ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КамчатГТУ»)

Факультет Мореходный Кафедра «Технологические машины и оборудование»

УТВЕРЖДАЮ Декан мореходного факультета *Труднев С.Ю.*

«01» декабря 2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Механика жидкости и газа»

Направление подготовки:
15.03.02 «Технологические машины и оборудование»
(программа бакалавриата)
Профиль «Машины и аппараты пищевых производств»

Петропавловск-Камчатский, 2021

Рабочая программа составлена на основании ФГОС ВО направления подготовки 15.03.02 «Технологические машины и оборудование».

Составитель рабочей программы:

доцент, к.т.н.

В. А. Иодис

Рабочая программа рассмотрена на заседании кафедры «Технологические машины и оборудование» «23» ноября 2021 г. протокол № 3.

Заведующий кафедрой «Технологические машины и оборудование», к.т.н., доцент

«23» ноября 2021 г.

А. В. Костенко

1. Цели и задачи учебной дисциплины

Цель курса Механики жидкости и газа — состоит в изучении основ гидростатики, кинематики, гидродинамики, газостатики и газодинамики, ознакомить с основными свойствами жидкостей и газов; получить представление о закономерностях равновесия и движения жидкости и газов; освоить методы расчета и анализа процессов течения, проектирования гидравлических и газовых систем, развитии навыков инженерных расчетов и овладении методикой решения основных задач механики жидкости и газа.

Знания и умения, полученные в процессе изучения данного курса, способствуют более глубокому освоению специальных дисциплин.

Задача изучения дисциплины:

- приобретение глубоких знаний о сущности и закономерности процессов гидро- и газостатики, а также процессов, протекающих в гидравлических и газодинамических системах;
 - овладение экспериментальными методиками с обработкой и анализом результатов;
- приобретение необходимых знания о назначении, устройстве и принципе действия гидравлических и компрессорных машин;
 - сформировать у студентов навыки расчета гидравлических и газовых систем;
- овладение современными основами моделирования различных гидравлических и газодинамических процессов.

В процессе изучения дисциплины студент должен:

Знать:

- основные понятия, законы и модели статики, кинематики и динамики жидкостей и газов;
- методы математического анализа и моделирования гидравлических и газодинамических процессов (теория подобия).

Уметь:

- применять основные понятия, законы и модели статики, кинематики и динамики жидкостей и газов;
- применять методы математического анализа и моделирования гидравлических и газодинамических процессов (теория подобия).

Владеть:

- основными понятиями, законами и моделями статики, кинематики и динамики жидкостей и газов;
- методами математического анализа и моделирования гидравлических и газодинамических процессов (теория подобия).

2. Требования к результатам освоения дисциплины

Процесс изучения дисциплины направлен на формирование профессиональных компетенций:

ОПК-1 — способен применять естественнонаучные общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности.

Планируемые результаты обучения при изучении дисциплины, соотнесенные с планируемыми результатами освоения образовательной программы

	Планируемые	Код и	Планируемый результат	Код
Код	результаты	наименование	обучения	показателя
компет	освоения	индикатора	по дисциплине	освоения
енции	образовательн	достижения ПК		
	ой программы			
ОПК-1	Способен	ИД-10ПК-1: Знает	Знать:	
	применять	методы	- основные понятия, законы	3 (ОПК-1)1

	Планируемые	Код и	Планируемый результат	Код
Код	результаты	наименование	обучения	показателя
компет	освоения	индикатора	по дисциплине	освоения
енции	образовательн	достижения ПК		
	ой программы			
	естественнонау	математического	и модели статики,	
	чные	анализа и	кинематики и динамики	3 (ОПК-1)2
	общеинженерн	моделирования в	жидкостей и газов;	
	ые знания,	профессионально	- методы математического	
	методы	й деятельности	анализа и моделирования	
	математическо	ИД-20ПК-1: Умеет	гидравлических и	
	го анализа и	применять	газодинамических	
	моделирования	естественнонаучн	процессов (теория	
	В	ые	подобия).	
	профессиональ	общеинженерные	Уметь:	У (ОПК-1)1
	ной	знания	- применять основные	,
	деятельности.	ИД-3 _{ОПК-1} :	понятия, законы и модели	У (ОПК-1)2
		Владеет навыками	статики, кинематики и	,
		применения	динамики жидкостей и	
		естественнонаучн	газов;	
		ых	- применять методы	
		общеинженерных	математического анализа и	
		знаний, методов	моделирования	
		математического	гидравлических и	
		анализа и	газодинамических	
		моделирования в	процессов (теория	
		профессионально	подобия).	
		й деятельности	Владеть:	В (ОПК-1)1
			- основными понятиями,	,
			законами и моделями	В (ОПК-1)2
			статики, кинематики и	
			динамики жидкостей и	
			газов;	
			- методами	
			математического анализа и	
			моделирования	
			гидравлических и	
			газодинамических	
			процессов (теория	
			подобия).	

3. Место дисциплины в структуре образовательной программы

Учебная дисциплина «Механика жидкости и газа» - обязательная дисциплина в структуре образовательной программы, непосредственно связана с такими дисциплинами, как «Математика», «Физика», «Химия», «Начертательная геометрия», «Теоретическая механика», «Метрология, стандартизация и сертификация», «Гидравлика».

