Документ подписан простой электронной подписью

Информация о владельце: ФИО: Левков Сергей Андреевич

Должность: Ректор

дата подписания: 30.05. Ден но также в рабочим программам дисциплин

по направлению подготовки Уникальный программный ключ:

0ec96352bebea6f8385fb9**2**77.0**3**.0**4**8**3.0**48**3.0**

(уровень бакалавриата)

Направленность (профиль) «УПРАВЛЕНИЕ И ИНФОРМАТИКА В ТЕХНИЧЕСКИХ СИСТЕМАХ»

	Оглавление	
1.	АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ	3
2.	АВТОМАТИЗИРОВАННЫЕ ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕ	
3.	АВТОМАТИЧЕСКИЕ РЕГУЛЯТОРЫ.	
4.	АРИФМЕТИЧЕСКИЕ ОСНОВЫ ЭВМ	7
5.	БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ	9
6.	ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ, СИСТЕМЫ И СЕТИ	10
7.	ЗАЩИТА ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ	12
8.	ИДЕНТИФИКАЦИЯ И ДИАГНОСТИКА СИСТЕМ	14
9.	ИНЖЕНЕРНАЯ И КОМПЬЮТЕРНАЯ ГРАФИКА	16
10.	ИНОСТРАННЫЙ ЯЗЫК	
11.	ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ СИСТЕМ УПРАВЛЕНИЯ	20
12.	ИНФОРМАЦИОННЫЕ СЕТИ И ТЕЛЕКОММУНИКАЦИИ	22
13.	ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ	24
14.	ИСТОРИЯ (ИСТОРИЯ РОССИИ, ВСЕОБЩАЯ ИСТОРИЯ)	26
15.	ЛОГИЧЕСКИЕ ОСНОВЫ ЭВМ	33
16.	ЛОКАЛЬНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ	34
17.	МАТЕМАТИКА	35
18.	МАТЕМАТИЧЕСКИЕ ОСНОВЫ ТЕОРИИ СИСТЕМ	42
19.	МЕТОДЫ ОПТИМИЗАЦИИ	44
20.	МЕТРОЛОГИЯ И ИЗМЕРИТЕЛЬНАЯ ТЕХНИКА	
21.	МИКРОПРОЦЕССОРНЫЕ УСТРОЙСТВА СИСТЕМ УПРАВЛЕНИЯ	47
22.	МОДЕЛИРОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ	48
23.	ОСНОВЫ НАУЧНЫХ ИССЛЕДОВАНИЙ	49
24.	ПРАВО	51
25	ИСТОРИЯ РОССИИ	52

ПРОГРАММИРОВАНИЕ И ОСНОВЫ АЛГОРИТМИЗАЦИИ	53
ПРОФЕССИОНАЛЬНЫЙ АНГЛИЙСКИЙ ЯЗЫК	55
ПСИХОЛОГИЯ УПРАВЛЕНИЯ	57
РАЗРАБОТКА ПРИКЛАДНЫХ ПРОГРАММ	59
РУССКИЙ ЯЗЫК И КУЛЬТУРА РЕЧИ	61
СИСТЕМНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ»	63
СОВРЕМЕННЫЕ МИКРОКОНТРОЛЛЕРНЫЕ СИСТЕМЫ	65
СОЦИОЛОГИЯ И ПОЛИТОЛОГИЯ	66
СПЕЦИАЛЬНЫЕ РАЗДЕЛЫ ТЕОРИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ	68
СПЕЦИАЛЬНЫЕ РАЗДЕЛЫ ФУНКЦИОНАЛЬНОГО АНАЛИЗА	70
СРЕДСТВА АВТОМАТИЗАЦИИ	71
СХЕМОТЕХНИКА	73
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА	74
ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ	76
ТЕОРИЯ ВЕРОЯТНОСТЕЙ, МАТЕМАТИЧЕСКАЯ СТАТИСТИКА И СЛУЧАЙН ПРОЦЕССЫ	НЫЕ 78
ТЕОРИЯ ГРАФОВ	80
ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ И УПРАВЛЕНИЯ	81
ФИЗИКА	83
ФИЗИЧЕСКАЯ КУЛЬТУРА И СПОРТ	85
ФИЗИЧЕСКИЕ ОСНОВЫ МИКРОЭЛЕКТРОНИКИ	87
ФИЛОСОФИЯ	89
химия	91
ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ	94
ЭКОНОМИКА И ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА	95
ЭЛЕКТИВНЫЕ КУРСЫ ПО ФИЗИЧЕСКОЙ КУЛЬТУРЕ	97
ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА	
ОСНОВЫ РОССИЙСКОЙ ГОСУДАРСТВЕННОСТИ	
ПРАВОВЫЕ ОСНОВЫ ПРОТИВОДЕЙСТВИЯ ЭКСТРЕМИЗМУ, ТЕРРОРИЗМУ КОРРУПЦИОННОМУ ПОВЕЛЕНИЮ	, 104
	ПРОФЕССИОНАЛЬНЫЙ АНГЛИЙСКИЙ ЯЗЫК ПСИХОЛОГИЯ УПРАВЛЕНИЯ. РАЗРАБОТКА ПРИКЛАДНЫХ ПРОГРАММ РУССКИЙ ЯЗЫК И КУЛЬТУРА РЕЧИ СИСТЕМНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ» СОВРЕМЕННЫЕ МИКРОКОНТРОЛЛЕРНЫЕ СИСТЕМЫ. СОЦИОЛОГИЯ И ПОЛИТОЛОГИЯ. СПЕЦИАЛЬНЫЕ РАЗДЕЛЫ ТЕОРИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ СПЕЦИАЛЬНЫЕ РАЗДЕЛЫ ФУНКЦИОНАЛЬНОГО АНАЛИЗА. СРЕДСТВА АВТОМАТИЗАЦИИ СХЕМОТЕХНИКА ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ТЕОРИЯ ВЕРОЯТНОСТЕЙ, МАТЕМАТИЧЕСКАЯ СТАТИСТИКА И СЛУЧАЙН ПРОЦЕССЫ. ТЕОРИЯ ГРАФОВ ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ И УПРАВЛЕНИЯ ФИЗИКА ФИЗИЧЕСКАЯ КУЛЬТУРА И СПОРТ ФИЗИЧЕСКИЕ ОСНОВЫ МИКРОЭЛЕКТРОНИКИ ФИЛОСОФИЯ ХИМИЯ ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ ЭКОНОМИКА И ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА ЭЛЕКТИВНЫЕ КУРСЫ ПО ФИЗИЧЕСКОЙ КУЛЬТУРЕ ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА ОСНОВЫ РОССИЙСКОЙ ГОСУДАРСТВЕННОСТИ ПРАВОВЫЕ ОСНОВЫ ПРОТИВОДЕЙСТВИЯ ЭКСТРЕМИЗМУ, ТЕРРОРИЗМУ

АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ

1. Цель и задачи дисциплины

Целью освоения дисциплины является развитие компетенций в области анализа автоматического проектирования систем управления, определения целей, результатов и путей их решения, эффективной работы в коллективе, использования имеющейся нормативной базы и современных информационных технологий при решении профессиональных задач.

Задачами дисциплины являются обучение студентов основам теории автоматического проектирования, необходимым при проектировании, исследовании, производстве и эксплуатации систем и средств автоматизации и управления; освоение студентами основных принципов построения систем автоматического проектирования и применения их на практике и в производстве.

В результате изучения дисциплины обучающийся должен:

<u>Знать</u> основные параметры процессы и объекты автоматизации и управления;

<u>Уметь</u> составлять техническое задание на разработку автоматизированной системы управления;

<u>Владеть</u> навыками выбирать стандартные средства автоматики, измерительной и вычислительной техники для проектирования систем автоматизации и управления.

2. Содержание дисциплины

Основные понятия процесса проектирования. Стадии проектирования. Требования стандартов международных К процессу проектирования. Процедуры проектирования. Маршруты проектирования. Схема этапа Процедуры процесса проектирования. выбора и принятия решений. Классификация и виды автоматизированных систем. Классификация САПР. Структура САПР. Поколения САПР. Функциональное назначение интегрированных CAE/CAD/CAM-cuctem при проектировании Функциональный структурный состав интегрированных САПР. функционального подхода для исследования систем Стандартизация управления (IDEF0). Базовые понятия стандарта IDEF0. Синтаксис и семантика IDEF0. Методические приемы разработки моделей IDEF0. Функциональное моделирование в методике IDEF3. Методология DFD. Модели элементов и систем управления. Классификация. Системное моделирование в виде СМО. Аналитическое моделирование. Имитационное моделирование. Сети Петри. Схемотехническое моделирование. Модели элементов. Компонентные и топологические уравнения. Метод контуров и задачи схемотехнического Основные моделирования. Схемотехническое моделирование БИС. Точные методы: метод подсхем, метод разреженных матриц. Приближенные методы: макромоделирования, гибридного моделирования.

АВТОМАТИЗИРОВАННЫЕ ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ

1. Цель и задачи дисциплины

Целью освоения дисциплины является ознакомление студентов с возможностями проектирования, создания и применения автоматизированных информационно-управляющих систем управления в сложных технических и технологических объектах.

Задачами дисциплины являются изучение структуры автоматизированных информационно-управляющих систем, декомпозиции задач управления по уровням АСУ ТП и основных методов их решения; изучение технического, алгоритмического, программного, информационного обеспечений современных автоматизированных информационноуправляющих систем; приобретение знаний и навыков в применении на необходимых для практике программных средств, профессиональной деятельности.

В результате изучения дисциплины обучающийся должен:

<u>Знать</u> функциональные возможности и структурную организацию автоматизированных информационно-управляющих систем, содержание отдельных видов обеспечения АИУС и их взаимосвязь, функциональные возможности специализированных программных пакетов;

<u>Уметь</u> применять специализированные программные пакеты и технические средства автоматизации для реализации информационных и управляющих функций;

Владеть:

- принципами и методами анализа, синтеза и оптимизации систем и средств автоматизации, контроля и управления;
- навыками работы с современными аппаратными и программными средствами исследования и проектирования систем управления;
- методикой синтеза функциональной, технической, алгоритмической структур АИУС и способами разработки программного обеспечения.

2. Содержание дисциплины

Общие сведения об автоматизированном управлении, особенности технических систем как объектов управления и автоматизированных систем управления ими. Отличия АСУ и САУ. Этапы создания АИУС. Место АИУС предприятии. Иерархическая структура управления производством. Автоматизированные системы управления технологическими процессами, основные понятия и определения. Признаки классификации АСУТП. Функции, составные части и структура АСУТП. Состав, структура и классификация автоматизированных технических средств управления. Тенденции развития средств измерения (полевого оборудования приборов). Программируемые вторичных микропроцессорные контроллеры (ПМК), особенности ПМК по отношению к микро-ЭВМ. Классификация ПМК по назначению и области применения. Интеграция

ПМК в систему управления предприятием. Алгоритмическое обеспечение автоматизированных информационно-управляющих систем. Первичная обработка информации, введенной в микропроцессорные средства контроля и управления. Алгоритмы аналитической градуировки датчиков, экстра- и интерполяции дискретно-измеряемых величин. Алгоритмы фильтрации. Общая и частные постановки задачи контроля. Составляющие погрешности оценки измеряемой величины. Вычислительные операции, уменьшающие оценки измеряемой величины. Алгоритмы цифрового погрешность регулирования. Разностные регулирования. Структура цифровой системы уравнения параметрически оптимизируемых (П, ПИ, ПИД) регуляторов. Состав и структура программного обеспечения. Общее программное обеспечение и прикладное. Операционные системы реального времени. Системы и языки программирования промышленных микропроцессорных контроллеров. Стандарт МЭК 61131. Системы программирования OpenPCS, IsaGraf. SCADA-пакеты, используемые для решения задач верхнего уровня автоматизированных систем. Функциональные возможности и особенности MasterSCADA. Назначение OPC сервера.

АВТОМАТИЧЕСКИЕ РЕГУЛЯТОРЫ

1. Цель и задачи дисциплины

Целью дисциплины «Автоматические регуляторы» является: изучение устройства, принципа действия и методов настройки современных регуляторов в системах автоматического и автоматизированного управления технологическими процессами.

Задачами дисциплины является удовлетворение потребностей общества квалифицированных кадрах путем подготовки разработке проектированию, И эксплуатации систем автоматизации производственных и технологических процессов изготовления продукции различного служебного назначения, управления ее жизненным циклом и качеством, контроля, диагностики И испытаний, подготовка высококвалифицированных специалистов, способных решать проектирования, изготовления, отладки, производственных эксплуатации и научного исследования средств технологического оснащения автоматизации, управления, контроля и диагностирования основного вспомогательного производств в области энергетики, их математического, программного, информационного и технического обеспечения.

В результате изучения дисциплины обучающийся должен:

<u>Знать</u> основные принципы построения систем локального управления, форм представления контроля и диагностики;

<u>Уметь</u> разрабатыватьлокальные системы и выполнять проверки и отладку систем и средств автоматизации технологических процессов;

<u>Владеть</u> навыками управления процессами, производства продукции и контроля ее качества, а также ремонта систем.

2. Содержание дисциплины.

Основы построения промышленных автоматических регуляторов. Классификация автоматических регуляторов. Типовые законы регулирования. Структурные схемы аналоговых регуляторов. Импульсные регуляторы. Позиционные регуляторы. Автоматические регуляторы прямого действия. Принципы построения автоматических аналоговых регуляторов. Цифровые автоматические регуляторы. Структурные схемы цифровых регуляторов. Уравнение регулятора в дискретной форме. Особенности программной реализации цифровых регуляторов. Модификации цифровых автоматических регуляторов. Реализация регулятора на базе промышленного контроллера.

Интерфейсы промышленных регуляторов. Ввод аналоговых дискретных сигналов в цифровые регуляторы. Вывод аналоговых И дискретных сигналов на исполнительные механизмы. Протоколы передачи данных в распределенных системах с цифровыми регуляторами. Методики цифровых регуляторов. Методы выбора промышленного регулятора. Определение параметров настройки регулятора методом. Метод Зиглера - Николса. Выбор параметров регулятора по модели объекта. Автоматическая настройка ПИД регулятора. Типовые алгоритмы автоматической настройки.

АРИФМЕТИЧЕСКИЕ ОСНОВЫ ЭВМ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Арифметические основы ЭВМ» являетсяподготовка инженеров, специализирующихся в области управления техническими системами, а также в вопросах проектирования, эксплуатации и совершенствования систем управления и разработке программного обеспечения автоматизированных систем управления

Задачами изучения дисциплины «Арифметические основы ЭВМ» является ознакомление студентов с основными математическими и логическими решениями, используемыми в современных системах управления, а также с принципами и методами совершенствования систем и их элементов.

В результате изучения дисциплины обучающийся должен:

<u>Знать</u> основные методы логического проектирования систем управления, такие как:

- метод неопределенных коэффициентов для базиса И-ИЛИ-НЕ;
- метод минимизирующих карт;
- метод Квайна;
- метод Квайна- Мак- Класки.

<u>Уметь</u> применять теоретические знания для проектирования современных систем управления.

<u>Владеть</u> навыками чтения и проектирования комбинационных схем, в том числе с использованием автоматизированной системы проектирования «Electronics Workbench».

2. Содержание дисциплины

Общие сведения об информации. Структурная мера информации. Статистическая мера информации. Семантическая мера информации. Преобразование информации. Формы представления информации. Передача информации.

ЭВМ как автомат. Абстрактные автоматы и понятие алгоритма.

Основные понятия алгебры логики. Свойства элементарных функций алгебры логики. Аналитическое представление функций алгебры логики. Совершенные нормальные формы. Системы функций алгебры логики.

Выбор системы счисления для представления числовой информации. Перевод числовой информации из одной позиционной системы счисления в другую. Разновидности двоичных систем счисления. Системы счисления с отрицательным основанием.

Формы представления числовой информации. Представление отрицательных чисел. Погрешности представления числовой информации.

Формальные правила двоичной арифметики. Сложение чисел, представленных в форме с фиксированной запятой, на двоичных сумматорах. Переполнение разрядной сетки. Особенности сложения чисел,

представленных в форме с плавающей запятой. Методы ускорения операции сложения. Оценка точности выполнения арифметических операций. Методы умножения двоичных чисел. Методы умножения чисел, представленных в форме с фиксированной запятой, на двоичном сумматоре прямого кода. Особенности умножения чисел, представленных в форме с плавающей запятой. Умножение чисел, представленных в форме с фиксированной запятой, на двоичном сумматоре дополнительного кода. Умножение чисел на двоичном сумматоре обратного кода. Метод сокращенного умножения. Ускорение операции умножения. Матричные методы умножения. Методы параллельного умножения с использованием итеративных структур. Систолический метод умножения. Методы деления двоичных чисел. Деление чисел, представленных в форме с фиксированной запятой, на сумматорах обратного и дополнительного кода. Особенности деления чисел, представленных в форме с плавающей запятой. Ускорение операции деления. Параллельные методы деления с использованием Операция извлечения квадратного итеративных структур. Представление десятичных чисел В Д-кодах. Формальные правила поразрядного сложения в Д-кодах. Представление отрицательных чисел в Д-кодах. Выполнение операций сложения и вычитания чисел в Д-кодах. Умножение чисел в Д-кодах. Деление чисел в Д-кодах. Извлечение квадратного корня в Д-кодах. Перевод чисел в Д-код.

Кодирование информации как средство обеспечения контроля работы автомата. Основные понятия теории кодирования. Методы эффективного кодирования информации. Кодирование по методу четности- нечетности. Коды Хэмминга. Контроль по модулю. Выбор модуля для контроля. Контроль логических операций. Контроль арифметических операций. Арифметические коды.

БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Безопасность жизнедеятельности» являетсязащита человека в техносфере от негативных воздействий антропогенного и естественного происхождения и достижение комфортных условий жизнедеятельности.

Задачами изучения дисциплины «Безопасность жизнедеятельности» являетсяприобретение студентами знаний и умений, направленных на уменьшение в техносфере физических, химических, биологических и иных негативных воздействий до допустимых значений.

В результате изучения дисциплины обучающийся должен:

<u>Знать</u> показатели негативности и критерии безопасности техносферы;

<u>Уметь</u> применять и создавать новые средства защиты в области своей профессиональной деятельности;

<u>Владеть</u> знаниями об уровнях допустимых воздействий негативных факторов и их последствиях на человека и природную среду.

2. Содержание дисциплины

Основные БЖЛ. понятия. термины, определения Критерии комфортности, безопасности и негативности техносферы. Практическое обеспечение БЖД. Основы физиологии труда и комфортные условия жизнедеятельности. Вредные вещества. Общие сведения о чрезвычайных ситуациях. Чрезвычайные ситуации, характерные для РФ. Источники военной опасности ДЛЯ РΦ. Организация антитеррористических мероприятий. Правовые и нормативно технические основы БЖД. Принципы, методы и средства обеспечения безопасности жизнедеятельности. Человек элемент системы «Человек – среда». Психология безопасности (антропогенные опасности). Социальные, деятельности техногенные опасности. Электрический ток и электромагнитные поля.

ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ, СИСТЕМЫ И СЕТИ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Вычислительные машины, системы и сети» изучение теоретических и практических основ построения, функционирования, архитектуры и структуры ЭВМ и систем.

Задачами изучения дисциплины «Вычислительные машины, системы и сети» являются:

- -изучение физических основ вычислительных процессов;
- -изучение основных принципов построения и функционирования вычислительных машин, а также отдельных устройств и программного обеспечения;
- -изучение архитектурных особенностей и организации функционирования вычислительных систем различных классов и их программного обеспечения;
- -изучение архитектурных особенностей вычислительных сетей, их аппаратного, информационного и программного обеспечения, типовых структур и организации функционирования;
- -изучение принципов функционирования локальных и глобальных компьютерных сетей.

В результате изучения дисциплины обучающийся должен:

<u>Знать:</u>

- –виды обозначений в проектных и нормативных документациях элементов и устройстввычислительных машин и систем;
- -принципы работы типовых элементов и устройств вычислительных машин и систем;
 - -архитектурные особенности вычислительных сетей; Уметь:
- –пользоваться проектной и нормативной документацией вычислительной техники;
- -разрабатывать проектную документацию для проектирования нестандартных элементов и устройств вычислительной техники;
- -проектировать нестандартные элементы и устройства вычислительной техники;

Владеть:

- -навыками разработки проектной документации устройств вычислительной техники в соответствии с имеющимися стандартами и техническими условиями;
- -навыками проверки проектной документации и чертежей устройств вычислительной техники с помощью современных эмулирующих систем;
- -навыками проверки работоспособности разработанного элемента и устройства вычислительных машин и систем.

