование навыка оперативного реагирования на разные мнения, которые могут возникать при обсуждении тех или иных научных проблем.
- 9. подготовка к текущему и итоговому (промежуточная аттестация) контролю знаний по дисциплине (экзамен).

Основная доля самостоятельной работы студентов приходится на подготовку к практическим и лабораторным занятиям, тематика которых полностью охватывает содержание курса. Самостоятельная работа по подготовке к семинарским занятиям предполагает умение работать с первичной информацией.

Распределение часов СРС по различным видам учебной деятельности

Очная форма обучения								
Семестр	Вид учебной деятельности	Кол-во часов						
	Изучение лекционного материала	8						
	Составление конспекта лекций	8						
2 00110000	Подготовка к практическим занятиям	8						
2 семестр	Подготовка к лабораторным работам	8						
	Решение комплекта домашних задач	12						
	Подготовка к промежуточной аттестации	10						
	Всего часов	54						
	Заочная форма обучения							
курс	Вид учебной деятельности	Кол-во часов						
	Изучение лекционного материала	10						
	Составление конспекта лекций	10						
1 курс	Подготовка к практическим и лабораторным занятиям	13						
	Решение комплекта домашних задач	50						
	Подготовка к промежуточной аттестации	40						
	Всего часов	123						

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине «Физика» представлен в приложении к рабочей программе дисциплины и включает в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы;
- описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания;
- типовые контрольные задания или материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций;

методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

6.1. Перечень вопросов к промежуточной аттестации (экзамен).

Второй семестр

Экзаменационные вопросы

- 1. Кинематика поступательного движения.
- 2. Кинематика вращательного движения. Связь между линейными и угловыми величинами.
- 3. Динамика материальной точки. Законы Ньютона, силы в механике.
- 4. Динамика твердого тела
- 5. Молекулярно-кинетический и термодинамический подходы к изучению вещества.
- 6. Уравнение Менделеева Клапейрона и основное уравнение молекулярно-кинетической теории.
- 7. Следствия из основного уравнения молекулярно-кинетической теории. Молекулярно-кинетическое толкование температуры. Средняя квадратичная скорость молекул.
- 8. Понятие о распределении Максвелла молекул идеального газа по скоростям их теплового движения.
- 9. Барометрическая формула. Распределение Больцмана. Понятия и нормальном и инверсном распределениях частиц по энергиям.

- 10. Основные понятия механических колебаний. Дифференциальное уравнение свободных незатухающих колебаний груза на пружине и его решение.
- 11. Дифференциальное уравнение свободных незатухающих колебаний для математического и физического маятников. Периоды.
- 12. Графики смещения, скорости и энергии свободных незатухающих механических колебаний.
- 13. Представление колебаний в геометрической форме и в форме комплексных чисел.
- 14. Сложение одинаково направленных колебаний. Биения.
- 15. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- 16. Дифференциальное уравнение свободных затухающих колебаний и его решение.
- 17. Уравнение механической волны. Волновое уравнение.
- 18. Стоячая волна. Собственные частоты. Элементы акустики.
- 19. Электрический заряд. Закон сохранения заряда. Закон Кулона. Взаимодействие распределенных зарядов.
- 20. Электрическое поле и его силовая характеристика вектор напряженности. Принцип суперпозиции полей.
- 21. Силовые линии электрического поля. Работа по перемещению заряда в электрическом поле. Потенциал. Разность потенциалов.
- 22. Первое уравнение Максвелла для электростатики в интегральной и дифференциальной форме. Связь напряженности и потенциала через градиент.
- 23. Поток вектора напряженности. Теорема Гаусса и ее применение к расчетам некоторых электрических полей.
- 24. Второе уравнение Максвелла для электростатики в интегральной и дифференциальной форме. Проводники в электрическом поле. Электростатическая защита.
- 25. Диэлектрики в электрическом поле. Поляризация ориентационная и деформационная. Вектор электрического смещения. Сегнетоэлектрики. Пьезоэлектрики. Электрострикция.
- 26. Электроемкость. Конденсаторы. Соединения. Энергия заряженного конденсатора. Плотность энергии электрического поля.
- 27. Постоянный ток. Сила и плотность тока. Закон Ома в локальной форме. Закон Джоуля Ленца в локальной форме.
- 28. Классическая электронная теория металлов. Вывод законов Ома и Джоуля Ленца из классической электронной теории.
- 29. Закон Ома для участка цепи с источником э.д.с. Сторонние силы. Правила Кирхгофа.
- 30. Затруднения классической электронной теории металлов. Элементы квантовой теории. Возникновение зон разрешенной и запрещенной энергии.
- 31. Деление твердых тел на проводники, изоляторы, полупроводники. Собственная и примесная электропроводность полупроводников. Полупроводниковый диод и транзистор.
- 32. Ток в вакууме. Вакуумный диод и триод.
- 33. Магнитное поле и его силовая характеристика вектор магнитной индукции. Сила Лоренца.
- 34. Сила Ампера. Виток с током в магнитном поле.
- 35. Закон Био Савара Лапласа и его применение к расчетам некоторых магнитных полей. Невозможность монополя.
- 36. Теорема о циркуляции вектора магнитной индукции по замкнутому контуру. Первое уравнение Максвелла для магнитостатики в интегральной и дифференциальной форме.
- 37. Применение теоремы о циркуляции к расчету магнитного поля длинного соленоида и тороида.
- 38. Магнитный поток. Второе уравнение Максвелла для магнитостатики.
- 39. Явление электромагнитной индукции. Закон Фарадея, правило Ленца. Первое уравнение Максвелла для электродинамики в интегральнойи дифференциальной форме.
- 40. Электронный механизм возникновения э.д.с. индукции. Эффект Холла.