Знания, умения и навыки, полученные обучающимися в ходе изучения дисциплины «Механика жидкости и газа» необходимы для подготовки выпускной квалификационной работы.

4. Содержание дисциплины

4.1 Тематический план дисциплины

ОФО

		занятия	Ko pa	нтактн абота г видам чебны аняти	10 X	ельная :а	го контроля	роль знаний глине
Наименование разделов и тем	Всего часов	Аудиторные занятия	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	Формы текущего контроля	Итоговый контроль знаний по дисциплине
Раздел 1. Механика жидкости	75	46	18	18	10	29	Опрос, РЗ*, ЛБ*, РФ*, Тест*	
Тема 1: Введение в механику жидкости и газа	7	4	2	2	-	3	Опрос, РЗ*	
Тема 2: Физические свойства жидкостей, применяемых в различных технологических процессах профессах	7	4	2	2	-	3	Опрос, РЗ*	
Тема 3: Неньютоновские жидкости	7	4	2	2	-	3	Опрос, РЗ*	
Тема 4: Растворимости газов в жидкостях, смеси	7	4	2	2	-	3	Опрос, РЗ*	
Тема 5: Силы давления покоящейся среды на плоские и криволинейные стенки. Силовое воздействие потока на ограничивающие его стенки	6	4	2	2	-	2	Опрос, РЗ*	
Тема 6: Уравнение Бернулли. Истечение жидкости из отверстий и насадков	14	10	2	2	6	4	Опрос, РЗ*, ЛБ*	
Тема 7: Расчет простых и сложных трубопроводов	8	4	2	2	-	4	Опрос, РФ*	
Тема 8: Гидравлический удар	7	4	2	2	1	3	Опрос, РЗ*	
Тема 9 Насосы и гидравлические системы	12	8	2	2	4	4	Опрос, Р3*, ЛБ*, Тест №1	
Раздел 2. Механика газов	69	39	16	16	7	30	Опрос, P3*, ЛБ*, PФ*, Tест*	
Тема 1: Гидродинамическое подобие и моделирование потоков	7	4	2	2	-	3	Опрос, РЗ*	
Тема 2: Физические свойства газов. Газостатика и кинематика	7	4	2	2	-	3	Опрос, РЗ*	
Тема 3: Газодинамика	7	4	2	2	-	3	Опрос, РЗ*	
Тема 4: Потери давления на линейных и местных	13	8	2	2	4	5	Опрос, РЗ*, ЛБ*	

сопротивлениях в газоводах								
Тема 5: Аэродинамика инженерных сетей	12	7	2	2	3	5	Опрос, Р3*, ЛБ*	
Тема 6: Изопроцессы идеального газа	7	4	2	2	-	3	Опрос, РЗ*	
Тема 7: Истечение газов из отверстий	8	4	2	2	-	4	Опрос, РЗ*, РФ*	
Тема 8: Вентиляторы и газовые компрессоры	8	4	2	2	-	4	Опрос, Р3*, Тест* №2	
Контроль	36							
Экзамен							-	
Всего	180	85	34	34	17	59	-	

^{*} РЗ – решение задач, РФ – подготовка реферата; ЛБ – подготовка лабораторной работы; Тест – подготовка к тестированию.

3ው0

	Наименование разделов и тем Всего часов Всего часов		p: y	Контактная работа по видам учебных занятий		гельная та	та эго контроля	
Наименование разделов и тем			Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	Формы текущего контроля	Итоговый контроль з по дисциплине
Модуль 1. Механика жидкости	85	10	4	4	2	75		
Тема 1: Введение в механику жидкости и газа Тема 2: Физические свойства жидкостей, применяемых в различных технологических процессах Тема 3: Неньютоновские жидкости Тема 4: Растворимости газов в жидкостях, смеси Тема 5: Силы давления покоящейся среды на плоские и криволинейные стенки. Силовое воздействие потока на ограничивающие его стенки	42	5	2	2	1	37	Опрос, РЗ*	
Тема 6: Уравнение Бернулли. Истечение жидкости из отверстий и насадков Тема 7: Расчет простых и сложных трубопроводов Тема 8: Гидравлический удар Тема 9: Насосы и гидравлические системы	43	5	2	2	1	38	Опрос, РЗ*, ЛБ*	

Модуль 2. Механика газов	86	10	4	4	2	76		
Тема 1: Гидродинамическое подобие и моделирование потоков Тема 2: Физические свойства газов. Газостатика и кинематика Тема 3: Газодинамика Тема 4: Потери давления на линейных и местных сопротивлениях в газоводах	43	5	2	2	1	38	Опрос, Р3*, РФ*	
Тема 5: Аэродинамика инженерных сетей Тема 6: Изопроцессы идеального газа Тема 7: Истечение газов из отверстий Тема 8: Вентиляторы Тема 9: Газовые компрессора	43	5	2	2	1	38	Опрос, РЗ*, ЛБ*	
Экзамен	9							
Всего	180		8	8	4	151		

^{*} РЗ – решение задач, РФ – подготовка реферата; ЛБ – подготовка лабораторной работы; Тест – подготовка к тестированию.