2. Содержание дисциплины

Вычислительная телекоммуникационная И технологии. Системы пакетной обработки. Первые компьютерные сети. Сближение локальных и глобальных сетей. Общие принципы построения сетей. использование ресурсов компьютеров. Топология локальных вычислительных сетей. Проблемы связи нескольких компьютеров: проблема топологии, проблема адресации, проблема коммутации. Виды сетевого оборудования. Отличия коммутаторов от концентраторов. Маршрутизаторы. Типы кабелей и их классификация. Коаксиальный кабель. Витая пара. Оптоволоконный кабель. Коммутация каналов. Достоинства и недостатки коммутации каналов. Передача компьютерного трафика коммутацией каналов. Коммутация пакетов. Понятие пакета. Достоинства и недостатки коммутации пакетов. Режимы передачи данных: дейтаграммный, с установлением логического соединения, с использованием виртуальных каналов. Понятие открытых систем. Источники стандартов. Модель OSI. Уровни модели OSI. Различные варианты классификации компьютерных сетей. Стек протоколов ТСР/ІР. Типы адресов стека **ТСР/ІР.** Формат ІР адреса. IPv4 и IPv6. Классы сети. Адресация с помощью масок. Порядок назначения IP адресов. Формат IP пакета. Схема маршрутизации. Примеры таблиц маршрутизации. Понятие архитектуры ЭВМ. Влияние элементарной базы и технологии производства интегральных схем на архитектуру и характеристики ЭВМ. Архитектура фон Неймана. Современный подход к построению ЭВМ. Функциональная и структурная организация ЭВМ. Логические элементы. Вентили. Булева алгебра. Реализация логических элементов на схемах. Алгоритм построения логических схем. Основные цифровые логические схемы: интегральные схемы, комбинаторные схемы, арифметические схемы. Компоненты памяти: защелки, триггеры, регистры. Принципы разработки современных компьютеров. Параллелизм на уровне команд. Суперскалярная архитектура. Векторные компьютеры. Параллелизм процессоров. Мультипроцессоры. Мультикомпьютеры. Классификация периферийных устройств. Типы иосновные принципы построения периферийных устройств. Понятие интерфейса. Подсистема ввода-вывода. Понятие шины. Виды шин. Классификация шин. Развитие Понятие арбитра шины. Шины PCIи PCIe. История развития процессоров. Компания Intel. Архитектура процессора. Понятие данных. Выполнение команд процессором. Характеристики процессоров. Закон Мура. CISCи RISCархитектуры. Параллелизм на уровне команд и на уровне процессоров. Классификация памяти. Регистры. Кэш память L1, L2, L3. Организация кэш памяти. Оперативная память. Модули оперативной памяти. Магнитные диски (жесткие диски). Твердотелые накопители.

ЗАЩИТА ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

1. Цель и задачи дисциплины

Целью изучения дисциплины «Защита интеллектуальной собственности» является получение студентами необходимых знаний в области защиты прав изобретателей своих разработок и основ патентоведения.

Задачами изучения дисциплины «Защита интеллектуальной собственности» является:

- изучение основных положений, понятий и категорий законодательства Российской Федерации в области защиты интеллектуальной собственности;
 - изучение институтов права интеллектуальной собственности;
- формирование у студентов необходимого объема знаний об элементной базе правового обеспечения защиты интеллектуальной собственности и патентоведения;
- ознакомление обучающихся с основными характеристиками, типами и моделями правового обеспечения защиты интеллектуальной собственности и патентоведения;
- обеспечение получения студентами знаний основных принципов правового обеспечения защиты интеллектуальной собственности и патентоведения.

В результате изучения дисциплины обучающийся должен:

Знать:

- основные понятия правового обеспечения защиты интеллектуальной собственности и патентоведения;
- классификацию основных типов защиты интеллектуальной собственности и патентоведения;
- содержание основных нормативно-правовых актов, регулирующих данные правоотношения на различных уровнях;
- правила оформления и подачи заявок на Российские и международные патенты;
- отличительные особенности заявок на изобретения, полезные модели и промышленные образцы.

Уметь:

- применять на практике полученные знания;
- осуществлять защиту нарушенных имущественных и личных неимущественных прав в различных государственных и судебных органах;
- оценивать степень и значимость того или иного результата интеллектуальной деятельности;
- принимать предусмотренные законодательством меры по предотвращению нарушения прав на результаты интеллектуальной деятельности.

Владеть:

- навыками организации административно-правового регулирования по вопросам защиты интеллектуальной собственности;
- навыками правовой оценки действий субъектов правоотношений в области защиты результатов интеллектуальной деятельности.

2. Содержание дисциплины

Понятие интеллектуальной собственности. Объекты интеллектуальной собственности в России. Источники права. Авторское право. Изобретение и полезная модель. Использование изобретения, патентобладатель. Порядок подачи и составления заявок на выдачу патента на изобретение и свидетельства на полезную модель. Порядок рассмотрения заявок на выдачу патента на изобретение и свидетельства на полезную модель. Объекты изобретения. Формула изобретения. Описание изобретения. Патентноспособность изобретения.

Возможность осуществления изобретения. Промышленный образец. Патентноспособность промышленных образцов. Исключительное право. Патентная чистота объектов техники. Патентные исследования. Этапы проведения патентных исследований.

ИДЕНТИФИКАЦИЯ И ДИАГНОСТИКА СИСТЕМ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Идентификация и диагностика систем» является обучение студентов основам теории идентификации и применении полученных теоретических знаний в области технической диагностики необходимых при проектировании, исследовании, производстве и эксплуатации систем и средств автоматизации и управления.

Задачами изучения дисциплины «Идентификация и диагностика систем» являются обучение студентов основам теории идентификации, необходимым при проектировании, исследовании, производстве и эксплуатации систем и средств автоматизации и управления. освоение студентами основных принципов построения моделей, форм; представления и преобразования моделей систем, методов анализа и синтеза.

В результате изучения дисциплины обучающийся должен: Знать:

- методы моделирования и формализации сложных объектов и систем управления;
- перспективы и тенденции развития теории и практики идентификации сложных динамических объектов управления;
- применяемые аппаратные и программные средства для решения задачи идентификации;
 - Уметь:
- проводить экспериментальные исследования и обрабатывать их результаты исходя из целей задачи идентификации;
 - ставить и решать задачи идентификации современными методами; *Владеть:*
- навыками выбирать стандартные средства автоматики, измерительной и вычислительной техники для идентификации систем;
- навыками выполнения основных процедур идентификации и диагностики в промышленных условиях.

2. Содержание дисциплины

Основные моделирования. Достоинства задачи недостатки математических моделей. Понятие идентификации в узком и широком смысле. Идентификация как метод построения моделей. Классификация методов идентификации. Классификация моделей объектов управления. Методы оценивания параметров моделей объектов. Пространство состояний, наблюдаемость, управляемость представление моделей пространстве состояний. Структурированные модели. Дискретные модели. Математические модели нелинейных систем. Определение передаточной характеристикам функции ПО временным частотным объекта. Корреляционный метод идентификации. Спектральный метод

идентификации. Метод наименьших квадратов. Метод максимального правдоподобия. Метод стохастической аппроксимации. Особенности идентификации в замкнутых системах. Основные понятия и определения диагностики. Характеристика задач диагностирования. Классификация методов диагностирования. Диагностирование в тестовых Диагностические модели динамических систем. Поиск параметрических и структурных дефектов по частотным характеристикам.

ИНЖЕНЕРНАЯ И КОМПЬЮТЕРНАЯ ГРАФИКА

1. Цель и задачи дисциплины

Целью освоения дисциплины «Инженерная и компьютерная графика» являются развитие пространственного представления и конструктивно-геометрического мышления, способностей к анализу и синтезу пространственных форм и отношений на основе графических моделей пространства, подготовка студентов к использованию компьютера при выполнении конструкторской документации.

Задачами изучения дисциплины «Инженерная и компьютерная графика» являются:

- развитие пространственного представления и воображения, конструктивно-геометрического мышления на основе графических моделей пространственных форм;
- выработка знаний по применению метода ортогонального проецирования при решении конкретных задач;
- выработка знаний по правилам оформления конструкторской документации в соответствии с Единой системой конструкторской документации (ЕСКД);
- выработка навыков по выполнению и чтению чертежей отдельных деталей и сборочных единиц;
- обучение работе с современными системами компьютерного проектирования;
- выработка навыков по автоматизированной разработке и выполнению конструкторской документации.

В результате изучения дисциплины обучающийся должен:

<u>знать:</u>

- правила выполнения чертежей деталей, сборочных единиц, элементы начертательной геометрии и инженерной графики, геометрическое моделирование, программные средства компьютерной графики.

уметь:

- применять Государственные стандарты ЕСКД, необходимые для разработки и оформления конструкторско-технологической документации. применять современные средства выполнения и редактирования изображений и чертежей и подготовки конструкторско-технологической документации.

владеть:

- современными программными средствами подготовки конструкторско-технологической документации.

2. Содержание дисциплины

Элементы начертательной геометрии: задание точки, прямой, плоскости и многогранников на комплексном чертеже Монжа, позиционные и метрические задачи, способы преобразования чертежа, многогранники;

инженерная графика: конструкторская документация, оформление чертежей, изображения, надписи и обозначения, аксонометрические проекции деталей, изображения и обозначения элементов деталей, рабочие чертежи и эскизы деталей, изображения сборочных единиц, сборочные чертежи деталей; спецификация; деталирование чертежа общего вида; области применения компьютерной графики; основные функциональные возможности современных графических систем; виды геометрических моделей и их свойства; двухмерное и трехмерное моделирование в графической системе AutoCAD, автоматизированная разработка конструкторской документации, в т.ч. чертежей деталей.

ИНОСТРАННЫЙ ЯЗЫК

1. Цель и задачи дисциплины

Целью освоения дисциплины «Иностранный язык» является повышение уровня владения английским языком, достигнутого предыдущей ступени образования и овладения студентами необходимым и уровнем коммуникативной компетенции достаточным ДЛЯ решения коммуникативных задач В разных сферах бытовой, культурной, профессиональной и научной деятельности.

Задачами изучения дисциплины «Иностранный язык» являются:

- обучение чтению (изучающему, ознакомительному, поисковому, просмотровому);
 - обучение письму;
- обучение говорению (беседа на профессиональные, бытовые и общественно-политические темы);
- обучение чтению и переводу адаптированной и оригинальной литературы, извлечению информации из предлагаемых текстов;
- обучение устному общению на английском языке в объеме материала, предусмотренного программой, ведению дискуссии с несколькими партнерами;
 - обучение страноведческой тематике англоязычных стран.

Студент должен знать:

- лексический минимум по изучаемым темам;
- закономерности образования грамматических структур изучаемого языка, обеспечивающих коммуникацию общего характера без искажения смысла при письменном и устном общении;
 - правила построения предложений и фраз;
 - культуру и традиции стран изучаемого языка.

Уметь:

- воспринимать на слух и понимать основное содержание несложных аутентичных общественно-политических, публицистических и прагматических текстов, относящихся к различным типам речи (сообщение, рассказ), а также выделять значимую/запрашиваемую информацию;
- понимать основное содержание несложных аутентичных общественнополитических, публицистических и прагматических текстов (информационных буклетов, брошюр, проспектов), научно-популярных и научных текстов, блогов/веб-сайтов;
- детально понимать общественно-политические и публицистические тексты, определять значимую/запрашиваемую информацию из прагматических текстов справочно-информационного характера;
- начинать, вести, поддерживать и заканчивать диалог-распросс об увиденном, прочитанном, диалог обмен мнениями и диалог интервью (собеседование) при приеме на работу, соблюдая нормы речевого этикета, при необходимости используя стратегии восстановления сбоя в процессе коммуникации (переспрос, перефразирование и др.);

- расспрашивать собеседника, задавать вопросы и отвечать на них, высказывать свое мнение, просьбу, отвечать на предложение собеседника (принятие предложения или отказ);
- делать сообщения и выстраивать монолог описание, монолог повествование и монолог рассуждение;
 - заполнять формуляры и бланки прагматического характера;
- вести запись основных мыслей и фактов (из аудиотекстов и текстов для чтения), а также запись тезисов устного выступления, письменного доклада по изучаемой проблематике;
- письменно выполнять проектные задания (письменное оформление презентаций, информационных буклетов, рекламных листовок, стенных газет и т.д.).

Владеть навыками:

- связанной диалогической речи с использованием наиболее употребительных и относительно простых лексико-грамматических средств в основных коммуникативных ситуациях общения;
- монологической речи на уровне самостоятельно подготовленного высказывания;
- понимания диалогической и монологической речи в пределах изученного языкового материала в сфере бытовой и профессиональной коммуникации);
- письма (заполнения наиболее распространенных анкет и бланков, написание неофициальных писем и открыток);
 - чтения текстов различной жанрово-стилистической направленности.

2. Содержание дисциплины

Tема 1: «About myself»

Тема 2: «My working day»

Тема 3: «Му academy»

Тема 4: «My hometown»

Тема 5: «Russia is my homeland»

Тема 6: «United Kingdom»

Тема 7: «The United States of America»

Тема 8: «Higher education in the United Kingdom»

Tема 9: «My future profession»

Тема 10: «Metals»

Teмa 11: «Metalworking»

Тема 12: «Materials. Science and technology»

Тема 13: «Machine-tools»

Tема 14: «Plastics»

Тема 15: «Welding»

Tема 16: «Automation and robotics»

Tема 17: «Computers»

Тема 18: «Modern computer technologies»

Tема 19: «Famousscientists»

ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ СИСТЕМ УПРАВЛЕНИЯ

1. Цель и задачи дисциплины

Целью дисциплины является изучения теоретических и практических основ построения, функционирования, систем баз данных.

Задачей дисциплины является дать студенту теоретические и практические знания по построению системы баз данных.

В результате изучения дисциплины обучающийся должен:

<u>Знать</u> основные принципы разработки, роль и место информационного обеспечения в автоматизированных системах управления объектами, а также способы представления, хранения и преобразования информации, знать стандарты и нормативные документы, регламентирующие создание баз данных:

<u>Уметь</u> проектировать базу данных автоматизированной системы управления и разрабатывать комплекс прикладных программ на основе систем управления базами данных (СУБД)

<u>Владеть</u> методами организации базы данных в рамках локальных вычислительных сетей.

2. Содержание дисциплины

Функциональные задачи в многоуровневой распределенной системе управления. Особенности задач автоматизированных систем управления техническими объектами: оперативное управление и регулирование, параметров в режиме реального управление контроль координация локальных подсистем. Основные требования к БД. Достоинства и проблемы интеграции данных. Уровни представления информации в БД. Составные части базы данных. Инструментальные средстваинфологического "сущность-связь". Методика проектирования. Модель получения инфологической схемы предметной области. Логическая организация данных. Логические модели данных: сетевая, иерархическая, реляционная. Организация данных и ограничения целостности в них. Сравнительный анализ моделей данных. Реляционные языки запросов. Формирование (нормализация отношений). канонических структур данных многозначные зависимости. Ключи. Физическая Функциональные И Размещение записей на физических устройствах. организация данных. организация Механизм доступа. Параллельная секционная Проектирование структуры физической записи. Кодирование и сжатие данных. Разбиение записей. Проектирование метода доступа к данным. Базовые структуры памяти. Способы адресации и их сравнительный анализ. Информационное обеспечение систем реального времени. Проблема обеспечения мультидоступа к данным. Основные понятия параллельной обработки данных. Простая модель транзакций. Модель транзакций с блокировками для чтения и записи. Виды распределенной обработки данных. Варианты построения локальных вычислительных сетей. Типы

распределенных СУБД. Проблемы проектирования архитектуры Этапы проектирования распределенных баз распределенных баз данных. данных. Современные СУБД для персональных компьютеров, их основные Сравнительный анализ. характеристики. Искусственный Экспертные системы. Структура экспертной системы. Особенности экспертных систем, их области применения. Модели представления знаний. Представление знаний с использованием правил. Продукционные системы. Семантические сети. Фреймы.

ИНФОРМАЦИОННЫЕ СЕТИ И ТЕЛЕКОММУНИКАЦИИ

1. Цель и задачи дисциплины

Целью дисциплины «Информационные освоения сети И телекоммуникации» является формирование у студентов знаний ПО построения, архитектурным принципам особенностям организации функционирования ЭВМ, вычислительных систем и сетей телекоммуникаций, их программного обеспечения, а также ознакомление студентов с физическими основами вычислительных процессов, с основами проектирования локальных и глобальных сетей, администрирования сетевых служб и компонентов и технологиями локальных и глобальных сетей.

Задачами изучения дисциплины «Информационные сети и телекоммуникации» являются:

- изучение физических основ вычислительных процессов;
- изучение основных принципов построения и функционирования вычислительных машин, а также отдельных устройств и программного обеспечения;
- изучение архитектурных особенностей и организации функционирования вычислительных систем различных классов и их программного обеспечения;
- изучение архитектурных особенностей вычислительных сетей, их аппаратного, информационного и программного обеспечения, типовых структур и организации функционирования;
- изучение структуры и характеристик систем телекоммуникаций, методов коммутации, маршрутизации и защиты от ошибок, организации цифровых сетей связи и электронной почты;
- изучение принципов функционирования локальных и глобальных компьютерных сетей;
- изучение основных принципов передачи аналоговой и дискретной информации по системам телекоммуникаций.

В результате изучения дисциплины обучающийся должен:

Знать:

- архитектуры и структуры информационных сетей;
- принципы работы аппаратного обеспечения информационных сетей;
- принципы работы программного обеспечения информационных сетей:

Уметь:

- пользоваться средствами и ресурсами информационных сетей;
- разрабатывать и обслуживать корпоративные информационные сети;
- разрабатывать и обслуживать локальные и глобальные информационных сетей;

Владеть:

– навыками поиска, обработки и хранения информации из локальной, региональной, корпоративной и глобальной информационной сети;

- навыками расширения аппаратного обеспечения локальной, региональной, корпоративной и глобальной информационной сети;
- навыками расширения программного обеспечений локальной, региональной, корпоративной и глобальной информационной сети.

2. Содержание дисциплины

Вычислительная и телекоммуникационная технологии. Системы пакетной обработки. Первые компьютерные сети. Сближение локальных и глобальных сетей. Общие принципы построения сетей. Совместное использование ресурсов компьютеров. Топология локальных вычислительных Проблемы связи нескольких компьютеров: проблема топологии, проблема адресации, проблема коммутации. Виды сетевого оборудования. Отличия коммутаторов от концентраторов. Маршрутизаторы. Типы кабелей и их классификация. Коаксиальный кабель. Витая пара. Оптоволоконный кабель. Коммутация каналов. Достоинства и недостатки коммутации каналов. компьютерного трафика сетях В с коммутацией Коммутация пакетов. Понятие пакета. Достоинства и недостатки коммутации пакетов. Режимы передачи данных: дейтаграммный, с установлением логического соединения, с использованием виртуальных каналов. Стек протоколов TCP/IP. Типы адресов стека TCP/IP. Формат IP адреса. IPv4 и IPv6. Классы сети. Адресация с помощью масок. Порядок назначения IP адресов. Формат IP пакета. Схема маршрутизации. Примеры таблиц маршрутизации. Общая характеристика протоколов локальных сетей. Комитет IEEE. Физический и канальный уровни. Подуровни MAC и LLC. Ethernet. Формат кадра. Доступ к среде. Физические спецификации. Технологии TokenRing и FDDI. Беспроводная передача данных. Технологии Bluetooth, Wi-Fi, Wi-Max. Понятие коммутатора и моста. Технологии FastEthernet, GigabitEthernet, 10GEthernet, Транспортные услуги глобальных сетей. Технология выделенных каналов. Компьютерные глобальные сети с коммутацией пакетов. Сети Х.25. Сети FrameRelay. Технология ATM. Технология MPLS. CarrierEthernet. Понятие информационной безопасности. Типы и примеры атак. Классификация методов защиты. Аутентификация, идентификация, авторизация. Методы доступа: дискреционный, мандатный, ролевой. Технические средства обеспечения сетевой безопасности. Шифрование. Антивирусная защита. Технологии безопасности на основе фильтрации и мониторинга трафика. Сетевые экраны. Прокси серверы. Протоколы защищенного канала.

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Информационные технологии» является ознакомление с основными понятиями и овладения навыкамив области теории и практики проектирования, создания и использования различных информационных систем в управлении.