- 41. Индуктивность как статическая и динамическая характеристика магнитного поля.
- 42. Экстратоки размыкания и замыкания цепей.
- 43. Взаимоиндукция. Энергия магнитного поля. Плотность энергии электромагнитного поля.

7. РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

7.1. Основная литература

- 1. Детлаф А. А., Яворский Б. М. Курс физики: Учебное пособие для втузов/ А.А.Детлаф, Б. М. Яворский.- 6-е изд. Стер.- М.: Академия, 2007. 720с. (97 экз.)
- 2. Трофимова Т. И. Курс физики: Учебное пособие для вузов. М.: Академия, 2004 542с. (332 экз.)

7.2. Дополнительная литература

- 3. Исаков А. Я. Физика. Курс лекций в 5-ти частях. Петропавловск-Камчатский: КамчатГТУ, 2000. (48 экз.)
- 4. Исаков А. Я., Исакова В. В. Справочные физические величины. Петропавловск-Камчатский: КамчатГТУ, 2003. (137 экз.)
- 5. Иваницкая Ж.Ф. Механика и молекулярная физика методические указания к выполнению индивидуальных заданий, 2012 г. http://shpoint/sites/kstu
- 6. Иродов И.Е. Задачи по общей физике. Уч.пособие для вузов. 8-е изд.-М:Бином: Лаборатория Знаний, 2010.-431 с. (20 экз.)
- 7. Иваницкая Ж. Ф., Блинова Ю. Н. Физика. Основные законы классической механики: Сборник методических указаний к лабораторным работам для студентов и курсантов технических специальностей. Петропавловск-Камчатский: КамчатГТУ, 2007. http://shpoint/sites/kstu
- 8. Иваницкая Ж. Ф. Физика. Электромагнетизм. Методические указания к лабораторным работам. Петропавловск-Камчатский: КамчатГТУ, 2015. http://shpoint/sites/kstu
- 9. Исаков А. Я., Иваницкая Ж.Ф. Физика. Индивидуальные задания: учебное пособие. Петропавловск-Камчатский: КамчатГТУ, 2006. http://shpoint/sites/kstu
- 10. Иваницкая Ж.Ф. Физика. Электромагнитные колебания. Сборник методических указаний к лабораторным работам. Петропавловск-Камчатский: КамчатГТУ, 2002. http://shpoint/sites/kstu
- 11. Иваницкая Ж.Ф. Физика. Квантовая теория излучения. Сборник методических указаний к лабораторным работам. Петропавловск-Камчатский: КамчатГТУ, 2001.— http://shpoint/sites/kstu
- 12. Иваницкая Ж.Ф.. Механика, молекулярная физика и термодинамика. Методические указания к выполнению индивидуальных заданий. Петропавловск-Камчатский: КамчатГТУ, 2011. http://shpoint/sites/kstu
- 13. Иваницкая Ж.Ф.. Электромагнетизм, геометрическая и волновая оптика, атомная и ядерная физика. Методические указания к выполнению индивидуальных заданий. Петропавловск-Камчатский: КамчатГТУ, 2013. http://shpoint/sites/kstu
- 14. Иваницкая Ж.Ф. Физика. Механика, молекулярная физика, термодинамика. Методические указания и задания к контрольным работам для студентов заочной формы обучения. Петропавловск-Камчатский: КамчатГТУ, 2006 64с. http://shpoint/sites/kstu
- 15. Иваницкая Ж.Ф. Физика. Электромагнетизм, геометрическая и волновая оптика, атомная и ядерная физика. Методические указания и задания к контрольным работам для студентов заочной формы обучения. Петропавловск-Камчатский: КамчатГТУ, 2008 170 с. http://shpoint/sites/kstu
- 16. Савельев. И. В. Курс общей физики в 5-и книгах. Учебное пособие. М.: Астель, 2004. (72 экз.)
- 17. Трофимова Т. И. Сборник задач по физике. М.: Высшая школа, 1999. (336 экз.)
- 18. Чертов А. Г., Воробьев А. А. Задачник по физике. М.: Физматлит, 2007.(74 экз.)