4.2 Распределение учебных часов по разделам дисциплины

ne i demperente y termone ta	rest in puse circum energiament	
Наименование вида учебной	Раздел 1	Раздел 2
нагрузки		
Лекционные занятия	18	16
Лабораторные занятия	10	7
Практические занятия	18	16
CPC	29	30
Контроль	3	36
Экзамен	5 c	еем.
Всего часов	1	80

4.3 Содержания дисциплины

Раздел 1.

Продолжительность изучения раздела <u>8</u> недель.

Тематика лекционных занятий раздела 1:

Лекция 1.1. Тема: Введение в механику жидкости и газа

Рассматриваемые вопросы.

- Предмет и методы механики жидкости и газа;
- Идеальная и реальная жидкость, одномерная жидкость;
- Идеальный и реальный газ;
- Основные отличия жидкостей от газов.

Лекция 1.2. Тема: Физические свойства жидкостей, применяемых в различных технологических процессах

Рассматриваемые вопросы.

- Жидкости, используемые в различных технологических процессах и гидравлических машинах;
- Плотность и удельный объем, удельный вес, вязкость, сжимаемость, температурное расширение жидкостей.

Лекция 1.3. Тема: Неньютоновские жидкости

Рассматриваемые вопросы.

- Неньтоновские жидкости (суспензии, эмульсии, расплавы полимеров);
- Поведение ньютоновских и неньютоновских жидкостей;
- Коэффициент вязкости как нелинейная функция от приложенной силы.

Лекция 1.4. Тема: Растворимости газов в жидкостях, смеси

Рассматриваемые вопросы.

- Зависимость растворимости газов в жидкостях от давления над поверхностью жидкостей;
 - Зависимость растворимости от температуры (уравнение Клапейрона Клаузиуса);
 - Гомогенные и гетерогенные смеси.

Лекция 1.5. Тема: Силы давления покоящейся среды на плоские и криволинейные стенки. Силовое воздействие потока на ограничивающие его стенки

Рассматриваемые вопросы.

- Центр давления;
- Центр тяжести;
- Момент инерции относительно центральной оси;
- Мощность поверхностных и массовых сил;
- Закон о переносе энергии.

Лекция 1.6. Тема: Уравнение Бернулли. Истечение жидкости из отверстий и насадков *Рассматриваемые вопросы.*

- Уравнение Бернулли;
- Класификация отверстий и насадков;
- Истечение жидкости через отверстия в тонкой стенке при постоянном уровне;
- Истечение жидкости через отверстия в тонкой стенке при переменном ее уровне;
- Истечение жидкости через насадки.

Лекция 1.7. Тема: Расчет простых и сложных трубопроводов

Рассматриваемые вопросы.

- Основные задачи при расчете трубопроводов;
- Расчет простого трубопровода;
- Расчет сложного трубопровода;

Лекция 1.8. Тема: Гидравлический удар

Рассматриваемые вопросы.

- Гидравлический удар (прямой гидравлический удар, не прямой);
- Фаза удара, скорость распространения ударной волны, ударное повышение давления;

Лекция 1.9. Тема: Насосы и гидравлические системы

Рассматриваемые вопросы.

- Типы, виды насосов (центробежный, шестеренчатый, винтовой и др.);
- Особенности конструкции, работы;
- Основные параметры работы насосов и их характеристики: подача и напор, мощность и КПД, высота всасывания и кавитация в насосах;
 - Виды и типы гидравлических систем;
 - Расчет гидравлических систем (расчет потерь напора, подбор насоса).

Тематика лабораторных работ раздела 1:

Лабораторная работа 1.1. Тема: «Исследование процессов истечения жидкости через отверстия и насадки».

Содержание занятия.

Экспериментальное исследование процесса истечения жидкости через малое круглое отверстие, насадок Вентури и насадок со скругленными входными кромками. Расчет коэффициентов расхода, скорости и сжатия для отверстия и каждого вида насадок. Сравнение экспериментальных коэффициентов с табличными данными из справочной литературы.

Лабораторная работа 1.2. Тема: «Изучение конструкции и принципа действия шестеренчатых насосов с внутренним зацеплением».

Содержание занятия.

Изучение принципа действия шестеренчатых насосов и особенностей их устройства. Расчет основных параметров работы насоса.

Тематика практических занятий раздела 1:

Практическое занятие (ПЗ) 1.1. Тема: Решение задач по теме «Физические свойства жидкостей, применяемых в различных технологических процессах»

Рассматриваемые вопросы.

Определение плотности, удельного объема, удельного веса, вязкости, сжимаемости, температурного расширения жидкостей при различных температурах и давлениях.

Практическое занятие (ПЗ) 1.2. Тема: Решение задач по теме «Неньютоновские жидкости»

Рассматриваемые вопросы.

Определение вязкости суспензий, имульсий, коэффициента жесткости при сдвиге.

Практическое занятие (ПЗ) 1.3. Тема: Решение задач по теме «Растворимости газов в жидкостях, смеси»

Рассматриваемые вопросы.

- Определение объема растворенного газа, коэффициента растворимости, закон Генри, уравнение Клапейрона – Клаузиуса.