Задачами изучения дисциплины «Информационные технологии» является

- углубить теоретические знания по информатике и информационным технологиям;
- развитие познавательных интересов, интеллектуальных и творческих способностей средствами ИКТ;
- воспитание ответственного отношения к информации с учетом правовых и этических аспектов ее распространения;
 - сформировать навыки использования информационных технологий;
- изучить условия и сферы наиболее эффективного применения различных информационных систем в управленческой деятельности;
- привить студентам навыки работы с различными информационнопоисковыми системами;
- раскрыть наиболее перспективные методы использования информационных ресурсов и технологий Интернет в управлении;
- выработка навыков применения средств ИКТ в повседневной жизни, при выполнении индивидуальных и коллективных проектов, в учебной деятельности, при дальнейшем освоении профессий, востребованных на рынке труда;
- приобретение теоретических и практических навыков работы с персональным компьютером и пакетами прикладных программ.

В результате изучения дисциплины обучающийся должен: Знать

- назначение и виды информационных технологий, технологии сбора, накопления, обработки, передачи и распространения информации;
- состав, структуру, принципы реализации и функционирования информационных технологий;
 - базовые и прикладные информационные технологии;
 - инструментальные средства информационных технологий;

Уметь

- применять мультимедийные технологии обработки и представления информации;
- обрабатывать экономическую и статистическую информацию, используя средства пакета прикладных программ;
- основы телекоммуникаций и распределенной обработки информации;
- основы защиты информации и сведений, составляющих государственную тайну;

- методы защиты информации.
- Владеть
- навыками работы в пакетах прикладных программ;
- навыками оформления результатов экспериментов с помощью информационных технологий;
 - навыками в области индивидуальной защиты информации.

2. Содержание дисциплины

Информатизация общества. Этапы развития информационных систем управления в России. Понятие системы и ее свойства. Основные признаки систем. Управленческая информация: понятие, основные виды, характеристика. Экономические информационные системы (ЭИС).

Информационные технологии. Свойства информационных технологий. Информационный продукт. Особенности и классификация информационных технология. технологий. Новая информационная технологий. обеспечения информационных Вилы информационных технологий. Состав технического обеспечения ИТ. Системы автоматизации Автоматизированная проектирования $(CA\Pi P)$. система (АСУП). Управление по производством функциям на основе Структура АИТУ. Понятие платформы как комплекса аппаратных и средств. программных Использование АИТ управления проектами (MicrosoftProject).

Использование интегрированных программных пакетов. Текстовые процессоры. Табличные процессоры. Базы данных и системы управления базами данных. Транзакции. Модели организации данных. Иерархическая модель. Сетевая модель. Реляционная модель данных. Этапы проектирования реляционных баз данных. Технологии искусственного интеллекта. Базы знаний.

Инструментальные Экспертные системы. средства экспертных систем. Инженерия знаний. Компьютерные сети. Назначение и классификация компьютерных сетей, типы сетей, топология сетей, сетевые Глобальная сеть Интернет. Протоколы сети компоненты. Защита Электронная коммерция. информации. Безопасность информационной системы. Угрозы информационным системам. Модель нарушителя. Классификация нарушителей. Система защиты. Политика безопасности. Методы защиты информации. Криптографическое закрытие информации. Защита информации компьютерных OT вирусов. Классификация вредоносного программного обеспечения. Антивирусные безопасность. программы. Информационная Основные направления обеспечения безопасности информационных ресурсов. Угрозы безопасности. информационной безопасности. Основные направления обеспечения безопасности информационных ресурсов. Информационные ресурсы и конфиденциальность информации. Технологические основы обработки конфиденциальных документов. Защищенный документооборот.

Оценка эффективности АИТ управления. Анализ рисков использования АИТ управления.

ИСТОРИЯ (ИСТОРИЯ РОССИИ, ВСЕОБЩАЯ ИСТОРИЯ)

1. Цель и задачи дисциплины

Основная **цель** освоения учебной дисциплины «История (история России, всеобщая история)» заключается в том, чтобы рассмотреть в исторической ретроспективе сложнейшие процессы как прошлого, так и настоящего, оценить роль и место России в мире, дать представления об основных этапах и содержании истории России с древнейших времен и до наших дней, показать на примерах из различных эпох органическую взаимосвязь российской и всеобщей истории.

Основные задачи курса:

- сформировать у обучающихся научные представления о всеобщей истории;
- ознакомление с особенностями становления и развития политической организации российского государства, общественного строя, экономики и культуры в сравнении с опытом других народов;
 - изучение понятийного аппарата дисциплины;
- формирование гражданской идентичности, развитие интереса и воспитание уважения к историческому наследию, его сохранению и преумножению.

В результате изучения дисциплины обучающийся должен:

Знать

- этапы и закономерности исторического развития механизмов государственной власти и политической деятельности по мере становления Российского государства и наиболее важные аспекты развития страны в прошлом и настоящем;
- основные исторические факты, даты, события и имена исторических деятелей;
- иметь научное представление об основных эпохах в истории России и их хронологию.

Уметь

- самостоятельно изучать и концептуально осмысливать новую информацию;
- выделять, анализировать и обобщать наиболее существенные связи и признаки исторических явлений и процессов;
- соотносить и сравнивать исторические факты во времени и пространстве;
 - четко выражать свои мысли;
- аргументировано защищать свою позицию по вопросам ценностного отношения к историческому прошлому и настоящему, сложившуюся в результате изучения нового материала.

Владеть

- навыком сравнительного анализа явлений и фактов общественной жизни на основе исторических материалов;

- умением пользования историческими источниками (в первую очередь опубликованными архивными материалами, мемуарами и статистическими данными);
 - умением работать с научной литературой;
 - умения работы с картой

2. Содержание дисциплины

История как наука. Сущность, формы, функции исторического знания. Методы и источники изучения истории, понятие и классификация исторических источников. Единство и многообразие всемирно-исторического процесса. Подходы к изучению истории: стадиальный и цивилизационный. Соотношение понятий «цивилизация», «формация», «культура». Понятие «цивилизация», сущность цивилизационного подхода к изучению мировой истории. Отечественная история — неотъемлемая часть всемирной истории: общее и особенное в историческом развитии.

История древнего мира. Древнейший период истории России. Античный период всеобщей истории, его этапы и образующие признаки. Факторы становления античных цивилизаций. Греческие полисы и Римская республика: характер культурной эволюции. Общие признаки республиканского периода античных цивилизаций. Проблема этногенеза восточных славян. Расселение восточных славян, их хозяйство, общественный строй, быт, верования. Великое Переселение народов в III – VI веках. Античное наследие в эпоху Великого переселения народов. Социально-экономические и политические изменения в недрах славянского общества на рубеже VIII – IX вв. Этнокультурные и социально-политические процессы становления русской государственности. Первые племенные союзы и государственные образования у восточных славян. Политический смысл норманнской теории. Принятия христианства в православной традиции, его значение для Руси. Распространение ислама. Рост влияния мусульманского мира на ход исторического процесса в Восточной Европе, на Ближнем и Среднем Востоке. Эволюция восточнославянской государственности в XI – XII вв. Формирование законодательства. «Русская Правда». Особенности социального строя Древней Руси, отличие этой системы от западноевропейского вассалитета.

Средние века как период всеобщей истории. Особенности развития государственности в Европе и России в средние века. Средневековье как период всеобщей истории. Этапы средневековой истории Европы, их содержание и Социальная стратификация средневековой Формирование городов, их роль в жизни европейских государств. Активизация простого товарного хозяйства. Особенности рыночных отношений и функционирования первых сословно-представительных органов в Европе, их историческая роль в ограничении монархической власти и становлении современных государств европейской цивилизации. Изменение в мировой геополитической ситуации в позднее средневековье и усиление центробежных тенденций в развитии европейских государств. Феодальная раздробленность Руси: суть, предпосылки. История, социально-политическая структура русских земель периода политической раздробленности: Владимиро-Суздальское, Галицко-Волынское княжества и Новгородская феодальная аристократическая

республика. Образование Монгольской империи Чингис-хана. Завоевание русских княжеств монголами. Причины поражения Руси. Образование Золотой Орды, ее социально-экономический и политический строй. Международная ситуация в Европе в первой половине XIII в. «Католический натиск» на восток. Образование рыцарских орденов в Прибалтике. Борьба Руси с агрессией крестоносцев. Русь перед выбором: Запад или Восток. Деятельность Александра Невского и ее оценка.

Формирование единого централизованного Российского государства (XIV – XVI вв.). Социально-политические изменения в русских землях в XIII – XV вв. Борьба московских князей за доминирование в Северо-Восточной Руси. Возвышение Москвы. Собирание земель и борьба с монгольским игом. Специфика формирования единого Российского государства. Политический строй Московского государства. Предпосылки складывания самодержавных черт государственной власти. Структура феодального землевладения. Эволюция форм собственности на землю. Утверждение поместной системы землевладения, этапы закрепощения крестьян. Формирование сословной организации общества. Местничество. Россия и средневековые государства Европы и Азии. Русская идея: «Москва – Третий Рим».

Россия во второй половине XVI века. Начало преобразований в период правления Е. Глинской. Реформы Избранной Рады в государственном управлении: судебная, военная, податная, церковная. Учреждения Земских Соборов — шаг к формированию представительной власти. Формирование сословно-представительных органов на местах. Опричнина: суть, ход, итоги, последствия. Политика Ивана Грозного в отношении церкви. Дискуссии о целях опричнины и генезисе самодержавия в России. Ход Ливонской войны. «Сибирское взятие». Превращение России в многонациональную страну и зарождение государственной политики в отношении нерусских народов. Результаты правления Грозного и их оценка.

Россия и Европа XVII в.: эволюция от сословно-представительной монархии — к абсолютизму. «Смутное время» в России. Проблема исторического выбора между Западом и Востоком в период Смуты: возможные альтернативы развития и поиск нетрадиционных форм политической власти. Роль ополчения в освобождении Москвы и изгнании чужеземцев. К. Минин и Д. Пожарский. Итоги, уроки и последствия Смутного времени. Земский собор 1613 г. Воцарение династии Романовых. Восстановление государственной власти. Усиление централизации государства. Особенности сословнопредставительной монархии в России. Соборное Уложение 1649 г.: юридическое закрепление крепостного права и сословных функций. Эволюция к абсолютизму. Церковный раскол: его социально-политическая сущность и последствия.

Европеизация России в первой четверти XVIII в. Реформы Петра I в области государственного управления, военная, сословная, податная. Особенности российской модернизации XVIII в. Предпосылки и особенности складывания российского абсолютизма. Институты абсолютной монархии: Сенат, Синод, Коллегии. Губернская реформа. Магистраты. Эволюция социальной структуры общества. «Табель о рангах». Внешнеполитическая доктрина Петра I: от решения национальных задач к формированию имперской

политики. Итоги и оценки петровских преобразований в отечественной историографии.

Россия и Европа со второй четверти до конца XVIII в. Наследие Петра I и эпоха дворцовых переворотов, их социально-политическая сущность и последствия. Фаворитизм. Расширение привилегий дворянства. Дальнейшая бюрократизация государственного аппарата. Век Екатерины II. «Просвещенный абсолютизм» второй половины XVIII в.: его характерные черты, особенности и противоречия. «Наказ» Екатерины II и работа Уложенной комиссии. «Жалованная грамота дворянству». «Жалованная грамота городам». Усиление крепостной зависимости. Восстание Е. Пугачева. Экономическое развитие России в XVIII в. Развитие мануфактурно-промышленного производства в XVIII в. Рост внешнеполитического и военного могущества России. Борьба России за выход к Черному морю. Русско-турецкие войны. Вхождение Крыма в состав России. Россия и разделы Польши. Походы на Кавказ. Российские владения на Тихом океане. Контрреформы Павла I: попытка ограничения дворянской власти самодержавными средствами. Ужесточение политического режима. Особенности развития русского и европейского искусства XVIII века.

Россия XIX века: борьба реформизма и контрреформизма. Цикл российской модернизации. Первая половина XIX в.: попытки реформирования политической системы при Александре I; проекты М.М.Сперанского и Н.Н. Новосильцева. Судьбы реформ и реформаторов в России. Альтернативные реформаторские проекты декабристов. Значение победы России в войне против Наполеона и освободительного похода России в Европу для укрепления международных позиций России. Изменение политического курса в начале 20-х гг. XIX в.: причины и последствия. Политическая реакция и бюрократическое реформаторство при Николае І. Бюрократизация государственной общественной жизни. Реформы П.Д. Киселева, Е.Ф. Канкрина, создание ПСЗРИ под руководством М.М. Сперанского. Преобразования времен Александра II. Предпосылки и причины отмены крепостного права в России. Земская, городская, судебная, финансовая, военная, цензурная реформы и их значение. Начало и развитие промышленного переворота в России, его особенности и этапы. Утверждение буржуазных отношений в промышленности. Лорисмеликовский режим и разработка «конституции» М.Т. Лорис-Меликова. Контрреформы Александра III.

Социально-экономическое и политическое развитие России во второй половине XIX – начале XX вв. Развитие капитализма в пореформенный период. Россия в начале XX века. Объективная потребность индустриальной модернизации России. Становление индустриального общества в России: общее и особенное. Роль государства в экономике страны. Иностранный капитал в Экономическая политика правительства. Форсирование индустриализации «сверху». Реформы С.Ю. Витте. Индустриализация «снизу»: российские промышленники, купечество, крестьянские промыслы, кооперация. Российский капитализм в системе мирового капиталистического хозяйства в начале XX в. Русская деревня в начале XX в. Обострение споров вокруг решения аграрного вопроса. Переходный характер российских экономических и социальных структур. «Асинхронный» тип развития России и его влияние на преобразований. Пределы самодержавного реформирования. Социальный состав населения Российской империи по переписи 1897 г.

Охранительная альтернатива: Н.М. Карамзин, С.П. Шевырев, М.П. Погодин, М.Н. Катков, К.П. Победоносцев, Д.И. Иловайский, С.С. Уваров. Теория «официальной народности». Проблема соотношения в охранительстве национально-патриотического начал. Либеральная альтернатива: идейное наследие П.Я. Чаадаева. Московский университет – колыбель русского либерализма. Западники и славянофилы. К.Д. Кавелин, Б.И. Чичерин, А.И. Кошелев, К.А. Аксаков. Земское движение. Особенности либерализма. Революционная российского альтернатива. движения. освободительного Декабристы. Предпосылки «Русский социализм» А.И. России. Герцена Чернышевского. С.Г. Нечаев и «нечаевщина». Народничество. Политические доктрины и революционная деятельность народнических организаций в 70-х – начале 80-х гг. М.А. Бакунин. П.Л. Лавров. П.Н. Ткачев. Оформление марксистского течения. Г.В. Плеханов, В.И.Ульянов (Ленин). Русская культура XIX – начала XX вв. Система просвещения. Наука и техника. Печать. Литература и искусство. Быт города и деревни. Общие достижения и противоречия, вклад России в мировую культуру.

Россия в 1907 — 1914 годы. Первая российская революция. Половинчатость реформ — отправной пункт противоречий, решаемых только революционным путем. Первая революция в России: характер, причины, особенности, движущие силы. Манифест 17 октября 1905 г. и эволюция государственной власти. Государственная Дума: структура, место в системе органов власти. Опыт думского «парламентаризма» в России и его оценка. «Верхи» в условиях первой российской революции. Политические партии России в годы первой российской революции. Причины поражения и итоги первой русской революции. Российские реформы в контексте общемирового развития в начале века. Правительственные реформы П.А.Столыпина. Столыпинская аграрная реформа: экономическая, социальная и политическая сущность, итоги, последствия. Оценки реформ П.А. Столыпина в историографии.

Первая мировая война. Кризис и крушение самодержавия в России. Причины, предпосылки и основные этапы I мировой войны. Участие России в первой мировой войне. Истоки и нарастание общенационального кризиса. Диспропорции в структуре собственности и производства в промышленности. Обострение аграрного вопроса. Кризис власти в годы войны. Победа Формирование Февральской революции. органов власти. правительство и Петроградский Совет. Социально-экономическая политика Временного правительства. Кризисы власти. Корниловское выступление: попытка установления военной диктатуры. Курс большевиков на захват власти. Радикализация народных масс в условиях нарастающего общенационального кризиса. Победа вооруженного восстания в октябре 1917 г. И Всероссийский съезд Советов. Октябрьская революция и ее оценка в современной историографии. Влияние российской революции на развитие революционной ситуации в Европе и мире. Основные понятия темы: военная диктатура, общенациональный демократия, национальная элита, кризис. пацифисты.

Гражданская война в России. НЭП. Первые мероприятия Советской власти и раскол общества. Формирование советской государственности. Гражданская война. Столкновение противоборствующих сил: большевики, социалисты-

«белое монархисты, движение», «демократическая революционеры, контрреволюция». Итоги и последствия гражданской войны Интервенция: причины, формы, масштаб. Политика «военного коммунизма» в политической и экономической сферах и ее кризис. Становление диктаторской, централизованной системы власти. Трансформация РКП(б) в ядро советской государственно-политической системы. Первая волна русской эмиграции: центры, идеология, политическая деятельность, лидеры. Политический кризис начала 20-х гг. Переход от «военного коммунизма» к НЭПу. Сущность НЭПа. Трудности и кризисы НЭПа. Социально-экономическое развитие страны в 20-е гг. Внешняя политика в Советской России в 20-е гг. Образование СССР: состав, принципы организации. Особенности советской национальной политики и национально-государственного устройства. Формирование модели однопартийного политического режима. Смерть В.И. Ленина. Борьба в руководстве $PK\Pi(\delta) - BK\Pi(\delta)$ по вопросам развития страны. Возвышение И.В. Сталина.

Советское государство на этапе форсированного строительства социализма. Курс на строительство социализма в одной стране и Социально-экономические преобразования 30-е последствия. Форсированная индустриализация: предпосылки, источники накопления, методы, темпы. Политика сплошной коллективизации сельского хозяйства, ее экономические и социальные последствия. Конституция СССР декларации и реальность. Сращивание партийных и государственных структур. Роль и место Советов, профсоюзов, судебных органов и прокуратуры в политической системе диктатуры пролетариата. Карательные органы. Эволюция социальной структуры общества. Номенклатура. Усиление режима личной власти Сталина. Сопротивление сталинизму. Массовые репрессии. Политические процессы 30-х гг. Унификация общественной жизни, «культурная революция». Большевики и интеллигенция. Современные оценки индустриализации, коллективизации, культурной революции, национальной политики в СССР в 20-30-х гг. ХХ в.

СССР в годы II мировой войны (1939 – 1945 гг). Великая Отечественная война советского народа. Советская внешняя политика накануне и в начале ІІ мировой войны. Блоковое противостояние. Лига Наций. Ось «Берлин – Рим – Токио». Американский изоляционизм и его последствия. Экспансия нацисткомилитаристского блока в 30-е гг. XX в. Политика «умиротворения» агрессора. коллективной CCCP борьба создание системы безопасности. Противоречивость внешней политики Советского государства. Причины провала создания антифашистского блока. Советско-германские переговоры и соглашения, их политическая оценка. Советско-финская война. Присоединение Западной Украины и Западной Белоруссии, Прибалтийских государств, Бессарабии и Северной Буковины к Советскому Союзу. Экономика СССР в предвоенные годы. Нападение фашистской Германии на СССР. Цели Германии в войне. Характер войны со стороны Германии и СССР. Начальный период Великой Отечественной войны советского народа. Причины поражения Красной Армии на начальном этапе войны. Оборона Москвы. Перестройка экономики на военный лад. Международные отношения в 1941 – 1945 гг. Создание антигитлеровской коалиции. Коренной перелом на фронте и в тылу. Партизанское движение. Начало восстановления хозяйства и реэвакуация

предприятий. Основные битвы завершающего периода Великой Отечественной и II мировой войн. Советская армия и освобождение народов Европы. Взятие Берлина. Освобождение Сахалина и Курильских островов. Решающий вклад Советского Союза в разгром фашизма. Нравственные истоки и цена победы. Итоги и уроки II мировой войны. Освещение войны в западной и отечественной литературе.