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ»

- 1. Демо-версия компьютерного курса «Открытая Физика» http://www.physicon.ru/demo.html#1.
- 2. Online- лаборатория по физике Режим доступа: http://www.college.ru/laboratory/MainMenu.php3.
- 3. Универсальная энциклопедия Кирилла и Мефодия: http://mega.km..ru/bes_98/index/asp.
- 4. Путеводитель «В мире науки» Режим доступа: http://www.uic.ssu.samara.ru.
- 5. Электронная библиотека образовательных ресурсов. Режим доступа: http://infoteka.spb.ru
- 6. ЭБС издательства «Лань» [учебные, научные издания, первоисточники, художественные произведения различных издательств]: сайт. Режим доступа: http://e.lanbook.com.
- 7. ЭБС «Юрайт» [учебники и учебные пособия издательства «Юрайт»]: сайт. Режим доступа: :https://www.biblio-online.ru/catalog/
- 8. ЭБС «Znanium.com» [учебные, научные, научно-популярные материалы различных издательств, журналы]: сайт. Режим доступа: http://znanium.com/.
- 9. Научная электронная библиотека. Монографии, изданные в издательстве Российской Академии Естествознания [полнотекстовый ресурс свободного доступа]: сайт. Режим доступа: https://www.monographies.ru/.
- 10. Научная электронная библиотека статей и публикаций «eLibrary.ru»: российский информационно-аналитический портал в области науки, технологии, медицины, образования [5600 журналов, в открытом доступе 4800]: сайт. Режим доступа: http://www.elibrary.ru

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

В рамках усвоения учебной дисциплины «Физика» предусмотрены следующие виды учебных занятий:

- лекционного типа;
- семинарского типа;
- групповых консультаций;
- индивидуальных консультаций;
- самостоятельной работы,

а также прохождение аттестационных испытаний промежуточной аттестации.

Промежуточная аттестация проходит виде экзамена.

В ЭИОС «MOODLE» университета в разделе дисциплины «Физика» по направлению <u>09.03.03 Прикладная информатика</u> (уровень бакалавриат) представлены: конспекты лекций, варианты практических и контрольных работ, примеры оформления и решения задач, образец оформления титульного листа тетради для контрольной и лабораторных работ.

Лекции и практические занятия могут оформляться в одной тетради, так как темы практических занятий соответствуют лекционному материалу. Конспекты лекций должны быть написаны кратко, схематично. Студент должен последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины; проверять термины и понятия с помощью словарей, энциклопедий, справочников с выписыванием толкований в тетрадь; обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удаётся разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на практическом занятии. Уделить внимание понятиям, которые обозначены обязательными для каждой темы дисциплины.

Домашняя контрольная работа оформляется в отдельной тетради, снабжённой титульным листом, образец которого представлен как на стенде кафедры «Физика», так и на портале ЭИОС «МООDLE» университета в разделе дисциплины «Физика» по направлению 09.03.03 Прикладная информатика (уровень бакалавриат). В конце изучения курса тетрадь с

домашней контрольной сдается на кафедру «Физика». Также, в обязательном порядке, отчёт о данной контрольной работе должен быть представлен в ЭИОС университета в виде файла формата doc или pdf.

Лабораторные работы выполняются на лабораторных занятиях студентом индивидуально или в группе. Отчёт о выполнении лабораторной работы оформляется в отдельной тетради с титульным листом. При оформлении обязательно указывается номер и название работы, её цель, приборы и оборудование, а также краткий конспект теоретической части и данные эксперимента с необходимыми расчётами. Графики и расчёты к лабораторным работам можно выполнять в программе Microsoft Exel или Mathcad, тогда отчёт предоставляется только в электронном виде.

Перед выполнением лабораторной работы студенты должны получить допуск к ней.

Студенты, пропустившие занятия по уважительной причине могут взять у преподавателя дополнительное индивидуальное задание в виде решения задач и сделать конспекты пропущенных им лекций, воспользовавшись материалом из ЭИОС.

10. КУРСОВОЙ ПРОЕКТ (РАБОТА)

Выполнение курсового проекта (работы) не предусмотрено учебным планом.

11. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮ-ЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННО-СПРАВОЧНЫХ СИСТЕМ

11.1 Перечень информационных технологий, используемых при осуществлении образовательного процесса

- 1. электронные образовательные ресурсы, представленные в п. 8 данной рабочей программы;
 - 2. использование слайд-презентаций;
- 3. интерактивное общение со студентами посредством ресурсов сети Интернет (Zoom, в социальных сетях, через электронную почту)

11.2 Перечень программного обеспечения, используемого при осуществлении образовательного процесса

При освоении дисциплины используется лицензионное программное обеспечение:

- 1. текстовый редактор MicrosoftWord;
- 2. электронные таблицы MicrosoftExcel;
- 3. презентационный редактор MicrosoftPowerPoint;
- 4. интернет-браузеры;
- 5. программы обмена электронной почтой.

12. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1. для проведения лекционных и семинарских занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, самостоятельной работы используются учебные аудитории № 2-315, 2-314, 2-215 с комплектом учебной мебели;
- 2. для проведения лабораторных занятий, групповых и индивидуальных консультаций используются учебные аудитории № 2-215, 2-224 с комплектом лабораторных установок;
- 3. в аудитории № 2-315 установлены технические средства обучения и мультимедийное оборудование для представления учебной информации: цифровой проектор, интерактивная доска, акустическая система, ноутбук с доступом в информационнотелекоммуникационную сеть «Интернет» и в ЭИОС университета;