Практическое занятие (ПЗ) 1.4. Тема: Решение задач по теме «Силы давления покоящейся среды на плоские и криволинейные стенки. Силовое воздействие потока на ограничивающие его стенки»

Рассматриваемые вопросы.

- Определение центра давления, центр тяжести, момента инерции относительно центральной оси, мощности поверхностных и массовых сил.

Практическое занятие (ПЗ) 1.5. Тема: Решение задач по теме «Истечение жидкости из отверстий и насадков»

Рассматриваемые вопросы.

- Уравнение Бернулли для идеальной, реальной жидкости, потери напора. Расчет уровня жидкости в сосуде, расхода истекающей жидкости, скорости понижения уровня, скорости истечения, коэффициента скорости.

Практическое занятие (ПЗ) 1.6. Тема: Решение задач по теме «Расчет простых и сложных трубопроводов»

Рассматриваемые вопросы.

- Определение расхода жидкости, напора, потерь напора на трение по длине, местные сопротивления, гидродинамическое давление.

Практическое занятие (ПЗ) 1.7. Тема: Решение задач по теме «Гидравлический удар» Рассматриваемые вопросы.

- Расчет фазы гидравлического удара, скорости распространения ударной волны,

Практическое занятие (ПЗ) 1.8. Тема: Решение задач по теме «Насосы» Рассматриваемые вопросы.

- Расчет напоров, расходов, давлений на всасывании и нагнетании различных типов насосов.

Практическое занятие (ПЗ) 1.9. Тема: Решение задач по теме «Гидравлические системы» Рассматриваемые вопросы.

- Расчет потерь напоров, расходов, гидродинамических давлений на участках гидравлических систем, суммарных потерь напора гидравлических систем. Подбор насоса(ов).

Самостоятельная работа студента по разделу 1

Самостоятельная раоота стуо	enmu no pusochy i	
Наименование тем	Форма отчетности или контроля	Кол-во часов
Подготовка к лекці	иям	
Лекции 1 – 9 раздела 1	Опрос	3
Подготовка к лабораторны	м занятиям	
1. Исследование процессов истечения жидкости через отверстия и насадки	Оформление и подготовка	2
2. Изучение конструкции и принципа действия шестеренчатых насосов с внутренним зацеплением	работы	2
Подготовка к практически	м занятиям	
1. Физические свойства жидкостей, применяемых в различных технологических процессах	Подготовка к занятиям	2
2. Неньютоновские жидкости		2
3. Растворимости газов в жидкостях, смеси		2
4. Силы давления покоящейся среды на плоские и криволинейные стенки. Силовое воздействие потока на ограничивающие его стенки		2
5. Истечение жидкости из отверстий и насадков		2
6. Расчет простых и сложных трубопроводов		2
7. Гидравлический удар		2
8. Насосы		2
9. Гидравлические системы		2
Подготовка реферата (объем 6 – 7 листов)	Доклад	2
Подготовка к написанию Теста №1	Тест	2
	Итого:	29

Темы рефератов (объем 6-7 листов).

- 1. Приборы для измерения плотности жидкостей, используемых в различных технологических процессах (принцип действия, отличия).
- 2. Приборы для измерения вязкости жидкостей, используемых в различных технологических процессах (принцип действия, отличия).
- 3. Построение эпюр весового давления на плоскую стенку.
- 4. Построение эпюр весового давления на криволинейную стенку.
- 5. Относительный покой неньютоновских жидкостей (сравнении с относительным покоем ньютоновских жидкостей).
- 6. Зависимость коэффициентов истечения от числа Рейнольдса для малого круглого отверстия с острой кромкой.
- 7. Работа насосов на сеть.
- 8. Принцип действия, конструкция дискового насоса.
- 9. Принцип действия, конструкция струйного насоса.
- 10. Принцип действия, конструкция шнекового насоса.
- 11. Принцип действия, конструкция кулачкового насоса.
- 12. Принцип действия, конструкция поршневого плунжерного насоса.
- 13. Принцип действия, конструкция аксиально-поршневого насоса.
- 14. Принцип действия, конструкция радиально-поршневого насоса.
- 15. Принцип действия, конструкция кривошипного насоса.

Раздел 2.

Продолжительность изучения раздела ____9 недель.

Тематика лекционных занятий раздела 2:

Лекция 2.1. Тема: Гидродинамическое подобие и моделирование потоков

Рассматриваемые вопросы.

- Виды подобия и моделирования;
- Критерии подобия.

Лекция 2.2. Тема: Физические свойства газов. Газостатика и кинематика

Рассматриваемые вопросы.

- Плотность, удельный объем, удельный вес, вязкость температурное расширение, сжатие газов;
- Статическое давление;
- Основное уравнение газостатики;
- Приведенное давление газа;
- Основные понятия кинематики газов;
- Уравнение неразрывности газов.

Лекция 2.3. Тема: Газодинамика

Рассматриваемые вопросы.