Социально-экономическое развитие, общественно-политическая жизнь, второй половине XX века. Геополитические внешняя политика СССР во последствия II мировой войны. Послевоенное устройство и поляризация мира. Ялтинско-Потедамская система международных отношений и передел мира. Создание ООН. Блоковое противостояние. СССР в мировом балансе сил. «Холодная война» как форма межгосударственного противостояния: суть, этапы, итоги. Ядерное оружие – новый фактор мировой истории. Трудности послевоенного переустройства; восстановление народного монополии США. хозяйства ликвидация атомной политического режима и идеологического контроля. Новый виток массовых репрессий. Создание социалистического лагеря. Ускоренное развитие отраслей военно-промышленного комплекса. НТР и ее влияние на ход общественного развития. Значение XX и XXII съездов КПСС. Попытки административноорганизационными мерами усовершенствовать политическую систему СССР. Непоследовательность, субъективизм и волюнтаризм в решении задач демократизации. Хозяйственная реформа в СССР в середине 60-х гг. и ее неудача. Смена власти и политического курса в 1964 г. Нарастание кризисных явлений во всех сферах жизни советского общества в середине 1960 – 80-х гг. Усиление конфронтации двух мировых систем. Карибский кризис (1962 г.). Власть и общество в 1964 – 1984 гг. Кризис господствующей идеологии. правозащитного движения: Возникновение и развитие диссидентского и сущность, классификация, основные Внешнеполитическая деятельность СССР. Разрядка 70-х гг. Хельсинского процесса. Обострение международной обстановки на рубеже 70x – 80-х гг. XX века. Война в Афганистане и ее последствия.

Становление новой Российской государственности. Россия на пути радикальной социально-экономической реформы 1992 — 2001 гг. Конституция 1993 г. Продолжение реформ в политической сфере президентом В.В. Путиным. Глобализация общественных процессов. Проблема экономического роста и модернизации США и европейских стран. Революции и реформы. Социальная трансформация общества. Столкновение тенденций интернационализма и национализма, интеграции и сепаратизма, демократии и авторитаризма. Асинхронность общественного развития и новый уровень исторического синтеза. Основные проблемы и процессы развития западной цивилизации. Пост-индустриальная цивилизация. Информационное общество. Внешнеполитическая деятельность РФ в условиях новой геополитической ситуации. Перспективы России в XXI в.

ЛОГИЧЕСКИЕ ОСНОВЫ ЭВМ

1. Цель и задачи дисциплины

Целью дисциплины является формирование базовых знаний и практических навыков для решения практических задач в области информационных систем и технологий.

Задачами изучения дисциплины «Логические основы ЭВМ» является изучение устройства ЭВМ, основ алгебры логики и логических основ ЭВМ.

В результате изучения дисциплины обучающийся должен:

<u>Знать</u> логические основы ЭВМ, схемы логических операций, устройства компьютера;

<u>Уметь</u> представлять информацию в различных системах счисления, составлять логические схемы для вычислительных операций;

<u>Владеть</u> навыками построения логических схем, минимизации логических функций, проектирования логических схем в специализированных системах моделирования.

2. Содержание дисциплины

Введение. Эволюция электронно-вычислительных машин. Основные характеристики ЭВМ. Архитектура фон Неймана. Магистрально-модульный принцип построения ЭВМ. Классификация ЭВМ. Системы счисления. позиционных Арифметические операции В системах счисления. Представление информации в памяти ЭВС. Представление целых чисел. Прямой и дополнительный код. Представление чисел с плавающей точкой. Алгебра логики. Логические высказывания. Основные логические операции: конъюнкция, дизъюнкция, инверсия, импликация, эквивалентность. Приоритет логических операций. Преобразование логических выражений. Исключающее или, стрелка Пирса, штрих Шеффера. Таблицы истинности логических операций. Конъюнктивные нормальные формы. Дизъюнктивные Совершенные конъюнктивные и дизъюнктивные нормальные формы. Минимизация логических функций. Карты Карно. нормальные формы. Диаграммы Вейча. Логические элементы. Вентили. Реализация логических элементов на схемах. Алгоритм построения логических схем. Основные цифровые логические схемы: интегральные схемы, комбинаторные схемы, арифметические схемы. Компоненты памяти: защелки, триггеры, регистры.

ЛОКАЛЬНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Локальные системы управления» является изучения теоретических и практических основ построения, функционирования локальных систем управления, контроля, регулирования на основе микроконтроллеров и программируемых логических контроллеров.

Задачами изучения дисциплины «Локальные системы управления» практическую является дать студенту теоретическую И построению эксплуатации локальных систем управления, регулирования на основе микроконтроллеров И программируемых логических контроллеров.

В результате изучения дисциплины обучающийся должен:

<u>Знать</u> перспектив и тенденции развития, принципов построения, элементную базу локальных систем управления, контроля, регулирования и систему команд, архитектуру, структуру и языка программирования микроконтроллеров и программируемых логических контроллеров;

<u>Уметь</u> разрабатывать локальных автоматических и автоматизированных систем управления, контроля, регулирования на основе микроконтроллеров и программируемых логических контроллеров;

<u>Владеть</u> навыками по обслуживания и эксплуатации современных локальных автоматических и автоматизированных систем управления, контроля, регулирования на основе микроконтроллеров и программируемых логических контроллеров.

2. Содержание дисциплины

Структура локальных систем регулирования, управления и контроля. Понятие локальная система регулирования и управления. Архитектура, структура и топология цифровых систем управления. МикроЭВМ и микроконтроллеры В автоматизированных системах управления технологическими процессами. Архитектурные и структурные особенности программируемых логических контроллеров фирмы SIEMENS. Основные концепции программирования СРИ S7-200. Память СРИ: типы данных и адресации. CPU и конфигурация входов/выходов. Команды SIMATIC. Сетевые средства CPU S7–200.

МАТЕМАТИКА

1. Цель и задачи дисциплины

Целью освоения дисциплины «Математика» формирование у будущих специалистов знаний и умения применять изучаемые методы при анализе и управлении современными сложными системами, освоение методов математики для конкретных инженерных задач. Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры.

Задачами изучения дисциплины «Математика» является воспитание высокой привитие достаточно математической культуры, навыков мышления. современных видов привитие математического навыков использования математических методов И основ математического моделирования в практической деятельности.

В результате изучения дисциплины обучающийся должен:

<u>Знать</u> основные факты, понятия, определения и теоремы современной математической науки и их возможности для решения инженерных задач, алгоритмы решения типовых задач.

<u>Уметь</u> применять теоретические знания для решения задач, применять алгоритмы, выполнять основные математические расчеты, составлять и решать простейшие математические модели, адаптировать решения для вычислительной техники.

<u>Владеть</u> методами решения математических задач и методами построения моделей.

2. Содержание дисциплины

Перестановки, сочетания. размещения. Определители второго, третьего и n-го порядков. Свойства определителей. Матрицы. и действия над ними: Сложение матриц, умножение матрицы на число, транспонирование, умножение матриц, нахождение обратной матрицы. Системы линейных уравнений. Решение систем линейных уравнений с квадратной матрицей. Методы Крамера, Гаусса, обратной матрицы. Системы линейных уравнений с неквадратной матрицей. Базисное решение системы. Частное решение Системы совместные, системы определенные. Альтернатива Крамера. Теорема Кронекера-Капелли. Вектора. Действия над векторами. Базис. N мерный вектор. Системы векторов. Линейные операторы, собственные векторы линейных операторов. Евклидово пространство. Квадратичные формы. Системы координат на плоскости и в пространстве: декартова, полярная, цилиндрическая. сферическая. Переход от одной системы к Скалярное, векторное и смешанное произведения Преобразование координат. Базис. N мерный вектор. Системы векторов. Уравнение прямой проходящей через заданную точку в направлении

заданного вектора. Уравнение прямой проходящей через заданную точку перпендикулярно данному вектору. Уравнение прямой проходящей через две заданных точки .Общее уравнение прямой. Нормальное уравнение прямой. Параметрическое уравнение прямой. Различные уравнения плоскости и прямой в пространстве. Общее уравнение плоскости. Нормальное уравнение нормирующий множитель. Эллипс. Парабола. Классификация кривых второго порядка. Понятие множества. Операции над множествами. Понятие окрестности точки. Последовательности, способы задания последовательностей. Бесконечно малые величины и их свойства, сравнение бесконечно малых величин, связь между бесконечно малыми и большими величинами. Свойства числовых последовательностей. Пределы последовательностей и функций. Свойства пределов. Первый и второй замечательные пределы. Непрерывность функции в точке. Непрерывные функции и их свойства. Точки разрыва функции. Классификация точек разрыва функций. Основные теоремы о непрерывных функциях. Функциональная зависимость. Точечные множества в N – мерном пространстве. Определение производной. основные свойства производной. Производная как тангенс угла наклона касательной в точке вычисления производной. Скорость, ускорение. Производные стандартных функций. производных Дифференциал И его свойства. дифференциала к приближенным вычислениям. Теорема о непрерывности дифференцируемой функции. Теорема Ферма. Теорема Роля. Теорема Лагранжа. Теорема Коши. Правило Лопиталя. Производная от производной. Производные функции заданной параметрически. Производная от функции заданной неявно. Формулы Мак-Лорена и Тейлора для многочленов. Формулы Мак-Лорена и Тейлора для функций. Погрешность. Остаточный член. Исследование функций. Промежутки монотонности. Точки перегиба. Экстремумы. Необходимые и достаточные условия экстремума. Асимптоты. Выпуклость функции. Графики квадратичной, степенной, показательной, логарифмической функций. Графики периодических тригонометрических и гиперболических функций. Функции нескольких переменных. Пределы функции нескольких переменных. Непрерывность Производные функции нескольких функции нескольких переменных. переменных. Частные производные. Теорема о смешанных производных. Дифференциал функции нескольких переменных. Необходимые достаточные условия экстремума функции нескольких переменных. Седловая точка. Матрица Гесса. Комплексные числа. Формы комплексных действия Меллина. чисел, над ними. Формула Формула Эйлера. Первообразная. Теорема первообразных. Определение o неопределенного неопределенного интеграла. Свойства интеграла. Непосредственное интегрирование. Вычисление интегралов стандартных функций исходя из определения неопределенного интеграла. интегрирования по частям. Таблица интегралов. Теоремы о разложении правильных дробей. Интегрирование простейших рациональных

дробей.Замены ДЛЯ интегрирования тригонометрических подстановка. Тригонометрические универсальная тригонометрическая подстановки. Подстановки Эйлера. Подстановки Чебышева. Определение определенного интеграла. Интегральные суммы. Свойства определенного Формула Ньютона-Лейбница.Вычисление плошади плоской фигуры. Вычисление длины дуги. Вычисление площади поверхности фигуры вращения. Вычисление объема фигуры вращения. Вычисление статических моментов и моментов инерции. Вычисление работы и давления. Нахождение тяжести. Несобственные интегралы центра несобственных интегралов первого рода. Несобственные Сходимость интегралы второго рода. Сходимость несобственных интегралов второго рода. Построение интегральной суммы по плоской области. интегралы и их свойства. Геометрический смысл двойного интеграла. Замена переменных в двойных интегралах. Якобиан. Вычисление площади плоской фигуры. Вычисление объема тела. Вычисление площади поверхности. Нахождение массы, координат центра тяжести и момента инерции плоской фигуры. Построение интегральной суммы по пространственной области. Тройные интегралы и их свойства. Геометрический смысл тройного интеграла. Замена переменных в тройных интегралах. Якобиан. Применение тройных интегралов. Вычисление объема тела. Нахождение массы тела. Нахождение координат центра тяжести тела. Нахождение момента инерции тела. Криволинейный интеграл по длине дуги. Свойства криволинейного интеграл первого рода. Вычисление криволинейного интеграла первого рода для дуги заданной функционально или параметрически. Криволинейные интеграл по координатам. Свойства криволинейного интеграл второго рода. Поверхностные интегралы Формула Грина. первого рода. Свойства поверхностных интегралов первого рода. Поверхностные интегралы второго рода. Свойства поверхностных интегралов второго Формула Стокса.Связь поверхностных интегралов второго рода ПО замкнутой тройным интегралом области поверхности ПО ограниченной поверхностью – .Формула Остроградского- Гаусса. Приложение формулы Остроградского- Гаусса к исследованию поверхностных интегралов. Понятия скалярного и векторного полей. Производная по направлению. Скорость изменения функции. . Градиент как вектор характеризующий по величине и направлению наибольшую скорость возрастания функции. Поток вектора поверхность. Задача ламинарного движения жидкости поверхность. Задача о потоке тепла. Определение дивергенции. Формула Остроградского- Гаусса в терминах потока поля и дивергенции. Задача о работе векторного поля по перемещению точки по кривой. Циркуляция поля. Определение ротора. Формула Стокса в терминах циркуляции поля и ротора. Оператор Гамильтона и его свойства. Представление градиента, дивергенции, ротора и других дифференциальных характеристик с помощью оператора Гамильтона. Оператор Лапласа и его свойства. Потенциальное поле. Условие потенциальности поля. Соленоидальное поле. Условие

соленоидальности поля. Представление произвольного векторного поля в виде суммы потенциального и соленоидального полей. Основные понятия числовых рядов. Сумма ряда. Сходимость числовых рядов. Необходимое числовых рядов. Теоремы сходимости сравнения.Признаки сходимости Даламбера, Коши, интегральный признак сходимости Коши Мак-Лорена. Знакопеременные ряды. Типы сходимости знакопеременных рядов. Признак сходимости Лейбница. Основные понятия функциональных рядов. Сумма функционального ряда Область сходимости функционального ряда, Типы сходимости функциональных рядов. Степенные ряды. Теорема Абеля об области сходимости степенных рядов. Ряды Мак-Лорена и Тейлора. Разложение стандартных функций в ряд Мак-Лорена. Периодические функции. Гармонический анализ. Понятие о рядах Фурье. Скалярное произведение двух функций. Свойства скалярного произведения двух функций. Ортогональность двух функций. Система ортогональных функций. Норма функции. Ортонормированная система функций. Разложение функции в ряд по системе ортогональных функций. Коэффициенты Фурье и их Интеграл Дирихле. Обобщенный ряд вычисление. Фурье. Фурье.Ортогональность сходимости радов функций sinnx Разложение функции в ряд по системе ортогональных функций sinnx и cosnx на отрезке — ; . Разложение четных и нечетных функций. Ортогональность функций $\sin \frac{n-x}{l}$ и $\cos \frac{n-x}{l}$. Разложение функции в ряд по системе ортогональных функций $\sin \frac{n-x}{l}$ и $\cos \frac{n-x}{l}$ на отрезке — l;l . Комплексная форма рядов Фурье.Интеграл Фурье как предельный случай ряда Фурье. Достаточные признаки сходимости Дини, Дирихле-Жордана. Различные виды формулы Фурье. Преобразование Фурье. Свойства преобразования Фурье.Основные понятия дифференциальных уравнений. Общее и частное решение дифференциального уравнения. Линии уровня. Интегрирование дифференциальных уравнений с разделяющимися переменными. Однородные линейные дифференциальные уравнения первого порядка. Неоднородные линейные дифференциальные уравнения первого порядка. Дифференциальные уравнения приводимые к линейным первого порядка. Замена для решения однородных дифференциальных уравнений. Приведение дифференциальных уравнений К однородным.Решение дифференциальных линейных однородных уравнений п-го Характеристическое уравнение. Случай простых действительных корней характеристического уравнения. Случай кратных действительных корней Случай простой характеристического уравнения. пары комплексно сопряженных корней характеристического уравнения. Случай кратных пар комплексно сопряженных корней характеристического уравнения. Решение линейных неоднородных дифференциальных уравнений п-го порядка, нахождение частного решения неоднородного уравнения по виду правой вариации произвольной постоянной. Метод Определитель Вронского. Абсолютная и относительная погрешность. Значащая цифра.

Число верных знаков. Общая формула для погрешности. Обратная задача теории погрешностей. Матрицы. Норма матрицы. Нахождение собственных собственных векторов матрицы. Постановка значений задачи интерполирования. Первая интерполяционная формула Ньютона. Вторая интерполяционная формула Ньютона. Интерполяционная формула Лагранжа. Погрешность интерполяционной формулы Ньютона. Погрешность Лагранжа.Отделение интерполяционной формулы корней. Метол половинного деления. Метод хорд. Метод Ньютона. Комбинированный метод. Метод простых итераций. Метод Ньютона для случая комплексных корней. Численное решение систем уравнений методы простых итераций, Ньютона. Численное решение систем линейных уравнений методы простых Зейделя. Сходимость итерационных процессов для систем линейных уравнений. Квадратурные формулы Ньютона-Котеса. Формула Остаточный член формулы трапеций. Формула Симпсона. трапеций. Остаточный член формулы Симпсона. Общая формула Симпсона (параболическая формула). Кубатурная формула типа Симпсона.. Численное решение задачи Коши для обыкновенных дифференциальных уравнений. Метод Эйлера. Модификации метода Эйлера. Метод Рунге-Кутта. Метод Адамса. Основы вычислительного эксперимента. Проведение натурного эксперимента. Построение математической модели. Выбор и применение численного метода для нахождения решения. Обработка результатов вычислений. Сравнение с результатами натурного эксперимента. Принятие решения о продолжении натурных экспериментов. Продолжение натурного эксперимента для получения данных, необходимых для уточнения модели. Накопление экспериментальных данных. Построение математической модели. Функции комплексного переменного . Гармонические функции Условия Коши-Римана. Производная функции комплексного переменного. Интегрирование функции комплексного переменного. Вычисление интегралов. Теорема и формула Коши. Интеграл типа Коши. Интегральные формулы Коши. Степенной ряд. Рады Мак-Лорена и Тейлора для комплексных переменных. Ряд Лорана. Изолированные особые точки. Вычеты. Особые точки на бесконечности. Теоремы о вычетах. Оригинал. Изображение. Преобразование Лапласа. Свойства преобразования Лапласа. Теоремы Теорема затухания. подобия. смещения. дифференцирования ДЛЯ оригинала. Теорема дифференцирования для изображения. Теорема интегрирования оригинала. Теорема ДЛЯ интегрирования для изображения. Таблица преобразования Лапласа. Теорема оригинала. Теоремы разложения. Теорема Случайные события. Сумма событий. Произведение событий. Полная группа событий. Совместность И несовместность событий. Зависимость независимость событий. Статистический подход к определению вероятности события. Вероятностное пространство. Классическое геометрическое определения вероятности. Теоремы сложения вероятности совместных и несовместных событий. Теоремы умножения вероятностей

зависимых и независимых событий. Формула полной вероятности. Гипотезы. Апостериорная вероятность гипотез. Постериорная вероятность гипотез. Формула Байеса. Схема последовательных испытаний Бернулли. Формула Теорема Пуассона. Локальная Муавра-Лапласа. Бернулли. теорема Интегральная теорема Муавра-Лапласа. Закон больших чисел формулировке теоремы Бернулли. Случайные величины. Дискретные и случайные величины. Закон распределения случайной непрерывные величины. Функция распределения случайной величины. вероятности распределения случайной величины. Математическое ожидание и его свойства. Дисперсия и ее свойства. Средне квадратическое отклонение. Мода. Медиана. Модели законов распределения вероятностей, наиболее употребляемые в социально-экономических приложениях. распределение. Биномиальное распределение. Распределение Стьюдента. распределения случайных Параметры Нормальный закон величин. нормального закона распределения случайных величин. График плотности вероятности нормально распределенной случайной величины. Правило трех сигм. Закон больших чисел в виде неравенств Чебышева. Закон больших чисел в формулировке теоремы Чебышева. Закон больших формулировке теоремы Бернулли. Центральная предельная Основные понятия математической статистики, генеральная совокупность и выборка. Способы построения выборки. Типы выборок. Полигон частот. Гистограмма. Эмпирическая функция распределения случайной величины. Свойства эмпирической функции распределения. График эмпирической функции распределения. Статистические метолы обработки экспериментальных данных. Оценки параметров точечные и интервальные. Смещенные и несмещенные, эффективные и неэффективные, состоятельные и несостоятельные оценки. Доверительный интервал для математического ожидания генеральной совокупности при известном среднем квадратическом отклонении для нормального закона. Статистическое оценивание и проверка гипотез. Основные понятия проверки статистических гипотез. конкурирующих гипотез. Критическая область. Ошибки первого и второго Уровень значимости. Критерии. Типы зависимостей величинами. Корреляционная зависимость. Корреляция и регрессия. Метод корреляции наименьших квадратов. Коэффициент его ковариации и его свойства. Коэффициент Множества, отношения Отображения и функции. множествах. Операции множествами. над Элементы математической логики. Истинные и ложные высказывания. Основные законы и свойства. Предикаты. Алгебра предикатов. Кванторы всеобщности и существования. Схемы логических рассуждений. Булевы функции. Совершенные нормальные формы. Полином Жегалкина. Релейноконтактные схемы. Графы. Изоморфизм. Пути (критический) в графе. Циклы Эйлера, Гамильтона. Деревья. Числа в графах. Функция Гранди. Алгоритм Форда-Фалкерсона. Сети, транспортные сети. Комбинаторика. Сочетания, перестановки. С повторением. Метод размещения, математической

индукции. Алфавит, слово, язык. Классификация грамматик и Конечные автоматы. Машина Тьюринга. Нечеткие множества. Нечеткие алгоритмы..Определение вариации. Непрерывность функционала. С^k. Способы вычисления Непрерывность в пространстве Вычисление вариации функционалов, зависящих от первой производной... Экстремали функционала. Необходимое условие экстремума функционала. Уравнение Эйлера для функционалов, зависящих от первой производной. Вывод уравнения Эйлера для функционалов, зависящих от производной. Граничные условия. Исследование Необходимые условия экстремума для функционалов, зависящих от функций нескольких переменных. Вывод уравнения Эйлера-Остроградского. Свойства экстремали. Условие трансверсальности, их геометрический смысл. Задачи с подвижным и свободным концами. Геометрический смысл условия трансверсальности. Связь трансверсальности с ортогональностью. Поле экстремума. Достаточные условия Вывод Вейерштрасса. Условие Вейерштрасса Условие Лагранжа. Линейные дифференциальные уравнения в частных производных первого порядка. Сведение линейного дифференциального уравнения в частных производных первого порядка к системе обыкновенных дифференциальных уравнений. Решение однородных уравнений. Решение неоднородных уравнений. Основные понятия. Вывод уравнения колебания струны. уравнение распространения тепла в изотропном твердом теле. Анизотропный случай. Эйлера неразрывности. Уравнения Стокса. Характеристики уравнения и их вычисление. Характеристическое уравнение. Приведение уравнения второго порядка с двумя независимыми переменными к каноническому виду. Две канонические формы для . уравнения гиперболического типа. Уравнения смешанного типа. Задача Трикоми. Задача Геллер-Стедта. Уравнение колебаний неограниченной струны. Формула Даламбера. Задача Коши для уравнения колебаний бесконечной струны. Решение Даламбера. Понятие об обобщенном решении. Задача остывания бесконечного стержня. Фундаментальное решение. Понятие о тепловых потенциалах. Граничные условия: теплопроводность, конвекция. Теплообмен по законам Ньютона и Стефана-Больцмана.Описание стационарных режимов задач математической физики. Гармонические функции, их связь с функциями комплексной переменной. Фундаментальное решение уравнения Лапласа. Теория потенциалов. Задача Штурма-Лиувилля. Остывание ограниченного стержня. Первая краевая задача с нулевыми граничными условиями. Неоднородное уравнение теплопроводности. Вторая краевая задача. Решение неоднородных граничных задач.

МАТЕМАТИЧЕСКИЕ ОСНОВЫ ТЕОРИИ СИСТЕМ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Математические основы теории систем» является формирование у будущих специалистов знаний и умений по применению аппарата и методов теории систем в будущей профессиональной деятельности.

Задачами изучения дисциплины «Математические основы теории систем» дать студенту необходимые теоретические и практические знаниятеории систем, развитие у студентов навыков моделирования процессов и явлений средствами современной теории систем с возможным дальнейшим применением вычислительной техники.

В результате изучения дисциплины обучающийся должен:

<u>Знать</u> основные методы современной теории систем.

<u>Уметь</u> выполнять основные расчеты, адаптировать решения для вычислительной техники.

<u>Владеть</u> навыками решения по построению математических моделей реальных инженерных задач.

2. Содержание дисциплины

Основные этапы принятия решений. Локальный экстремум функции одного и нескольких аргументов: аналитические, графические и численные методы поиска. Методы градиентного спуска и подъема. Условная оптимизация, метод множителей Лагранжа. Динамические системы. Дискретные динамические непрерывные системы. Общая задача динамического программирования. Переменные состояния и переменные управления. Принцип оптимальности. Основное функциональное уравнение Беллмана. Условная и безусловная оптимизация. Случайные процессы. Системы дискретными состояниями. Процессы с дискретным и непрерывным временем. Поток событий. Марковский поток событий и его плотность. Пуассоновский поток событий и его свойства. Граф переходов (состояний) системы, предельный режим системы. Системы массового обслуживания. Основные элементы и показатели эффективности СМО. Одноканальные и многоканальные СМО с отказами и с ожиданием и их основные числовые характеристики. Устойчивость, асимптотическая устойчивость неустойчивость по Ляпунову. Точка покоя системы дифференциальных уравнений первого порядка. Исследование на устойчивость однородных линейных дифференциальных уравнений систем постоянными коэффициентами. Классификация точек покоя. Фазовые портреты. Критерий асимптотической устойчивости однородной системы линейных дифференциальных уравнений коэффициентами. c постоянными Знакопостоянные, знакоопределенные и знакопеременные формы. Функции

Ляпунова об устойчивости, Ляпунова. Теоремы асимптотической устойчивости и неустойчивости движения. Система линейных приближений и методы ее построения. Теоремы об асимптотической устойчивости и неустойчивости системы по первому приближению. Дробно-рациональная функция комплексного аргумента, ее нули и полюсы. Форма Хэвисайда и форма Боде. Прямое и обратное преобразования Фурье. Частотный спектр. Прямое обратное преобразования Лапласа, теоремы основные операционного исчисления. Динамическое звено. Свойства ОПФ. Характеристическое уравнение динамического ОΠФ звена. системы звеньев: последовательное и параллельное динамических соединение динамических звеньев, системы с положительной и отрицательной обратной связью. Временные характеристики динамического звена: импульсная и переходная характеристики. Частотная характеристика динамического звена. Виды частотных характеристик: ВЧХ, МЧХ, АЧХ, ФЧХ, АФЧХ, ЛАЧХ, ЛФЧХ. Физический смысл АЧХ и ФЧХ. Элементарные динамические звенья, их числовые характеристики. Исследование САУ на устойчивость. Нечеткие множества и операции над ними. Функция принадлежности. Нечеткие числа и операции над нечеткими числами. Нечеткие бинарные отношения, их композиции, свойства и виды. Нечеткие булевы переменные и логические операции над ними

МЕТОДЫ ОПТИМИЗАЦИИ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Методы оптимизации» является формирование у будущих специалистов знаний и умений применять современный математический аппарат для моделирования, решения и задач, реальных инженерных встречающихся практике. Воспитание достаточно высокой математической культуры. Привитие навыков современных видов математического мышлении. Привитие навыков математических использования методов И основ математического моделирования в практической деятельности.

Задачами изучения дисциплины «Методы оптимизации» является дать студенту необходимые теоретические и практические знания по построению математических моделей реальных инженерных задач.

В результате изучения дисциплины обучающийся должен:

<u>Знать</u> основные факты, понятия, определения и теоремы методов оптимизации и вариационного исчисления. Постановки и основные методы решения задач одномерной и многомерной оптимизации.

<u>Уметь</u> применять теоретические знания для решения задач, применять оптимизационные и управленческие алгоритмы, выполнять основные математические расчеты, составлять и решать простейшие математические модели, адаптировать решения для вычислительной техники.

<u>Владеть</u> методами решения математических задач и методами построения моделей.

2. Содержание дисциплины

Безусловная оптимизация функции нескольких переменных. Необходимые условия. Достаточные условия второго порядка. Метод Лагранжа. Элементы выпуклого анализа. Методы без использования производных. Метод покоординатного спуска. Метод Хука и Дживса. Методы, использующие производные. Метод градиентного спуска. Постановка наискорейшего спуска. задач линейного Геометрические программирования. метода решения задачи линейного программирования. Симплекс метол решения задач программирования. Элементы теории двойственности Транспортная задача. Оптимизация на графах. Вариация функции и ее свойства. Основная лемма вариационного исчисления Задачи с подвижными границами. Условия трансверсальности. Экстремали с угловыми точками. Постановка задач. Сопряженные системы. Доказательство принципа максимума. Построение оптимальных режимов управления.

МЕТРОЛОГИЯ И ИЗМЕРИТЕЛЬНАЯ ТЕХНИКА

1. Цель и задачи дисциплины

Целью освоения дисциплины «Метрология и измерительная техника» является ознакомить студентов с методами и средствами электрических измерений, устройством и принципом действия электромеханических, электронных и цифровых измерительных приборов, научить оценивать погрешности измерений.

Задачами изучения дисциплины «Метрология и измерительная техника» являются:

- познакомить обучающихся с устройством и принципом действия приборов для измерения электрических, магнитных и неэлектрических величин, их метрологическими характеристиками и областями применения;
- научить проводить выбор метрологического оборудования, обеспечивающего необходимые диапазоны и точность измерения.
- усвоение основных положений теоретической и практической метрологии как инструмента научных исследований и практической деятельности.

В результате изучения дисциплины обучающийся должен:

знать:

- законодательные и нормативные правовые акты, методические материалы по метрологии;
- систему государственного надзора и контроля, межведомственного и ведомственного контроля за качеством продукции, стандартами, техническими регламентами и единством измерений;
- основные закономерности измерений, влияние качества измерений на качество конечных результатов метрологической деятельности, методов и средств обеспечения единства измерений;
- организацию и техническую базу метрологического обеспечения предприятия, правила проведения метрологической экспертизы, методы и средства поверки (калибровки) средств измерений, методики выполнения измерений;

уметь:

- использовать технические средства для измерения различных физических величин;
- применять контрольно-измерительную технику для контроля качества продукции и метрологического обеспечения продукции и технологических процессов;
- применять технологию разработки и аттестации методик выполнения измерений, испытаний и контроля;
- пользоваться методами и средствами поверки (калибровки) средств измерения, правилами проведения метрологической и нормативной экспертизы документации;

- организовать метрологическое обеспечение производства систем и средств автоматизации и управления.

владеть:

- методами обработки результатов измерений в соответствии с действующими закономерностями;
- навыками практической деятельности по обновлению фонда нормативных документов;
- умением применять компьютерные технологии для планирования и проведения работ по метрологии.

2. Содержание дисциплины

Основные термины и понятия метрологии. Основные понятия, связанные со средствами измерения (СИ). Единицы величин, их эталоны и классификация измеряемых величин. Элементы теории качества измерений. Основы обработки результатов измерений: формы представления результатов измерений. Алгоритмы. Обработка многократных измерений постоянной величины: некоррелированных равноточных и неравноточных и коррелированных равноточных. Алгоритм обработки независимых многократных измерений переменной измеряемой величины. Интервальная оценка измеряемой величины при обработке многократных измерений. Обработка результатов совместных измерений на основе метода наименьших квадратов. Обработка результатов косвенных измерений. Контрольнотехнологии.Основы обеспечения. измерительные метрологического Правовые основы обеспечения единства измерений.

Основные универсальные средства измерений: механические измерительные средства общего назначения; оптикомеханические, фотоэлектрические приборы для измерения линейных пневматические, величин. Измерение шероховатости поверхностей. Измерительные системы, измерительно-вычислительные комплексы, измерительные информационные измерительной информации. Сигналы Измерение жидкостей и газов. Средства измерения электрических величин: измерения электрического тока и напряжения. Измерение неэлектрических величин: преобразователи; генераторные измерительные пьезоэлектрические, параметрические, индуктивные измерительные преобразователи. Приборы для измерения температуры. Приборы для измерения давления

МИКРОПРОЦЕССОРНЫЕ УСТРОЙСТВА СИСТЕМ УПРАВЛЕНИЯ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Микропроцессорные устройства систем управления» является изучения теоретических и практических основ построения, функционирования микропроцессорных устройств систем управления, контроля, регулирования на основе микропроцессоров и микроконтроллеров.

Задачами изучения дисциплины «Микропроцессорные устройства систем управления» является дать студенту теоретическую и практическую знанию по архитектуре, структуре и программированию микропроцессорных устройств и по построению и эксплуатации систем управления, контроля, регулирования на основе микропроцессорных устройств.

В результате изучения дисциплины обучающийся должен:

<u>Знат</u> <u>ь</u>перспектив и тенденции развития, принципов построения, микропроцессоров и систему команд, архитектуру, структуру и языка программирования микропроцессорных устройств;

<u>Уметь</u> разрабатывать автоматических и автоматизированных систем управления, контроля, регулирования на основе микропроцессорных устройств;

<u>Владеть</u> навыками по обслуживания и эксплуатации современных автоматических и автоматизированных систем управления, контроля, регулирования на основе микропроцессорных устройств.

2. Содержание дисциплины

Применение микропроцессоров в автоматических и автоматизированных системах. Классификация микропроцессоров и их характеристики. Основные понятия и определения. Информационные потоки в микропроцессорной системе. Структура микропроцессора и микропроцессорной Шинная структура связей. Режимы работы микропроцессорной системы. Архитектура с общей шиной данных и команд. Архитектура с разделенными команд.Типы микропроцессорных данных И микропроцессорной системы. Циклы программного обмена. Циклы обмена по прерываниям. Циклы обмена в режиме ПДП. Прохождение сигналов по магистрали. Шинымикропроцессорной системы. Циклы информацией: циклы программного обмена; циклы обмена по прерываниям; шиклы обмена режиме ПДП. Прохождение магистрали. Функции процессора. Функции памяти. Функции устройств ввода и вывода. Методы адресации. Сегментирование памяти. Адресация процессора.Команды байтов слов. Регистры пересылки данных. Арифметические команды. Логические команды. Команды переходов. Быстродействие процессора. Классификация и структура микроконтроллеров. микроконтроллера. Память Процессорное ядро программ И данных МК.Порты ввода/вывода. Таймеры и процессоры событий. Модуль прерываний МК.Структура МК-системы управления.

МОДЕЛИРОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Моделирование систем управления» является изучения основных методов моделирования систем управления и важнейших классов их математических моделей.

Задачами изучения дисциплины «Моделирование систем управления» является ознакомление студентов с методами построения моделей стохастических систем и методами нелинейной динамики в плане их использования для описания систем управления.

В результате изучения дисциплины обучающийся должен:

<u>Знать</u> принципы разработки непрерывных и дискретных систем в рамках модели «черного ящика», методы имитации случайных распределений на ЭВМ, основные понятия теории динамических систем;

<u>Уметь</u> разрабатывать программы имитации случайных распределений и АРПСС-сигналов, рассчитывать передаточные функции и частотные характеристики линейных дискретных и непрерывных систем, исследовать на устойчивость траектории динамических систем;

<u>Владеть</u> навыками по компьютерной имитации случайных величин и АРПСС-сигналов.

2. Содержание дисциплины

Генераторы псевдослучайных чисел — общие принципы построения. Мультипликативные конгруэнтные генераторы. Общий алгоритм имитации дискретного распределения. Метод обратных функций. Имитация гауссовского распределения. Имитация многомерного равномерного распределения. Имитация некоторых многомерных распределений.

ОСНОВЫ НАУЧНЫХ ИССЛЕДОВАНИЙ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Основы научных исследований» является ознакомление с принципами, методами, этапами научных исследований.

Задачами изучения дисциплины «Основы научных исследований» является формирование системы знаний и умений об организационнометодических и экономических основах научных исследований, направленных на организацию научной деятельности, планирование экспериментальных исследований и обработку полученных результатов.

В результате изучения дисциплины обучающийся должен:

Знать:

- цели и задачи проводимых исследований;
- методы проведения экспериментов и наблюдений
- обобщения и обработки информации

Уметь:

- применять нормативную документацию в профессиональной деятельности
- систематизировать и анализировать полученную информацию.

<u>Владеть:</u>

- навыками применения методов анализа научно-технической информации в профессиональной деятельности

4. Содержание дисциплины

Основные этапы развития науки. Организация управления наукой, отечественный и зарубежный опыт. Методы научных исследований и применение в решении социально-экономических проблем. Планирование и систематизация исследований, планирование и проведение эксперимента. Экспериментально-статистические модели, анализ систем ПО экспериментально-статистическим моделям. Использование прикладных программ для обработки экспериментальных данных. Содержание и порядок оформления научного и информационного рефератов, научной статьи и еец тезисов, монографии, диссертации, научного выпускной доклада, квалификационной работы исследовательского характера.

ПРАВО

1. Цель и задачи дисциплины

Целями освоения дисциплины «Право» является

- формирование правовой культуры и высокой сознательной дисциплины будущих специалистов;
- привить обучающимся навыки правильного ориентирования в системе права;
- ознакомление их с основными путями правового регулирования социальных процессов, ролью права в управлении государством, экономикой, в обеспечении правопорядка и организованности, в развитии реформаторских процессов в России.

Задачами изучения дисциплины «Право» является

- ознакомление с важнейшими принципами правового регулирования, определяющими содержание норм российского права;
- рассмотрение общих вопросов теории государства и права; разъяснение наиболее важных юридических понятий и терминов; характеристика и подробный анализ основных отраслей российского права.

В результате освоения дисциплины обучающийся должен: Знать

- основы российской правовой системы и законодательства;
- права и свободы человека и гражданина, уметь их реализовывать в различных сферах жизнедеятельности;
- организацию судебных и иных правоохранительных и правоприменительных органов, правовые и нравственно-этические нормы в сфере профессиональной деятельности.

Уметь

- использовать и составлять правовые документы, относящиеся к будущей профессии;
- пользоваться юридическими источниками (в первую очередь законодательным материалом, подзаконными документами и др.).

Владеть навыками

- сравнительного анализа явлений и фактов общественной жизни;
- принимать необходимые меры по восстановлению нарушенных прав.
- 2. Содержание дисциплины Причины происхождения государства. Общая характеристика происхождения права. Государственное (конституционное) право. Президент РФ. Высшие органы государственной власти. Административное право. Общие положения гражданского права. Общие теоретические вопросы права. Общие теоретические вопросы права. Конституционное право. Гражданское право. Семейное право. Уголовное право. Экологическое право. Информационная защита. Трудовое право.

ПРАВО

1. Цель и задачи дисциплины

Целями освоения дисциплины «Право» является

- формирование правовой культуры и высокой сознательной дисциплины будущих специалистов;
- привить обучающимся навыки правильного ориентирования в системе права;
- ознакомление их с основными путями правового регулирования социальных процессов, ролью права в управлении государством, экономикой, в обеспечении правопорядка и организованности, в развитии реформаторских процессов в России.

Задачами изучения дисциплины «Право» является

- ознакомление с важнейшими принципами правового регулирования, определяющими содержание норм российского права;
- рассмотрение общих вопросов теории государства и права; разъяснение наиболее важных юридических понятий и терминов; характеристика и подробный анализ основных отраслей российского права.

В результате освоения дисциплины обучающийся должен: Знать

- основы российской правовой системы и законодательства;
- права и свободы человека и гражданина, уметь их реализовывать в различных сферах жизнедеятельности;
- организацию судебных и иных правоохранительных и правоприменительных органов, правовые и нравственно-этические нормы в сфере профессиональной деятельности.

Уметь

- использовать и составлять правовые документы, относящиеся к будущей профессии;
- пользоваться юридическими источниками (в первую очередь законодательным материалом, подзаконными документами и др.).

Владеть навыками

- сравнительного анализа явлений и фактов общественной жизни;
- принимать необходимые меры по восстановлению нарушенных прав.
- 2. Содержание дисциплины Причины происхождения государства. Общая характеристика происхождения права. Государственное (конституционное) право. Президент РФ. Высшие органы государственной власти. Административное право. Общие положения гражданского права. Общие теоретические вопросы права. Общие теоретические вопросы права. Конституционное право. Гражданское право. Семейное право. Уголовное право. Экологическое право. Информационная защита. Трудовое право.

ИСТОРИЯ РОССИИ

1. Цель и задачи дисциплины

Основная **цель** освоения учебной дисциплины «История России» заключается в том,

чтобы рассмотреть в исторической ретроспективе сложнейшие процессы как прошлого, так и настоящего, оценить роль и место России в мире, дать представления об основных этапах и содержании истории России с древнейших времен и до наших дней, показать на примерах из различных эпох органическую взаимосвязь российской и всеобщей истории.

В связи с этим программа изучения истории России строится по линейнохронологическому принципу, в соответствии с периодизацией истории России, которая определяется основными этапами в развитии российской государственности: Русь IX — первой трети XIII в., Русские земли с середины XIII до конца XV в., Российское (Московское) государство XVI—XVII вв., Российская империя, Советская эпоха, современная Российская Федерация. История Российской империи делится на два периода, обладающих типологическим единством: XVIII век (включающий эпохи Петра I и Екатерины II) и «долгий» XIX век — с 1801 до 1917 г. Каждый период, в свою очередь, подразделяется на несколько частей по хронологическому или тематическому принципу.

Основные задачи курса:

сформировать у обучающихся научные представления о всеобщей истории;

ознакомление с особенностями становления и развития политической организации российского государства, общественного строя, экономики и культуры в сравнении с опытом других народов;

изучение понятийного аппарата дисциплины;

□формирование гражданской идентичности, развитие интереса и воспитание уважения к историческому наследию, его сохранению и преумножению.

2. Содержание дисциплины

История как наука.

Мир в древности. Народы и политические образования на территории современной России в древности.