- Уравнение Бернулли для идеального газа;
- Уравнение Бернулли для реального газа;
- Энергетический смысл уравнения Бернулли для газа;
- Статическое, динамическое давления газа.
- Режимы течения газа;
- Общая характеристика ламинарного и турбулентного течений;
- Особенности смены режимов течения, верхнее и нижнее критические числа Рейнольдса.

Лекция 2.4. Тема: Потери давления на линейных и местных сопротивлениях в газоводах *Рассматриваемые вопросы.*

- Потери давления на линейных сопротивлениях (ламинарный режим);
- Формулы Дарси-Вейсбаха, Дарси (ламинарный режим);
- Виды местных сопротивлений;
- Формула Вейсбаха;
- Определение коэффициента местного сопротивления для вентилей, конусов, сужений, расширений и т.д.

Лекция 2.5. Тема: Аэродинамика инженерных сетей

Рассматриваемые вопросы.

- Суммарные потери давления газа;
- Примеры и расчет вентиляционных систем с естественной тягой;
- Пример и расчет систем с естественной и искусственной циркуляцией.

Лекция 2.6. Тема: Изопроцессы идеального газа

Рассматриваемые вопросы.

- Изотермический (Закон Бойля Мариотта);
- Изобарный (Закон Гей-Люссака);
- Изохорный (Закон Шарля).
- Адиабатный процесс;
- Политропный процесс.

Лекция 2.7. Тема: Истечение газов из отверстий

Рассматриваемые вопросы.

- Скорость истечения газов (формула Сен-Венана);
- Сверхзвуковые сопла (сопла Лаваля);
- Истечение газа из отверстий с острой кромкой;

Лекция 2.8. Тема: Вентиляторы и газовые компрессора

Рассматриваемые вопросы.

- Типы, виды вентиляторов (центробежный, осевой, диаметральный и др.);
- Особенности конструкции, работы;
- Основные параметры работы вентиляторов и их характеристики: объемный расход и давление, мощность и КПД;
- Типы, виды компрессоров (газовый, воздушный, поршневые, роторно-винтовые и др.);
 - Особенности конструкции, работы;
- Основные параметры работы компрессоров и их характеристики: нагнетаемое давление, температура нагнетания, объемный и массовый расход, мощность и КПД.

Тематика лабораторных работ раздела 2:

Лабораторная работа 2.1. Тема: «Изучение потерь давления на местных сопротивлениях в воздуховодах».

Содержание занятия.

Изучение потерь давления на местных сопротивлениях в воздуховодах. Расчет коэффициентов местного сопротивления при внезапном расширении потока газа, при его внезапном сужении, при прохождении потоком воздуха вентиля. Расчет скоростей воздуха на различных участках аэродинамической трубы. Замер и расчет потери давления при течении воздуха на местных сопротивлениях.

Лабораторная работа 2.2. Тема: «Изучение потерь давления на линейных сопротивлениях в воздуховодах».

Содержание занятия.

Изучение потерь давления на линейных сопротивлениях в воздуховодах. Расчет

коэффициентов линейных сопротивлений при внезапном расширении потока газа, при его внезапном сужении, при прохождении потоком воздуха вентиля. Расчет скоростей воздуха на различных участках аэродинамической трубы. Замер и расчет потерь давления при течении воздуха на линейных сопротивлениях.

Тематика практических занятий раздела 2:

Практическое занятие (ПЗ) 2.1. Тема: Решение задач по теме «Гидродинамическое подобие и моделирование потоков»

Рассматриваемые вопросы

- Определение критериев подобия потоков газов и жидкостей (критерий Рейнольдса, Фруда, Вебера, Ньютона).

Практическое занятие (ПЗ) 2.2. Тема: Решение задач по теме «Физические свойства газов. Газостатика. Кинематика газа»

Рассматриваемые вопросы

- Определение плотности, вязкости, удельного веса газов;
- Определение абсолютного давления газа, используя основное уравнение газостатики;
- Определение параметров потока газа, используя уравнение неразрывности для газа.

Практическое занятие (ПЗ) 2.3. Тема: Решение задач по теме «Газодинамика. Режимы течения газа»

Рассматриваемые вопросы

- Определение давлений при использовании уравнения Бернулли идеального и реального газов;
- Определение верхнего и нижнего критических чисел Рейнольдса для различных типов потоков газа.

Практическое занятие (ПЗ) 2.4. Тема: Решение задач по теме «Потери давления на линейных и местных сопротивлениях в газоводах»

Рассматриваемые вопросы

- Определение потерь давления на линейных сопротивлениях, числа Рейнольдса, коэффициента линейного сопротивления (ламинарный режим течения газа);
- Определение потерь давления на линейных сопротивлениях при турбулентном режиме (формула Дарси-Вейсбаха);
- Определение коэффициента линейного сопротивления газа по формулам Альтшуля, Блазиуса;
- Определение коэффициента местного сопротивления для вентилей, конусов, сужений, расширений и потерь давления газа (формула Вейсбаха).

Практическое занятие (ПЗ) 2.5. Решение задач по теме «Аэродинамика инженерных сетей»

Рассматриваемые вопросы

- Расчет потерь давлений, естественно тяги и давления систем естественной циркуляции.