Средние века как период всеобщей истории. Особенности развития государственности в Европе и России в средние века.

Формирование единого Русского государства (XIV – XVI в.в.).

Мир к началу эпохи Нового времени. Россия в XVI в.

Россия и Европа XVII в.: эволюция от сословно-представительной монархии – к абсолютизму.

Европеизация России в первой четверти XVIII в.

Россия и Европа со второй четверти до конца XVIII в.

Россия XIX века: борьба реформизма и контрреформизма.

Социально-экономическое и политическое развитие России во второй половине XIX – начале XX вв.

Российская империя в 1907 – 1914 годах.

Первая мировая война. Кризис и крушение самодержавия в России.

Гражданская война в России. НЭП.

Советское государство на этапе форсированного строительства социализма.

Великая Отечественная война 1941–1945 гг. Борьба советского народа против германского нацизма — ключевая составляющая Второй мировой войны.

Преодоление последствий войны. Апогей и кризис советского общества. (1945—1984 гг.).

Становление новой Российской государственности.

ПРОГРАММИРОВАНИЕ И ОСНОВЫ АЛГОРИТМИЗАЦИИ

1. Цель и задачи дисциплины

Целью дисциплины является изучение теоретических и практических основ проектирования и разработки программного обеспечения ЭВМ.

дисциплины является дать студенту проектирования практические разработки знания ПО принципам программного обеспечения ЭВМ, алгоритмическим языкам программирования.

В результате освоения дисциплины обучающийся должен:

<u>Знать</u> этапы разработки программы на ЭВМ, принципы проектирования программного обеспечения, лексические и синтаксические основы языка программирования С++, статические и динамические (списки, очереди, стеки, бинарные деревья) структуры данных, принципы объектно-ориентированного программирования, отечественные и мировые стандарты на разработку программного обеспечения;

разрабатывать Уметь алгоритмы решения прикладных проектировать оптимальную для данной задачи архитектуру программы, составлять программу решения прикладной задачи языке программирования С++, программный составлять код программы объектно-ориентированной структурой, разрабатывать приложения для операционных систем семейства **MSWindows** В среде разработчика MicrosoftVisualC++;

<u>Владеть</u> навыками по проектированию и разработке программного кода в современных операционных системах.

2. Содержание дисциплины

Предмет дисциплины и ее задачи. Роль и место задач разработки программного обеспечения интегрированных производственных комплексах, автоматизированных системах управления техническими объектами. Структура и содержание дисциплины, ее СВЯЗЬ дисциплинами специальности. Формулировка постановка Разработка алгоритма. Виды алгоритмов. Принципы программирования. Ввод и отладка программ. Решение задачи на ЭВМ и анализ полученных результатов. Системы счисления, перевод из одной системы счисления в другую. Выполнение арифметических операций в различных системах счисления. Формы представления чисел в ПЭВМ. Элементарные функции алгебры логики. Основные фазы проектирования. Структура жизненного цикла программного обеспечения. Модели жизненного цикла. Особенности, достоинства и недостатки каскадной модели. Основные мировые и отечественный стандарты. Отечественный стандарт ГОСТ 19 ЕСПД, основные положения, особенности, достоинства, недостатки. ГОСТ 34, особенности, основные положения, достоинства, недостатки. 12207, Международный стандарт ISO/IEC основные положения,

особенности, достоинства, недостатки. Базовые элементы языка С++. Использование операторов языка С++. Библиотеки языка С++. Структуры и объединения. Динамические структуры данных. Отладка программного кода. Принципы объектно-ориентированного программирования. Главные свойства: абстракция, инкапсуляция, наследование, полиморфизм. Этапы разработки объектно-ориентированной системы. Объекты и классы. Конструкторы и деструкторы. Наследование и шаблоны классов.

ПРОФЕССИОНАЛЬНЫЙ АНГЛИЙСКИЙ ЯЗЫК

1. Цель и задачи дисциплины

Целью освоения дисциплины «Профессиональный английский язык» является обеспечение активного владения иностранным языком как средством «формирования и формулирования мыслей» в профессионально-ориентированных сферах общения.

Задачами изучения дисциплины «Профессиональный английский язык» являются:

- переориентировать студентов в психологическом плане на понимание иностранного языка как внешнего источника информации и иноязычного средства коммуникации, на усвоение и использование иностранного языка для выражения собственных высказываний и понимания других людей;
- подготовить студентов к естественной коммуникации в устной и письменной формах иноязычного общения;
- научить студентов видеть в иностранном языке средство получения, расширения и углубления системных знаний по специальности и средство самостоятельного повышения своей профессиональной квалификации.

В результате освоения дисциплины обучающийся должен:

Знать:

- правила построения предложений и фраз на иностранном языке;
- закономерности образования грамматических явлений изучаемого языка;
 - лексический минимум по изучаемым темам;
- специфику артикуляции звуков, интонации нейтральной речи изучаемого языка: основные особенности полного стиля произношения, характерные для сферы профессиональной коммуникации, чтение транскрипции.

Уметь:

- понимать учебный текст, отвечающий критериям тематической целостности, структурной оформленности и информативности, с использованием словаря с точным полным пониманием его содержания и выделением смысловой информации;
- понимать учебный текст в ситуации ознакомления с общим содержанием без словаря;
- четко, выразительно и правильно в звуковом и интонационном отношении читать вслух адаптированный текст, формулировать серии логически связанных вопросов, уметь излагать содержание прочитанного;
 - понимать тексты профессионально-ориентированного содержания;
- без подготовки участвовать в беседе, обмениваться информацией по известным темам в рамках профессиональных интересов;
- кратко излагать в письменной форме содержание прочитанного материала;
 - вести диалог довольно бегло и без подготовки по специализации;

- выбрать наиболее адекватное из имеющихся в распоряжении студента средств языка для общения в нетипичных, трудных ситуациях.

Владеть:

- навыками монологической речи на бытовые и профессиональные темы;
- навыками диалогической речи как средства общения на иностранном языке;
- навыками написания докладов, рефератов по пройденным темам, а также правилам орфографии и пунктуации;
- навыками чтения и понимания аутентичных текстов по специальности со словарем и без словаря.

2. Содержание дисциплины

Тема 1: «The role of a computer»

Tема 2: «From the history of computers»

Tема 3: «What is a computer?»

Тема 4: «Personal computer»

Tема 5: «The main parts of the system»

Тема 6: «Microsoft Word»

Тема 7: «Windows»

Тема 8: «Memory»

Tема 9: «Programming languages»

Tема 10: «Small computers»

Tема 11: «Large computers»

Tема 12: «The Internet»

Тема 13: «Electronic mail»

Тема 14: «What is twitter?»

Тема 15: «High technologies in learning and translating foreign languages»

Teма 16: «Computer graphics»

Tема 17: «Cryptography»

Tема 18: «Computerviruses»

ПСИХОЛОГИЯ УПРАВЛЕНИЯ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Психология управления» является разработка путей повышения эффективности и качества жизнедеятельности организационных систем.

Задачами изучения дисциплины «Психология управления» является

- психологический анализ деятельности специалистов-управленцев;
- изучение механизмов психической регуляции трудовой деятельности в нормальных и экстремальных условиях;
 - исследование психических особенностей лидерства;
- разработка психологических рекомендаций по использованию психологических знаний в процессе управления, в разрешении конфликтов, изменении психологического климата в организациях;
 - изучение процессов группового взаимодействия;
 - исследование механизмов мотивации человека.

Студент должен:

Знать

- психологическую природу управленческих процессов;
- знать основы организационно-управленческой структуры;
- стили управления и руководства;
- способы эффективного управления;
- информационные технологии и средства коммуникации при управлении персоналом;
- творческие методы решения управленческих задач и повышения мыслительной активности сотрудников;
- особенности организационного поведения, структуру малых групп, мотивы и механизмы их поведения.

Уметь

- устно и письменно выражать свои мысли;
- использовать информационные технологии и средства коммуникации при управлении персоналом;
- компетентно управлять людьми, осуществлять подбор, подготовку и расстановку специалистов, устанавливать формальные и неформальные отношения среди сотрудников;
- адекватно оценивать собственную деятельность,
 самосовершенствоваться в соответствии с современными требованиями и прогнозируемыми изменениями;
 - планировать и прогнозировать деятельность организации.

Владеть

- риторическими приемами как в устной, так и в письменной речи;
- методами эффективного управления;
- технологиями и средствами коммуникации при управлении персоналом;
 - методами решения управленческих задач.
- 2. Содержание дисциплины Психология управления как наука. Модели управления. Руководитель как субъект управления. Руководитель и лидер в современной организации. Деловая карьера руководителя: планирование и реализация. Имидж руководителя. Исполнитель в организации. Организация управления. Организационная культура. субъект Общение управленческая деятельность: психологическая характеристика. Психологическое воздействие в процессе общения. Виды и формы управленческого общения.

РАЗРАБОТКА ПРИКЛАДНЫХ ПРОГРАММ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Разработка прикладных программ» является подготовка инженеров, специализирующихся в области разработки программного обеспечения вычислительной техники.

Задачами изучения дисциплины «Разработка прикладных программ» является ознакомление студентов с современными методами обработки данных, основанных на использовании параллельных алгоритмов и с основными понятиями параллельного программирования.

В результате освоения дисциплины обучающийся должен::

Знать

- классификацию архитектур вычислительных систем;
- законы Амдала и Густафсона- Барсиса;
- основы многопоточной обработки в .NETFramework.

<u>Уметь</u> применять теоретические знания для проектирования и реализации параллельных алгоритмов.

<u>Владеть</u> навыками проектирования и реализации параллельных алгоритмов.

2. Содержание дисциплины

Введение в параллельное программирование. Определение, назначение параллельного программирования. Многоядерные вычисления. множественные потоки команд/ данных. Ускорение. Закон Амдала. Закон Густафсона-Барсиса.

Многопоточность в .NETFramework. Определение многопоточности. Основы многопоточной обработки. Класс Thread. Создание вторичных потоков. Назначение приоритета потока. Управление потоками. Пул потоков CLR.

Синхронизация потоков. Оператор lock. Классы синхронизации в .NETFramework. Interlocked. Класс Monitor. Методыкласса Monitor (Wait, Pulse, PulseAll). КлассыМитех, Semaphore, Barrier, ReaderWriterLockSlim. Событиясинхронизациипотоков.

Параллелизм задач. Определение параллелизма задач. Создание и запуск задачи. Создание вложенных задач. Ожидание задач. Обработка ошибок в задачах. Отмена выполнения заданий. Продолжения. Продолжения и Task<TResult>. Продолжения и дочерние задачи. Продолжения предыдущих задач. Несколько продолжений одной задачи. Планировщики заданий и пользовательский интерфейс.

Класс Parallel. MeтодыParallel.Invoke, Parallel.For, Parallel.FoReach.

Parallel LINQ (PLINQ). Описание LINQ. Примеры LINQ — запросов. Работа с простыми массивами данных. Работа с массивами и коллекциями классов. Введение в PLINQ. Метод AsParallel. Пример использования PLINQ запроса.

PLINQ: Операторы и методы. ПеречеслениеParallelExecutionMode. МетодWithDegreeOfParallelism. МетодAsOrdered. Метод Range. Метод Repeat. МетодAsUnordered. МетодAsSequential. МетодWithMergeOptions. МетодForAll.

Параллельные коллекции. Классы параллельных коллекций. Интерфейс IProducerConsumerCollection<Т>. Пример использования обычной коллекции с применением параллелизма.

Параллельные коллекции. Низкоуровневая синхронизация. Структуры SpinLock, SpinWait. Параллельные коллекции: ConcurrentQueue, ConcurrentStack, ConcurrentBag, ConcurrentDictionary, BlockingCollection. Создание экземпляра класса BlockingCollection. Создание поставщика. Создание потребителя.

РУССКИЙ ЯЗЫК И КУЛЬТУРА РЕЧИ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Русский язык и культура речи» является формирование коммуникативной компетентности, под которой подразумевается умение человека организовывать речевую деятельность языковыми средствами и способами, адекватными ситуации. Цели курса определяют структуру, содержание и рациональные формы организации обучения: лекции, семинары, практические занятия, различные виды самостоятельной работы.

Задачами изучения дисциплины «Русский язык и культура речи» является формирование у студентов следующих основных навыков, которые должен иметь профессионал любого профиля для успешной работы по своей специальности и каждый член общества — для успешной коммуникации в самых различных сферах — бытовой, юридически-правовой, научной, политической, социально-государственной:

- продуцирование связных, правильно построенных монологических текстов на разные темы в соответствии с коммуникативными намерениями говорящего и ситуацией общения;
- участие в диалогических и полилогических ситуациях общения, установление речевого контакта, обмен информацией с другими членами языкового коллектива, связанными с говорящим различными социальными отношениями.

Студент должен:

Знать

- 1) иметь представление о роли языка в системе социальной коммуникации;
- 2) знать лексические, синтаксические, морфологические и орфоэпические нормы современного русского языка; владеть нормами письменной речи; уметь редактировать высказывания и объяснять причины ошибок и неточностей;
 - 3) понимать значение термина «культура речи»;
 - 4) знать особенности функциональных стилей речи;

Уметь

- 1) принимать участие в диалогических и полилогических ситуациях общения:
- 2) обеспечивать установление речевого контакта, обмен информацией с другими членами языкового коллектива;
- 3) объяснить основные понятия курса;
- 4) уметь выбирать стиль в соответствии с ситуацией общения;
- 5) владеть основами публичного выступления;

6) грамотно оформлять речевое высказывание, опираясь на знание норм русского языка.

Владеть навыками

- 1) установление профессионального контакта на основе знаний о нормах и стилях современного русского языка;
- 2) регулирование коммуникативных ситуаций в соответствии с конкретными условиями общения;
 - 3) прогнозирование развитие диалога, реакции собеседника;
 - 4) владение нормами русского литературного языка;
 - 5) создание текстов различных стилей речи.
- 2. Содержание дисциплины Язык и речь в системе социальной коммуникации. Культура речи как норма общения. Функциональные стили речи. Официально-деловой стиль. Оформление деловой документации. Научный стиль и его маркеры. Стиль научной работы. Публицистический стиль и культура публичной речи. Публицистический стиль в социокультурной практике. Риторический практикум. Культура речевого высказывания. Орфоэпические и лексические нормы русского языка. Морфологические нормы языка. Синтаксические нормы языка. Орфоэпические и синтаксические нормы языка. Орфографический практикум.

СИСТЕМНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ»

1. Цель и задачи дисциплины

Целью освоения дисциплины «Системное программное обеспечение» является освоение теоретических основ построения, функционирования и архитектуры современного системного программного обеспечения ЭВМ.

Задачами изучения дисциплины «Системное программное обеспечение» является дать студенту теоретические и практические знания по построению и эксплуатации современного системного программного обеспечения ЭВМ.

В результате освоения дисциплины обучающийся должен::

<u>Знать</u>структуру, достоинства и недостатки, историю развития и особенности построения системного программного обеспечения ЭВМ, принципы многозадачности, идеологию планирования вычислительных процессов, принципы взаимодействия приложений и операционных систем, принципы обработки прерываний и исключений.

<u>Уметь</u>определять основные характеристики операционных систем, использовать стандартные утилиты и объединять их в конвейеры средствами командного интерпретатора, работать с прерываниями и исключениями, проектировать и реализовывать многопоточные приложения.

<u>Владеть</u> навыками обслуживания и эксплуатации операционных систем в соответствии с решаемыми задачами, работы с командным интерпретатором и написания скриптов.

2. Содержание дисциплины

предназначение системного обеспечения. программного Основные элементы системного программного обеспечения. Драйверы устройств. Программы утилиты и программы оболочки. Классификация операционных систем . История развития и основные виды операционных систем ПЭВМ. Первые семейства операционных систем для ПЭВМ. достоинства недостатки, особенности построения Структура, И операционных систем CP/M, DOS, OS/2, UNIX. Современные операционные достоинства и недостатки, ПЭВМ.Структура, построения операционных систем семейств UNIX (Linux, QNX, FreeBSD) и Windows (линейки 9х и NT).

разработки программного обеспечения Принципы В современных операционных Современные системах. языки программирования инструментальные системы для разработки программного обеспечения, особенности, достоинства и недостатки. Особенности программирования в Windows, Linux.Классификация и понятие ресурсов. Организация планирования вычислительных процессов. Создание и удаление процессов. Планирование процессов и их диспетчеризация. Синхронизация процессов. Технологии взаимодействия процессов И ОС.Принципы организации операционных систем. Концепции многозадачности. многозадачности Понятие процесса и потока. Создание потоков, изменение их приоритетов, Объекты синхронизации потоков. Организация памяти запуск, останов.

операционных систем ПЭВМ. Архитектура памяти ОС. Основные виды распределения памяти. Реализация виртуальной памяти.

Обработка прерываний и исключений. Идеология механизма обработки прерываний. Аппаратная и программная обработка прерываний. Файловые системы операционных систем и организация ввода-вывода. Общие принципы построения файловых систем. Особенности построения файловых систем FAT, HPFS, NTFS. Технологии ввода-вывода в современных операционных системах. Асинхронный ввод - вывод.

Технологии обеспечения безопасности ОС. Управление сетью в современных операционных системах. Основные принципы обмена информацией между процессами. Технологии каналов, сокетов, динамического обмена данными.

СОВРЕМЕННЫЕ МИКРОКОНТРОЛЛЕРНЫЕ СИСТЕМЫ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Современные микроконтроллерные системы» теоретических практических является изучения построения, функционирования локальных систем управления, контроля, регулирования основе микроконтроллеров программируемых на логических контроллеров.

Задачами изучения дисциплины «Современные микроконтроллерные системы» является дать студенту теоретическую и практическую знанию по построению и эксплуатации локальных систем управления, контроля, регулирования на основе микроконтроллеров и программируемых логических контроллеров.

В результате освоения дисциплины обучающийся должен::

<u>Знать</u>перспектив и тенденции развития, принципов построения, элементную базу локальных систем управления, контроля, регулирования и систему команд, архитектуру, структуру и языка программирования микроконтроллеров и программируемых логических контроллеров;

<u>Уметь</u> разрабатывать локальных автоматических и автоматизированных систем управления, контроля, регулирования на основе микроконтроллеров и программируемых логических контроллеров;

<u>Владеть</u> навыками по обслуживания и эксплуатации современных локальных автоматических и автоматизированных систем управления, контроля, регулирования на основе микроконтроллеров и программируемых логических контроллеров.

2. Содержание дисциплины

Принципы управления и построения систем управления. Объект управления и внешние воздействия. Принципы управления и блок схемы управления. Однокристальный микроконтроллер PIC16F84A. Структура МК-системы управления. Структурная схема микроконтроллера PIC16F84A. Назначение основных блоков, входных и выходных сигналов. структура языка ассемблера. Программирование на Сущность и ассемблера. Система команд PIC16F84A.Приемы программирования микроконтроллера PIC16F84A. Структура локальных систем регулирования, управления и контроля. Понятие локальная система регулирования и структура и топология цифровых управления. Архитектура, МикроЭВМ управления. и микроконтроллеры В автоматизированных системах управления технологическими процессами. Архитектурные и структурные особенности программируемых логических контроллеров фирмы SIEMENS. Основные концепции программирования CPU S7-200. Память CPU: типы данных и способы адресации. CPU и конфигурация входов/выходов. Команды SIMATIC. Сетевые средства CPU S7-200.

СОЦИОЛОГИЯ И ПОЛИТОЛОГИЯ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Социология и политология» является формирование научных знаний о социально-политическом устройстве современного общества, о механизме реализации властных решений, в овладении основными методами измерения различных моделей политических систем и режимов, социальных явлений и их взаимосвязи с политическими процессами. Целью преподавания дисциплины «Политология и социология» является формирование у студентов теоретических знаний, практических навыков, по вопросам, представляющим общенаучную и общекультурную значимость.

Задачами изучения дисциплины «Социология и политология» является

- овладение понятийным аппаратом;
- изучение основных концепций и методологических подходов, лежащих в основе исследования всех аспектов общества и политики;
- развитие аналитического мышления у студентов при, оценке происходящих событий в мире;
- формирование понимания важности общественной роли гражданина в социально-политическом процессе и процессе общественного управления.

В результате изучения дисциплины обучающийся должен:

Знать

- объект, предмет и методы науки;
- функции социологии и политологии;
- роль и место политики в жизни современных обществ;
- историческую динамику российской социально политической традиции;
 - знать концептуальное содержание основных терминов;
- свободно ориентироваться в современных социально политических отношениях и процессах, общественных конфликтах политических и способах их разрешения.