Практическое занятие (ПЗ) 2.6. Тема: Решение задач по теме: «Изопроцессы идеального газа»

Рассматриваемые вопросы

- Расчет давления, температуры, объема газов для изотермического, изобарного и изохорного процессов;
- Расчет давления, температуры, объема газов для адиабатного и политропного процессов.

Практическое занятие (ПЗ) 2.7. Решение задач по теме «Истечение газов из отверстий»

Рассматриваемые вопросы

- Определение скорости истечения газов из отверстий.

Практическое занятие (ПЗ) 2.8. Тема: Решение задач по теме: «Вентиляторы и газовые компрессора»

Рассматриваемые вопросы.

- Расчет основных характеристик различных типов вентиляторов;
- Расчет основных характеристик различных типов газовых компрессоров.

Самостоятельная работа студента по разделу 2

Наименование тем	Форма отчетности или контроля	Кол-во часов					
Подготовка к лекциям							
Лекции 1 – 9 раздела 2	Опрос	6					
Подготовка к лабораторны	м занятиям						
1. Исследование процессов истечения жидкости через отверстия и насадки	млен и товк оты	2					
2. Изучение конструкции и принципа действия шестеренчатых насосов с внутренним зацеплением	Оформлен ие и подготовк а работы	2					
Подготовка к практическим	и занятиям						
1. Гидродинамическое подобие и моделирование потоков		2					
2. Физические свойства газов. Газостатика. Кинематика газа	Подготовка к занятиям	2					
3. Газодинамика. Режимы течения газа	заня	2					
4. Потери давления на линейных и местных сопротивлениях в газоводах		2					
5. Аэродинамика инженерных сетей		2					
6. Изопроцессы идеального газа		2					
7. Истечение газов из отверстий		2					
8. Вентиляторы и газовые компрессора		2					
Подготовка реферата (объем 6 – 7 листов)	Доклад	2					
Подготовка к написанию Теста №2	Тест	2					
	Итого:	30					

Темы рефератов (объем 6 - 7 листов).

- 1. Законы гидродинамического подобия потоков
- 2. Геометрическое подобие напорных потоков.
- 3. Кинематическое подобие напорных потоков.
- 4. Динамическое подобие напорных потоков.

- 5. Критерий Ньютона.
- 6. Критерий Фруда.
- 7. Критерий Вебера.
- 8. Эмпирические зависимости для определения физических свойств газов.
- 9. Зависимость плотности газов от давления и температуры.
- 10. Зависимость вязкости газов от давления и температуры.
- 11. Зависимость коэффициента температурного расширения газов от температуры.
- 12. Приборы для измерения плотности газов (принцип действия, отличия).
- 13. Приборы для измерения вязкости газов (принцип действия, отличия).
- 14. Совершенствование методики экспериментального определения чисел Рейнольдса газа.
- 15. Отличия уравнения Бернулли для газов от уравнения Бернулли для жидкостей.
- 16. Молекулярный режим газового потока.
- 17. Влияние шероховатости стенок газовода на потери давления газа.
- 18. Влияние резкого расширения газовода на потери давления газа.
- 19. Влияние резкого сужения газовода на потери давления газа.
- 20. Влияние подогрева газа на энергозатраты при транспортировке газов.
- 21. Физическая сущность коэффициента сжатия струи газа.
- 22. Физическая сущность коэффициента скорости.
- 23. Физическая сущность коэффициента расхода
- 24. Применение пневмопривода в различных областях техники.
- 25. Движение газа в сложных газоводах.
- 26. Построение эпюров давления газов.
- 27. Примеры изотермического, изобарного и изохорного процессов в промышленности.
- 28. Примеры адиабатных процессов в промышленности.
- 29. Примеры политропных процессов в промышленности.

5. Учебно-методическое обеспечение для самостоятельной работы обучающихся

5.1 Внеаудиторная самостоятельная работа обучающихся

В целом внеаудиторная самостоятельная работа обучающегося при изучении курса включает в себя следующие виды работ:

- -проработка (изучение) материалов лекций;
- -чтение и проработка рекомендованной основной и дополнительной литературы;
- -подготовка к практическим и лабораторным занятиям;
- -оформление и подготовка лабораторных работ;
- -поиск и проработка материалов из Интернет-ресурсов, периодической печати;
- -выполнение домашних заданий в форме рефератов;
- -подготовка к тестированию;
- -подготовка к текущему и итоговому (промежуточная аттестация) контролю знаний по лиспиплине.

Основная доля самостоятельной работы обучающихся приходится на подготовку к практическим и лабораторным занятиям, тематика которых полностью охватывает содержание курса, подготовку лабораторных работ, подготовку к тестированию, подготовку рефератов.

Для проведения практических занятий, для самостоятельной работы используется:

- учебное пособие Иодис В.А. Механика жидкости и газа. Учебное пособие для студентов направлений 15.03.02 "Технологические машины и оборудование", 16.03.03 "Холодильная, криогенная техника и системы жизнеобеспечения" вузов региона / Петропавловск-Камчатский, 2019.-213 с.
- конспект лекций Иодис В.А. Механика жидкости и газа. Конспект лекций для студентов направлений 15.03.02 «Технологические машины и оборудование», 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» очной и заочной форм обучения / Петропавловск-Камчатский, 2020. 87 с.
- методические указания Иодис В.А. Механика жидкости и газа. Методические указания по выполнению лабораторных работ для студентов направления подготовки 15.03.02

«Технологические машины и оборудование» очной и заочной форм обучения / Петропавловск-Камчатский, 2019. — 38 с.