Уметь

- анализировать особенности общественно политической жизни и политического поведения в обществе;
- определять особенности, роль и функции власти и основных политических институтов в обществе;
- выявлять факторы, оказывающие воздействие на стабильное и предсказуемое течение политических процессов;
- определять причины социально политических конфликтов и способы их разрешения;
 - применять теоретические знания в реальной жизни.

Владеть навыками

- анализа социально политических событий;
- эффективного управления общественно политическими процессами;
- предотвращения и преодоления социально политических конфликтов;
- управленческого воздействия на участников общественно политических событий;
- использования различных факторов для повышения социально политической активности российских граждан.

2. Содержание дисциплины

Объект, предмет и методы социологической науки. Этапы становления и развития социологии. Становление и развитие социологии. Методы социологического исследования. Общество как целостная социальная система. Общество как целостная социальная система. Социальные институты и организации. Общество и социальные институты. Социальные изменения, их роль в социальных процессах общества. Теории социальных изменений. Социальные общности и группы. Социальная стратификация и социальная мобильность. Социальный контроль и социальные отклонения. Объект, предмет и метод политической науки. История политических учений. Российская политическая традиция (развитие политической мысли в России). Теория власти и властных отношений. Политическая система общества: форма правления, политический режим. Феномен политической власти. Политические институты: государство, партии, избирательные Гражданское общество. Современные политические Политическая стратификация: политические элиты и лидерство. Мировая политика и международные отношения. Международные отношения. Геополитика.

СПЕЦИАЛЬНЫЕ РАЗДЕЛЫ ТЕОРИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

Целью дисциплины является изучение методов оптимизации для решения практических задач управления и реализующих их вычислительных алгоритмов.

Задачами дисциплины являются:

- ознакомление студентов с математическим аппаратом и основными методами решения оптимизационных задач;
- выработка понимания единства концептуальных подходов, используемых для решения различных задач отпимизации;
- изучение основных классов задач оптимизации

В результате изучения дисциплины обучающийся должен:

- знать методы теории оптимального управления;
- *уметь* применять методы теории оптимального управления для решения прикладных задач;
- *владеть* навыками использования методов теории оптимального управления в профессиональной деятельности.

Содержание дисциплины

Предмет дисциплины и ее задачи. Основной математический аппарат теории оптимизации – метрические и нормированные пространства, полнота, компактность, непрерывные отображение, достижение точных граней непрерывной на компакте функцией, метод сжимающих отображений.

Оптимизация функции одной переменной. Необходимые и достаточные условия экстремума. Одномерная оптимизация. Метод Фибоначчи. Метод золотого сечения.

Оптимизация функции нескольких переменных. Оптимизация функции нескольких переменных. Необходимые условия. Достаточные условия второго порядка. Условная оптимизация при наличии ограничений типа равенств. Метод множителей Лагранжа. Численные методы оптимизации. Методы без использования градиента: метод покоординатного спуска, метод Хука и Дживса, метод Розенброка. Метод градиентного спуска. Метод наискорейшего спуска. Метод сопряженных градиентов. Элементы выпуклого анализа. Выпуклые множества. Выпуклые функции. Критерии выпуклости. Дифференцируемость выпуклых функций. Субградиент. Метод штрафных функций. Сходимость метода штрафных функций. Метод проекции градиента. Метод условного градиента.

Вариационное исчисление. Вариация функции и ее свойства. Уравнения Эйлера. Основная лемма вариационного исчисления. Функционалы, зависящие от функций нескольких переменных. Функционалы, зависящие от производных высших порядков. Функционалы, зависящие от функций нескольких переменных. Параметрические задачи. Сильный и слабый экстремум. Задачи с подвижными границами. Условия трансверсальности. Экстремали с угловыми точками. Преломление экстремалей. Односторонние вариации. Поле экстремалей. Уравнение Якоби. Функция Вейерштрасса. Условие Вейерштрасса. Условие Лежандра.

Вариационные задачи на условный экстремум. Неголономные и голономные связи. Прямые методы. Метод Эйлера. Метод Ритца. Метод Канторовича. Постановка задач оптимального управления. Задача Майера. Задача Больца. Игольчатая вариация. Принцип максимума Понтрягина.

СПЕЦИАЛЬНЫЕ РАЗДЕЛЫ ФУНКЦИОНАЛЬНОГО АНАЛИЗА

1. Цель и задачи дисциплины

Целью освоения дисциплины «Специальные разделы функционального анализа» является формирование у будущих специалистов знаний и умений по применению математического аппарата и математических методов.

Задачами изучения дисциплины «Специальные разделы функционального анализа» развитие у студентов современных форм математического мышления и умение ставить, исследовать и решать сложные алгоритмы типовых задач.

В результате освоения дисциплины обучающийся должен::

<u>Знать</u> основные факты, понятия, определения и теоремы специальных разделов функционального анализа. Их возможности для решения сложных типовых задач.

<u>Уметь</u> применять теоретические знания для решения задач, применять алгоритмы, выполнять основные математические расчеты, составлять и решать простейшие математические модели, адаптировать решения для вычислительной техники.

<u>Владеть</u> методами решения математических задач и методами построения моделей.

2. Содержание дисциплины

Метрические пространства. Основные понятия. Примеры. Полнота. Теорема о вложенных шарах. Принцип сжатых отображений. Применение в дифференциальных уравнениях и алгебре. Сеперабельные пространства. Теорема Хаусдорфа. Функционалы. Компактность. Непрерывность. Равномерная непрерывность. Гильбертовы пространства. Ортогональность. Линейные функционалы. Теорема Рисса. Базисы. Ортогонализация Грамма-Шмидта. Нормированные пространства. Неравенство Бесселя. Равенство Парсеваля. Линейные операторы в банаховых пространствах. Пространства линейных операторов. Пространства линейных операторов. Норма оператора. Симметричность. Самосопряженность. Операторные ряды. Обратные операторы. Спектр оператора. Спектральный радиус. Мера обусловленности Принцип Банаха-Штейнгауза. Линейные функционалы. оператора. Ограниченность. Норма. Сопряженное пространство. Сопряженное пространство. Слабая сходимость. Теорема Хана-Банаха о продолжении. Элементы спектральной теории. Квадратичные функционалы.. Операторные обобщенные решения. Функционал уравнения Минимизирующая последовательность. Операторные уравнения. Уравнения первого и второго рода. Оператор Лапласа. Сопряженные гармонические функции. Оператор Лапласа в ортогональных криволинейных координатах. Спектр оператора Лапласа.

СРЕДСТВА АВТОМАТИЗАЦИИ

1. Цель и задачи дисциплины

Целью дисциплины является: изучение устройства, принципа действия и методов настройки современных средств автоматизации в системах автоматического и автоматизированного управления технологическими процессами.

Задачами дисциплины являются: обучение студентов основам разработки локальных систем и выполнения проверки и отладки систем и средств автоматизации технологических процессов.

В результате освоения дисциплины обучающийся должен::

Знать

- –правила проектирования автоматизированных систем управления технологическими процессами.
- —методики сбора, обработки справочной, реферативной информации для сравнительного анализа и обоснованного выбора оборудования автоматизированных систем управления технологическими процессами.

Уметь

- –применять систему автоматизированного проектирования для разработки графических частей отдельных разделов проекта на различных стадиях проектирования автоматизированной системы управления технологическими процессами
- -выполнять расчеты для разработки комплекта конструкторской документации для отдельных разделов проекта на различных стадиях проектирования автоматизированной системы управления технологическими процессами

2. Содержание дисциплины

Функции автоматизированных систем управления и требования к Автоматическое нимМониторинг. Управление. управление. Примеррегулятор температуры. Требования к промышленным системам управления. Совместимость средств автоматизации. Измерительные преобразователи, цифровые измерительные датчикиБинарные и устройства. положения. Индикаторы уровня. Цифровые и информационно-цифровые датчики. Пример - Датчики положения вала. Аналоговые измерительные устройства. Датчики движения. Датчики силы, момента. Измерительные преобразователи давления. Датчики приближения. Измерительные преобразователи температуры. Термоэлектрические преобразователи (термопары).Резистивный температуры. детектор Термистор. Манометрический измерения способ температуры.Измерение расхода. объемного Измерение Измерение расхода. массового расхода.

Измерительные преобразователи уровня. Химические и биохимические измерения.

Промышленные цифровые интерфейсы. Рекомендуемый стандарт RS-232. Рекомендуемый стандарт RS-422. Рекомендуемый стандарт RS-485. Устройства связи с объектом. Аналоговые модули УСО. УСО на примере устройств серии ADAM4000. Модуль аналогового ввода на примере ADAM4012.Модуль дискретного ввода-вывода.Модули коммуникационной связи. Автоматические регуляторы Классификация регуляторов. Позиционные регуляторы.Самонастраивающееся управление.Выбор типа регулятора. Измерители-регуляторыИзмерители-регуляторы на примере ТРМ-1, 2ТРМ-1. Измеритель-ПИД-регулятор ТРМ-10. ПИД-регулятор с универсальным входом ТРМ-101. Программируемые логические контроллеры Ремиконт Р130. сигнала (МАС).Модуль Модуль аналоговых сигналов дискретный (МСД).Модуль (МСН).Сетевое стабилизированного напряжения Р-130. Усилители Ремиконта подключение Р130.Программирование мощности. Усилители с ШИМ. Преобразователь частоты для асинхронных двигателей. Исполнительные устройства. Шаговые двигатели. Двигатели постоянного тока. Асинхронные и синхронные двигатели. Управляющие клапаны.Объекты управления. Классификация промышленных объектов управления. Методы получения математического описания

СХЕМОТЕХНИКА

1. Цель и задачи дисциплины

освоения «Схемотехника» дисциплины является изучения теоретических практических основ построения, функционирования И цифровых аналоговых, импульсных схем, применяемых автоматизированных системах.

Задачами изучения дисциплины «Схемотехника» является дать студенту теоретическую и практическую знанию по построению и применению типовых схемотехнических решений в автоматизированных системах.

В результате освоения дисциплины обучающийся должен::

<u>Знать</u> перспектив и тенденции развития, принципов построения элементных баз автоматизированных систем;

<u>Уметь</u> определить основных характеристик элементов, разрабатывать нестандартных компонентов автоматизированных систем;

<u>Владеть</u> навыками по разработке необходимых нестандартных элементов автоматизированной системы.

2. Содержание дисциплины

Операционные усилители (ОУ). Основные параметры ОУ, свойства схем на ОУ. Усилители, аналоговые сумматоры, интегрирующие и дифференцирующие устройства на ОУ. Параметры и характеристики импульсных сигналов, виды импульсных сигналов, прямоугольные импульсы и их основные параметры, импульсная модуляция. Основные параметры и характеристики ЦИС, основные серии ЦИС и сравнительная характеристика. Комбинационные цифровые устройства. Сумматоры, дешифраторы, шифраторы, мультиплексоры, демультиплексоры. Преобразователи кодов, схемы сравнения. Триггеры, RS-триггер, JK-триггер, Т-триггер, D-триггер. Счепчики, асинхронные синхронные счепчики; вычитающие и реверсивные счетчики. Регистры, параллельные регистры, сдвигающие регистры.

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

1. Цель и задачи дисциплины

Эта дисциплина рассматривает общие закономерности механического движения тел и их равновесия, устанавливает общие приемы и решения вопросов, связанных с этим движением и равновесием. Рабочая программа предусматривает традиционный порядок изучения трех разделов теоретической механики: статика; кинематика; динамика. излагается учение о силах и об условиях равновесия материальных тел под кинематике рассматриваются системы сил. В геометрические свойства движения тел. В динамике изучаются законы движения материальных тел под действием сил. Теоретическая механика важнейшей дисциплиной в образовании любого инженера, развивает логическое мышление, приводит к пониманию широкого круга явлений, относящихся к простейшей форме материи к механическому Теоретическая механика движению. является научной общеинженерных и специальных технических дисциплин, изучаемых будущими инженерами. Она подготавливает студента к успешному изучению специальных дисциплин. Изучение данной дисциплины способствует расширению научного кругозора и повышению общей культуры будущего специалиста.

Задачами изучения дисциплины «Теоретическая механика» является

- 1. овладение понятиями и определениями, изложенными в курсе теоретической механики;
- 2. умение изучать и анализировать механические взаимодействия различных тел;
- 3. изучение способов теоретической механики, необходимых для исследования практических и теоретических вопросов науки и техники.

В результате освоения дисциплины обучающийся должен::

Знать:

основные методы исследования механического движения; способы решения задач, относящихся к механическому взаимодействию тел в пространстве.

Уметь:

строить схемы нагрузок в различных системах; создавать системы отсчета, связанные с рассматриваемыми системами;

устанавливать методы определения всех кинематических величин, характеризующих определенное движение;

Владеть:

умением применять теоретический материал к решению конкретных практических задач.

единицами измерения физических величин в разных системах.

2. Содержание дисциплины

Статика. Система сил. Аналитические условия равновесия произвольной системы сил. Связи и их реакции. Понятие об устойчивости равновесия. Центр тяжести твердого тела и его координаты. Кинематика. Вращение твердого тела вокруг неподвижной оси. Плоское движение твердого тела и движение плоской фигуры в ее плоскости. Движение твердого тела вокруг неподвижной точки или сферическое движение. Общий случай движения свободного твердого тела. Абсолютное и относительное движение точки. Количество Сложное движение твердого тела. Динамика. материальной точки и механической системы. Момент количества движения материальной точки относительно центра и оси. Кинетическая энергия материальной точки и механической системы. Понятие о силовом поле. Дифференциальные уравнения поступательного движения твердого тела. Определение динамических реакций подшипников при вращении твердого тела вокруг неподвижной оси. Движение твердого тела вокруг неподвижной точки. Малые свободные колебания механической системы с двумя степенями свободы и их свойства, собственные частоты и коэффициенты формы. Явление удара. Теорема об изменении кинетического момента механической системы при ударе.

ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Теория автоматического управления» является развитие компетенций в области анализа систем автоматического определения целей, результатов управления, И путей эффективной работы в коллективе, использования имеющейся нормативной информационных современных технологий при решении задач. Обучение основам профессиональных студентов теории необходимым автоматического управления, при проектировании, исследовании, производстве и эксплуатации систем и средств автоматизации иуправления.

Задачами изучения дисциплины «Теория автоматического управления» является обучение студентов основам теории автоматического управления, необходимым при проектировании, исследовании, производстве и эксплуатации систем и средств автоматизации и управления. Освоение студентами основных принципов построения систем управления, форм представления и преобразования моделей систем, методов анализа и синтеза.

В результате освоения дисциплины обучающийся должен::

<u>Знать</u> основные положения теории управления, модели и методы исследования линейных систем;

<u>Уметь</u> определить устойчивость САУ, статическую и динамическую точность САУ, создать систему, обладающей требуемыми свойствами.

<u>Владеть</u> принципами построения и работы САУ,иметь представления о возможностях той или иной системы для данного объекта .

2. Содержание дисциплины

Основные понятия и принципы управления. Краткая история развития практики САУ. Основные автоматики. теории понятия САУ. Классификация Функциональная схема САУ. Принципы автоматическогорегулирования, законы регулирования. Статические астатические системы автоматического управления на примере скорости вращения двигателя постоянного тока независимым возбуждением. Статические характеристики САР.

Математическое описание линейных динамических систем. Линеаризация. Вывод линеаризованных уравнений на примере генератора постоянного тока. Передаточные функции. Частотные характеристики САУ.

Преобразование схем автоматики с различным соединением звеньев. Частотные характеристики типовых динамических звеньев. Построение логарифмических частотных характеристик по передаточным функциям разомкнутых систем.

Временные характеристики САУ и способы их построения. Временные характеристики типовых динамических звеньев. Структурные схемы. Соединение звеньев в САУ. Структурная схема генератора постоянного тока. Правила преобразования структурных схем. Передаточные функции разомкнутых и замкнутых систем.

Устойчивость, качество и синтез линейных систем управления. Устойчивость систем автоматического управления. Необходимые достаточные условия устойчивости. Критерий устойчивости Критерий устойчивости Михайлова аргумента. Найквиста. Логарифмический критерий устойчивости. Точность САУ установившемся режиме. Порядок астатизма и ошибки систем.

Корневые показатели качества. Метод стандартных коэффициентов. Типы корректирующих устройств. Синтез систем по логарифмическим частотным характеристикам. Построение ЛАЧХ. Последовательная, параллельная коррекция, коррекция в цепи обратной связи. Алгоритмы выбора корректирующих устройств. Построение корректирующих устройств на примере следящей системы.

Дискретные системы и их описание. Дискретные системы автоматического управления. Типы дискретизации. Импульсная модуляция. Импульсные элементы. Структурные схемы импульсных систем. Дискретные передаточные функции. Дискретные типовые сигналы и их изображение. Весовые и импульсные переходныехарактеристики дискретных систем.

Частотные характеристики импульсных систем. Связь изображений и частотных характеристик дискретных и непрерывных сигналов. Теорема Котельникова. Связь между передаточными функциями дискретной и непрерывной систем.

Построение годографа дискретной системы по годографу непрерывной. Передаточные функции дискретных замкнутых систем. Структурные схемы импульсных систем. Некоторые правила их преобразования.

Устойчивость, качество и синтез импульсных систем управления. Устойчивость импульсных систем. Необходимые и достаточные условия устойчивости. Критерий Гурвица для импульсных систем.

Критерий Найквиста для импульсных систем. Качество импульсных систем. Ошибки импульсных систем. Корректирующие устройства, их характеристики. Методы синтеза по частотным характеристикам. Импульсные системы с конечным временем переходного процесса.

Нелинейные системы управления. Типовые нелинейные элементы. Структурные схемы нелинейных САУ. Некоторые правила их преобразования. Основные понятия фазовой плоскости. Свойства фазовых траекторий. Исследование линейной системы второго порядка на фазовой плоскости. Типы особых точек.

Исследование релейной САУ методом фазовой плоскости. Коррекция релейных систем по скорости и с помощью жесткой обратной связи. Особенности динамики нелинейных систем. Скользящие режимы.

Метод гармонической линеаризации. Комплексный коэффициент усиления нелинейного элемента. Устойчивость автоколебаний. Определение параметров автоколебаний. Критерий абсолютной устойчивости положения равновесия Попова. Геометрическая интерпретация метода.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ, МАТЕМАТИЧЕСКАЯ СТАТИСТИКА И СЛУЧАЙНЫЕ ПРОЦЕССЫ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Теория вероятностей, математическая статистикаи случайные процессы» является формирование у будущих специалистов знаний и умения применять изучаемые методы при анализе и управлении современными сложными системами, освоение методов математической статистики для конкретных инженерных задач.

Задачами изучения дисциплины «Теория вероятностей, математическая статистикаи случайные процессы» является развитие у студентов современных форм математического мышления и умения ставить, исследовать и решать сложные задачи программирования.

В результате освоения дисциплины обучающийся должен:

<u>Знать</u> основные факты, понятия, определения и теоремы современной теории вероятностей и математической статистики и их возможности для решения инженерных задач, алгоритмы решения типовых вероятностных и статистических задач.

<u>Уметь</u> применять теоретические знания для решения вероятностных и статистических задач, применять алгоритмы, выполнять основные математические расчеты, составлять и решать простейшие математические модели, адаптировать решения для вычислительной техники.

<u>Владеть</u> методами решения математических задач и методами построения моделей.