- учебно-методическое пособие Иодис В.А. Гидравлика. Учебное пособие для студентов морских специальностей. Петропавловск-Камчатский: КамчатГТУ, 2014. 125 с.
- конспект лекций для студентов направления 15.03.02 «Технологические машины и оборудование» очной и заочной форм обучения Иодис В.А., Сарайкина И.П. Гидравлика. Конспект лекций для студентов направления 15.03.02 «Технологические машины и оборудование» очной и заочной форм обучения. Петропавловск-Камчатский: КамчатГТУ, 2020. 50 с.

Вопросы для проведения промежуточной аттестации по дисциплине (экзамен)

- 1. Введение в Механику жидкости и газа (предмет и ее метод).
- 2. Основные свойства жидкостей.
- 3. Свойства гидростатического давления. Основное уравнение гидростатики.
- 4. Закон Архимеда (плавание тел, остойчивость). Закон Паскаля (гидравлические машины).
- 5. Основные понятия кинематики жидкости (линия тока, трубка тока, струйка тока, поток, гидравлический радиус).
 - 6. Расход жидкости. Уравнение неразрывности потока жидкости.
 - 7. Уравнение Бернулли для элементарной струйки тока идеальной жидкости.
 - 8. Уравнение Бернулли для потока вязкой (реальной жидкости) жидкости.
- 9. Линейные и местные потери напора. Геометрическая интерпретация уравнения Бернулли.
 - 10. Измерение расхода и скорости движения жидкостей. Типы расходомеров.
 - 11. Режимы движения жидкости (число Рейнольдса).
- 12. Общая характеристика ламинарного и турбулентного течений. Особенности смены режимов течения, критические значения критерия Рейнольдса.
 - 13. Ламинарный режим течения.
 - 14. Турбулентный режим течения. Механизм турбулентного потока.
 - 15. Потери напора при ламинарном, турбулентном режиме течения.
 - 16. Коэффициент линейного сопротивления, шероховатость.
 - 17. Определение потерь напора для труб некруглого сечения.
 - 18. Местные потери напора.
 - 19. Гидродинамическое подобие и моделирование потоков. Критерии подобия.
 - 20. Истечение жидкости из отверстий и насадок.
 - 21. Прямой и непрямой гидравлический удар.
 - 22. Кавитация.
 - 23. Гидравлические машины. Насосы. Гидравлические системы.
 - 24. Приборы для измерения плотности и вязкости жидкости.
 - 25. Основные свойства газов.
- 26. Основные величины статики газа, их свойства и определения. Основное уравнение газостатики.
 - 27. Основные понятия кинематики газов. Уравнение неразрывности газов.
 - 28. Уравнение Бернулли для реального идеального газа, отличия.
 - 29. Энергетический смысл уравнения Бернулли для газа.
- 30. Режимы течения газа. Особенности смены режимов течения, верхнее и нижнее критические числа Рейнольдса.
 - 31. Общая характеристика ламинарного и турбулентного течений.
- 32. Основные закономерности ламинарного режима течения газа. Энергетические потери при ламинарном режиме течения газа.
- 33. Основные закономерности турбулентного режима течения. Энергетические потери при турбулентном режиме течения газа.

- 34. Потери давления на линейных сопротивлениях (ламинарный режим);
- 35. Потери напора на линейных сопротивлениях (турбулентный режим);
- 36. Виды местных сопротивлений. Определение коэффициента местного сопротивления для вентилей, конусов, сужений, расширений и т.д.
 - 37. Истечение газа из отверстий. Скорость истечения газов (формула Сен-Венана).
- 38. Суммарные потери давления газа. Пример расчета вентиляционных систем с естественной тягой и систем с естественной циркуляцией.
- 39. Виды и типы систем вентиляции и кондиционирования воздуха. Основные задачи расчета систем кондиционирования.
 - 40. Изопроцессы идеального газа.
 - 41. Адиабатный и политропный процессы.
 - 42. Типы, виды вентиляторов (центробежный, осевой, диаметральный и др.);
 - 43. Особенности конструкции, работы вентиляторов;
 - 44. Основные параметры работы вентиляторов и их характеристики.
- 45. Типы, виды компрессоров (газовый, воздушный, поршневые, роторно-винтовые и др.);
 - 46. Особенности конструкции, работы;
 - 47. Основные параметры работы компрессоров и их характеристики.

6. Рейтинг-план дисциплины

Итоговая оценка по дисциплине в 5 семестре (очная форма обучения) определяется по результатам сдачи экзамена с учетом суммарного рейтинга.

Количество набранных баллов	Оценка
76-100	ОнриптО
61-75	Хорошо
46-60	Удовлетворительно
менее 45	Неудовлетворительно

Суммарный рейтинг по дисциплине

Очная форма обучения					
Семестр	Раздел 1	Раздел 2	Экзамен	Итого	
4	40	35	25	100	
	3a	очная форма обуч	нения		
Семестр	Раздел 1	Раздел 2	Экзамен	Итого	
3	40	35	25	100	

7 Рекомендуемая литература

7.1. Основная литература

- 1. Иодис В.А. Механика жидкости и газа. Учебное пособие для студентов направлений 15.03.02 "Технологические машины и оборудование", 16.03.03 "Холодильная, криогенная техника и системы жизнеобеспечения" вузов региона / Петропавловск-Камчатский, 2019. 213 с.
- 2. Иодис В.А. Механика жидкости и газа. Конспект лекций для студентов направлений 15.03.02 «Технологические машины и оборудование», 16.03.03 «Холодильная, криогенная техника и системы жизнеобеспечения» очной и заочной форм обучения / Петропавловск-Камчатский, 2020. 87 с.
- 3. Иодис В.А., Сарайкина И.П. Гидравлика. Конспект лекций для студентов направления 15.03.02 «Технологические машины и оборудование» очной и заочной форм обучения. Петропавловск-Камчатский: КамчатГТУ, 2020. 50 с.

4. Иодис В.А. Гидравлика. Учебное пособие для студентов морских специальностей. – Петропавловск-Камчатский: КамчатГТУ, 2014. – 125 с.

7.2. Дополнительная литература

- 1. Лойцянский Л.Г. Механика жидкости и газа: учебник, 2003г.
- 2. Лепешкин А.В., Шейнак А.А., Михайлин А.А. Гидравлика и гидропневмопривод: vчеб. пособие. 3-е изд.. М.: МГИУ, 2005 г. 352 с.
 - 3. Попов Д.Н. Механика гидро- и пневмоприводов: учебник, 2002г.

7.3. Перечень методических указаний по изучению дисциплины.

Иодис В.А.Механика жидкости и газа. Методические указания по выполнению лабораторных работ для студентов направления подготовки 15.03.02 «Технологические машины и оборудование» очной и заочной форм обучения / Петропавловск-Камчатский, 2019. — $38\ c.$

7.4. Материально-техническое обеспечение дисциплины

- 1. ГД7. Установка для изучения процессов истечения жидкости через отверстия и насадки.
- 2. Лабораторный стенд для изучения конструкции и принципа действия шестеренчатых насосов с внутренним зацеплением.
- 3. Установка для изучения потерь давления на местных и линейных сопротивлениях в воздуховодах.

7.5. Интернет ресурсы

Для повышения эффективности самостоятельной работы студентам рекомендуется использовать:

- 1. http://www.techgidravlika.ru/
- 2. http://www.gidrostanok.ru
- 3. http://www.hydromehanika.ru

7.6. Раздаточный материал

Номограммы Прандтля-Никурадзе, диаграммы зависимости физических свойств жидкостей и газов от температуры, схемы гидравлических систем, систем с естественной тягой, с естественной и искусственной циркуляциями, каталоги гидравлического оборудования, эскизы насосов, компрессоров, вентиляторов.

7.7. Перечень программного обеспечения, используемого при осуществлении образовательного процесса

При освоении дисциплины используется лицензионное программное обеспечение:

- -текстовый редактор Microsoft Word;
- -пакет Microsoft Office;
- -электронные таблицы Microsoft Excel.

8. Методические указания для обучающихся по освоению дисциплины

Методика преподавания данной дисциплины предполагает чтение лекций, проведение практических (семинарских) занятий, лабораторных занятий, групповых и индивидуальных консультаций по отдельным (наиболее сложным) специфическим проблемам дисциплины. Предусмотрена самостоятельная работа студентов, а также прохождение аттестационных испытаний промежуточной аттестации (экзамен).

Лекции посвящаются рассмотрению наиболее важных концептуальных вопросов: о свойствах жидкостей и газов, законах гидро- и газостатики, кинематики и гидро- и газодинамики, о режимах течения жидкостей и газов, о потерях напора и давления при

движении сред, о расчетах, подборе гидро- и газового оборудования, гидро- и газовых систем. В ходе лекций обучающимся следует подготовить конспекты лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины; проверять термины, понятия с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь; обозначить вопросы, термины, материал, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на лабораторном или на практическом занятии.

Целью проведения практических (семинарских) занятий является закрепление знаний обучающихся, полученных ими в ходе изучения дисциплины на лекциях, лабораторных занятиях и самостоятельно. Практические занятия проводятся в форме решения типовых задач дисциплины.

Целью лабораторного занятия является приобретение обучающимися опыта решения учебно-исследовательских и реальных практических задач на основе изученного теоретического материала; экспериментальное подтверждение и проверка существенных теоретических положений, умение решать практические задачи.

Дополнения и изменения в рабочей прогр	рамме на	учебный г	год
В рабочую программу по дисциплин подготовки 15.03.02 «Технологические аппараты пищевых производств» вносято	е машины и с	оборудование», пр	офиля «Машины и
Дополнения и изменения внес		(должность, Ф.И.С	
			,
Рабочая программа пересмотрена и одобр	рена на заседан	иии кафедры ТМО _	
«» 20 г.			
Заведующий кафедрой			
		(полпись)	(Ф.И.О.)

И