2. Содержание дисциплины

Роль и место ТВ и МС в математической науке. Случайные события. событий. Произведение событий. Полная группа Совместность и несовместность событий. Зависимость и независимость событий. Статистический подход к определению вероятности случайного события. Вероятностное пространство. Классическое и геометрическое определения вероятности. Теоремы сложения вероятности совместных и несовместных событий. Теоремы умножения вероятностей зависимых и независимых событий. Формула полной вероятности, формула Байеса. Схема последовательных испытаний Бернулли. Формула Бернулли. Пуассона. Локальная теорема Муавра-Лапласа. Интегральная теорема Закон больших чисел формулировке теоремы В Бернулли. Случайные величины. Дискретные и непрерывные случайные величины. Закон распределения случайной величины. Функция распределения случайной величины. Плотность вероятности распределения случайной величины. Числовые характеристики случайной величины. Математическое ожидание и его свойства. Дисперсия и ее свойства. Средне квадратическое отклонение и его свойства. Мода. Медиана. Модели законов

вероятностей, наиболее употребляемые распределения экономических приложениях. Равномерное распределение. Биномиальное распределение. Распределение Стьюдента. Нормальный закон распределения величин. Параметры случайных нормального закона распределения случайных величин. График плотности вероятности нормально распределенной случайной величины. Правило трех сигм. Закон больших чисел. Закон больших чисел в виде неравенств Чебышева. Закон больших чисел в формулировке теоремы Чебышева. Закон больших формулировке теоремы Бернулли. Центральная предельная Основные понятия математической статистики, генеральная совокупность и выборка. Способы построения выборки. Типы выборок. Полигон частот. Гистограмма. Эмпирическая функция распределения случайной величины. Свойства эмпирической функции распределения. График эмпирической Статистические обработки функции распределения. методы экспериментальных данных Оценки параметров точечные и интервальные. Смещенные и несмещенные, эффективные и неэффективные, состоятельные и несостоятельные оценки. Доверительный интервал для математического ожидания генеральной совокупности при известном среднем Статистическое отклонении для нормального закона. квадратическом оценивание и проверка гипотез. Основные понятия проверки статистических гипотез. Нулевая и конкурирующая гипотезы. Типы конкурирующих гипотез. Критическая область. Уровень значимости. Критерии. Ошибки Критическая область. Уровень значимости первого и второго рода. Проверка гипотез о законе распределения. Критерий Типы зависимостей между величинами. Функциональная, статистическая и зависимости. Корреляционная таблица. Линейная корреляционная корреляция. Выборочные линии уравнения прямой регрессии. Корреляционная зависимость. Корреляция и Криволинейная корреляция. регрессия. Метод наименьших квадратов. Коэффициент корреляции и его свойства. Коэффициент ковариации и его свойства. Понятие случайной функции. Случайная функция как расширение понятия о системе случайных величин. Закон распределения случайной функции. Характеристики случайной функции. Линейные преобразования случайных функций. функций. Комплексные Сложение случайных случайные Каноническое разложение случайной функции. Понятие о стационарном случайном процессе. Спектральное разложение стационарной случайной Спектральная плотность стационарной функции. Спектр дисперсий. функции. Спектральное разложение случайной функции в случайной комплексной форме. Понятие Марковских цепей. Классификация состояний Марковских цепей. Предельные теоремы для Марковских цепей и их приложения. Примеры Марковских цепей с непрерывным временем.

ТЕОРИЯ ГРАФОВ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Теория графов» является формирование у будущих специалистов знаний и умения применять изучаемые методы при анализе и управлении современными сложными системами, изучение классической теории графов, а также применение методов теории графов в прикладных задачах.

Задачами изучения дисциплины «Теория графов» является развитие у студентов современных форм математического мышления и умения ставить, исследовать и решать сложные задачи, сформировать у студентов представление о роли, которую играет теория графов в современной математике и информатике, сформировать представление об основных понятиях теории графов, привить студентам навыки работы с графами, математическую строгость мышления, совершенно необходимую для исследовательской работы в области математики и других точных и естественных наук;

В результате изучения дисциплины обучающийся должен:

<u>Знать</u>: основные методы современной теории графов и возможности их применения для анализа работы сложных автоматизированных систем

<u>Уметь</u> анализировать с позиций теории графов основные процессы, лежащие в основе современных автоматизированных систем управления.

<u>Владеть</u> методами решения математических задач и методами построения математических моделей с позиции теории графов.

2. Содержание дисциплины

Роль и место теории графов в математической науке. Бинарные отношения и графы. Изоморфизм. Неориентированные и ориентированные графы, вершины, ребра, дуги, степени вершин и кратность полустепени захода и исхода дуги. Графическая реализация, список ребер и вершин, матрицы инциндентности, смежности, достижимости. Стягивание, разбиение, дополнение, объединение, пересечение и кольцевая сумма графов. Циклы и контуры. Связность, компоненты связности. Мост. Эйлеровы пути и циклы. Уникурсарные графы. Гамильтоновы пути и циклы. Цикломатическое число графа. Свойства деревьев. Бинарные деревья. Кодировка деревьев. Понятие остовного дерева. Взвешенные графы. Пропускная способность ребра, источники и стоки. Планарные графы. Плоские карты. Формула Эйлера. Теорема Понтрягина-Куратовского. Двудольные графы. Раскраска графа. Хроматическое число. Бихроматические графы. Теорема Кенига. Проблема четырех красок. Правильные многогранники. Виды правильных многогранников и их числовые характеристики. Однородные графы. Точная верхняя и точная нижняя грань множества. Граф решетки подгрупп группы. Методы систематического обхода вершин графа: поиск в глубину и ширину. топологической сортировки вершин Демукрона. Построение минимального остовного дерева. Алгоритм Краскала. Кратчайшие пути в графах. Алгоритм Дейкстры. Задача о максимальном потоке и о минимальном разрезе в сети. Максимальный Алгоритм Форда-Фолкерсона. транспортной Модель сетевого сети. планирования. Сетевой график. Временные характеристики графа.

ТЕХНИЧЕСКИЕ СРЕДСТВА АВТОМАТИЗАЦИИ И УПРАВЛЕНИЯ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Технические средства автоматизации и управления» является изучение теоретических и практических основ построения, функционирования и технических средств автоматизированных систем управления и контроля.

Задачами изучения дисциплины «Технические средства автоматизации и управления» является дать студенту теоретические и практические знания по построению и функционированию технических средств автоматизированных систем управления и контроля.

В результате освоения дисциплины обучающийся должен::

Знатьпринципы построения технических средств современных систем автоматизации и управления, базирующихся на использовании концепции обшей теории систем управления; методов оптимизации системотехнических, схемотехнических, программных и конструктивных решений при выборе номенклатуры комплексов технических средств; принципов типизации, унификации и агрегатирования при организации структуры комплексов технических средств; формирования типового и индивидуального состава функциональных задач комплексов технических средств в прямом соответствии со свойствами и особенностями объекта; эксплуатации управляемого функциональной, структурной, схемо- и системотехнической организации, агрегатирования и проектирования аппаратных и программно-технических управления;примеры автоматизации И применения комплексов технических средств в системах автоматизации и управления;

<u>Уметь</u>принципами и методами анализа, синтеза и оптимизации систем и средств автоматизации, контроля и управления; навыками работы с современными аппаратными и программными средствами исследования и проектирования систем управления;

<u>Владеть</u> навыками использовать инструментальные программные средства в процессе разработки и эксплуатации систем управления; проектировать техническое обеспечение систем автоматизации и управления на базе типовых комплексов технических средств; формировать технические задания на разработку нетиповых аппаратных и программных средств систем автоматизации и управления.

2. Содержание дисциплины

Автоматизированные системы управления и их архитектура, структура и назначения. Типовые структуры и средства систем автоматизации и управления технологическими объектами и технологическими процессами. Классы и типовые структуры систем автоматизации и управления. Классификация комплексов технических средств современных систем

автоматизации и управления. Технические средства получении информации объекта управления. Общие характеристики состоянии производственных параметров, основные виды типовых воздействий на Классификация производственных параметров. Параметрические и генераторные датчики. Электроконтактные, реостатные, тензорезисторные, пьезоэлектрические датчики. Датчики производственных эффекта Холла. Емкостные, оптоэлектронные, на основе измерения преобразователи. Типовые способы электромагнитные производственных параметров. Технические средства приема, преобразования и передачи измерительной и командной информации по каналам связи. Общие сведения о приеме, преобразования и передачи информации в системах автоматизации. Методы и способы передачи информации. Цифроаналоговые И аналого-цифровые преобразователи сигналов. Усилители и формирователи аналоговых и цифровых сигналов. Преобразователи кодов. Устройства связи с объектом управления. Состав и структура многоуровневой системы передачи данных автоматизированной системы управления. Интерфейсы нижнего, среднего и верхнего уровней автоматизированной системы управления (AS-интерфейс, Profebus, Ethernet). Технические средства использования командной информации и воздействия на объект управления. Исполнительные устройства, регулирующие органы. устройств и регулирующих Классификация исполнительных структуры и состав электромашинных исполнительных Классификация, механизмов. Конструкция, работы принцип характеристики исполнительных двигателей постоянного тока; непрерывный регулирования скорости исполнительных двигателей; импульсный способ скорости исполнительных двигателей. регулирования программные средства распределенных систем автоматизации и управления. Локальные управляющие вычислительные сети (ЛУВС). Технические и методы управления доступом моноканалам средства К Программные средства ЛУВС. Технические средства обработки, хранения информации и выработки командных воздействий. Классификация цифровых средств обработки информации в автоматизированных систем управления. Архитектура, структура и аппаратно-программные средства управляющих ЭВМ и управляющих вычислительных комплексов (УВК), микро-ЭВМ и обработки. хранения информации и микро-УВК. Технические средства выработки командных воздействий нижнего уровня автоматизированной аппаратно-программные системы. Архитектура, структура и средства программируемых контроллеров, программируемых логических компьютерных контроллеров однокристальных микроконтроллеров. И Устройства взаимодействия с оперативным персоналом автоматизированной системы. Принципы построения, классификация И технические средств отображения и документирования характеристики типовых информации. Устройства связи с оператором. Видеотерминальные средства. Мнемосхемы, индикаторы, операторские панели и станции, регистрирующие и показывающие приборы.

ФИЗИКА

1. Цель и задачи дисциплины

Цель освоения «Физика» является – обеспечение дисциплины фундаментальной физической подготовки, позволяющей будущим специалистам ориентироваться В научно-технической информации, физические принципы и законы, а также результаты использовать физических открытий в тех областях техники, в которых они будут трудиться.

Изучение дисциплины должно способствовать формированию у студентов основ научного мышления, в том числе: пониманию границ применимости физических понятий и теорий; умению оценивать степень достоверности результатов теоретических и экспериментальных исследований; умению планировать физический и технический эксперимент и обрабатывать его результаты с использованием методов теории размерности, теории подобия и математической статистики.

Изучение дисциплины на лабораторных и практических занятиях будет знакомить студентов с техникой современного физического эксперимента, студенты научатся работать с современными средствами измерений и научной аппаратурой, а также использовать средства компьютерной техники при расчетах и обработке экспериментальных данных. Студенты научатся постановке и выбору алгоритмов решения конкретных задач из различных областей физики, приобретут начальные навыки для самостоятельного овладения новыми методами и теориями, необходимыми в практической деятельности современного инженера.

На практических занятиях студенты закрепят и конкретизируют полученные теоретические знания путем решения прикладных качественных и количественных задач, получат навыки моделирования процессов и явлений.

На лабораторных занятиях приобретут навыки в проведении измерений и физических экспериментов.

Задачами изучения дисциплины «Физика» является формирование у студентов целостного представления о фундаментальных физических закономерностях, лежащих в основе физических теорий, образующих современную физическую картину мира. В этой связи необходимо дать студентам фундаментальные знания по основным разделам современной физики, отразить структуру данной области науки, раскрыть ее экспериментальные основы.

В результате освоения дисциплины обучающийся должен::

Знать

- основные законы классической механики;
- идеи и методы молекулярной физики и термодинамики;
- элементы классической и современной электродинамики;
- основные понятия теории колебаний и волновых процессов;
- структурные особенности строения материи;

Уметь

использовать законы классической и современной физики для анализа природных и техногенных явлений; решать профессиональные типовые задачи, имеющие ярко выраженную физико-математическую основу; пользоваться научно-технической литературой физического содержания с целью самостоятельного знакомства с современным состоянием знаний;

Владеть

навыками взаимодействия механических, электромагнитных взаимодействия ионизирующего излучения веществом, c веществом; общность физических законов В микро, макро мега мирах; И относительность физических явлений; проблематичность представлений; незаконченность построения физических картины Мира; взаимосвязь научных достижений с благополучием Цивилизации.

2. Содержание дисциплины

Предмет и роль физики. Основные понятия физики. Макро- и микромир. Основные представления о пространстве-времени. Классическая механика, релятивистская механика, квантовая механика. Элементы кинематики материальной точки. Кинематические уравнения поступательного движения. Тангенциальное и нормальное ускорения. Кинематика вращательного движения твердого тела. Угловая скорость, угловое ускорение и связь их с линейными величинами. Инерциальные и неинерциальные системы отсчета. Масса, импульс, сила. Виды сил в природе. Законы Ньютона. Второй закон Ньютона как основное уравнение движения. Закон сохранения импульса в замкнутой системе.

Работа постоянной и переменной силы и связь ее с кинетической энергией поступательного и вращательного движения. Мощность. Основные понятия механических колебаний. Дифференциальные уравнения свободных незатухающих колебаний: математического, физического и пружинного маятника. Периоды колебаний. Сложение колебаний одинаковой частоты. Биения. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу. Затухающие механические колебания и их характеристики. «Механизм» одномерной поперечной и продольной волны. Уравнение механической волны. Волновое уравнение. Длина волны. Фазовая скорость. Распределение Максвелла молекул идеального газа по скоростям. Барометрическая формула. Распределение Больцмана частиц в силовом поле. Понятие о нормальном и инверсном распределениях.

ФИЗИЧЕСКАЯ КУЛЬТУРА И СПОРТ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Физическая культура и спорт» является формирование физической культуры личности и способности направленного использования разнообразных средств физической культуры, спорта и туризма для сохранения и укрепления здоровья, психофизической подготовки и самоподготовки к будущей жизни и профессиональной деятельности.

Задачами освоения дисциплины являются:

- понимание социальной значимости физической культуры и еецроли в развитии личности и подготовке к профессиональной деятельности;
- знание научно-биологических, педагогических и практических основ физической культуры и здорового образа жизни;
- формирование мотивационно-ценностного отношения к физической культуре, установки на здоровый стиль жизни, физическое совершенствование и самовоспитание привычки к регулярным занятиям физическими упражнениями и спортом;
- овладение системой практических умений и навыков, обеспечивающих сохранение и укрепление здоровья, психическое благополучие, развитие и совершенствование психофизических способностей, качеств и свойств личности, самоопределение в физической культуре и спорте;
- приобретение личного опыта повышения двигательных и функциональных возможностей, обеспечение общей и профессионально-прикладной физической подготовленности к будущей профессии и быту;
- создание основы для творческого и методически обоснованного использования физкультурно-спортивной деятельности в целях последующих жизненных и профессиональных достижений.

В результате освоения дисциплины обучающийся должен Знать:

- основы общей физической подготовки;
- основы здорового образа жизни;
- основные методики самоконтроля и системы физических упражнений, необходимых и применяемых в профессиональной деятельности.

<u>Уметь:</u> использовать средства физической культуры, поддерживать физические свойства организма для оптимизации труда и повышения работоспособности.

Владеть:

- навыками общей физической культуры,
- навыками использования методик и комплексов физических упражнений для избежания перегрузок организма;
- навыками закаливания, навыками самоконтроля за состоянием своего организма.

2. Содержание дисциплины

Физическая культура в профессиональной подготовке студентов. Социально-биологические основы физической культуры. Основы здорового культура в обеспечении здоровья. образа жизни студента. Физическая Психофизиологические основы учебного труда И интеллектуальной деятельности. физической Средства культуры В регулировании работоспособности. Общая физическая и спортивная подготовка в системе воспитания. Основы методики самостоятельных физического физическими упражнениями.

Самоконтроль занимающихся физическими упражнениями и спортом. Физическая культура в профессиональной деятельности. Спорт и индивидуальный выбор видов спорта или систем физических упражнений.

ФИЗИЧЕСКИЕ ОСНОВЫ МИКРОЭЛЕКТРОНИКИ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Физические основы микроэлектроники» является формирование у студента знаний о фундаментальных физических процессах, лежащих в основе функционирования полупроводниковых приборов, об особенностях и рабочих характеристиках таких приборов. А также о ряде технологических процессов, связанных с производством микропроцессоров.

В результате освоения дисциплины обучающийся должен

- -основные разделы математических и естественно-научных дисциплин;
- -основные принципы решения базовых задач управления в технических системах.

Уметь:

- -совершенствоваться в профессиональной деятельности;
- -формулировать задачи профессиональной деятельности на основе знаний, профильных разделов математических и естественнонаучных дисциплин.

Владеть:

- -навыками использования фундаментальных знаний для решения базовых задач управления в технических системах;
- -навыками решения поставленных задач, основанными на знаниях профильных разделов математических и естественно-научных дисциплин.

2. Содержание дисциплины

Физические основы проводимости полупроводниковОбщие сведения о полупроводниковых материалах. Энергетические зонные диаграммы кристаллов. Прохождение тока через металлы. Собственная проводимость полупроводников. Примесная проводимость полупроводников. Электронная проводимость. Полупроводники-типа. Дырочная проводимость. Полупроводник р-типа. Однородный и неоднородный полупроводник. Неравномерная концентрация носителей. Прохождение через тока понятий "собственные" "примесные" полупроводники. Уточнение полупроводники.

Количественные соотношения физике В полупроводников. Функция Распределение Ферми. Плотность квантовых состояний. распределения Ферми Дирака. Плотность квантовых состояний. Концентрация носителей в зонах. Собственный полупроводник. Примесный полупроводник. Смещение уровня Ферми.

Электронно-дырочный переходОбразование и их свойства p-n перехода. Виды p-n переходов. Потенциальный барьер. Токи p-n перехода в равновесии. Электронно-дырочный переход при внешнем смещении. Вольтамперная характеристика p-n перехода. Влияние температуры на характеристику и свойства p-n-перехода. Емкость p-n перехода.

Полупроводниковые диоды. Диоды. Вольт-амперная характеристика (ВАХ) диода. Параметры диода. Разновидности диодов. Выпрямительные и силовые диоды. Тепловой расчет полупроводниковых приборов. Кремниевые стабилитроны (опорные диоды) Кремниевые стабилитроны (опорные диоды). Импульсные диоды. Туннельные и обращенные диоды. Варикапы. Обозначение (маркировка) маломощных диодов. Биполярный бездрейфовый транзистор

Биполярный бездрейфовый транзистор. Устройство принцип действия. Основные соотношения для токов. Коэффициент передачи токов. Возможность усиления тока транзистором. Три схемы транзистора. Статические характеристики транзистора. Предельные режимы (параметры) по постоянному току транзистора. Малосигнальные параметры и эквивалентные схемы транзистора. Зависимость внутренних параметров транзистора от режима и от температуры. Четырехполюсныеh-параметры транзистора иэквивалентная схема с h-параметрами. Определение hпараметров по статическим характеристикам. Связь между внутренними h-параметрами. Частотные свойства транзисторов. параметрами И Частотно-зависимые Дрейфовый Дрейфовый транзистор. параметры. транзистор. Полевые (униполярные) транзисторы.. Унитрон. МОПтранзистор. МОП-транзистор со встроенным каналом. МОП-транзистор с индуцированным каналом *п*-типа. Параметры И эквивалентная схема полевого транзистора. Обозначение (маркировка) и типы выпускаемых транзисторов.

Тиристоры. Устройство и принцип действия тиристоров. Закрытое состояние тиристора (ключ отключен). Открытое состояние тиристора (ключ включен). Включение и выключение тиристора. Параметры тиристора. Типы и обозначения силовых тиристоров.

ФИЛОСОФИЯ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Философия» является формирование широкого научного мировоззрения будущих специалистов на основе достижений современной науки и техники.

Задачами изучения дисциплины «Философия» являются

- овладение понятийным аппаратом философии;
- понимание специфики гуманитарного и естественнонаучного типов познавательной деятельности на основе целостного взгляда на окружающий мир;
- более глубокое понимание отличия и единства научно-рационального и художественно-образного способов освоения духовного мира;
 - осознание исторического характера развития философского познания;
- формирование ясного представления о современной философской и естественнонаучной картинах мира, как системы фундаментальных знаний об основаниях, целостности и многообразии объективной реальности;
- осознание содержания современных глобальных проблем в их связи с основными законами природы, общества, человека;
- формирование представлений о принципах универсального эволюционизма и синергетики и их возможного приложения к анализу процессов, протекающих не только в природе, обществе, но и в познании;
- ознакомление с методикой научно-философского познания, возможностями переноса методологического опыта в естественные и гуманитарные науки;
- •формирование представлений о радикальном качественном отличии научно-философского знания от разного рода форм квазинаучного мифотворчества, эзотеризма, оккультизма, мистицизма и др.

В результате освоения дисциплины обучающийся должен Знать:

- историю возникновения и развития философии, как особой формы духовной деятельности человека;
- иметь представление о естественнонаучных, философских и религиозных картинах мира;
- особенности и специфику функционирования научно-философского знания в

современном обществе;

- сущностное представление о назначении и смысле жизни человека;
- систему духовных ценностей, их место и роль в жизни человека. Уметь:
- выделять и оценивать общие онтологические, гносеологические и аксиологические вопросы бытия;

- с научной мировоззренческой позиции оценивать процессы социально экономической, политической, идеологической и других сторон жизни современного общества;
- понимать роль и значение философии, как науки в современной цивилизации, проблемы и перспективы ее дальнейшего развития;
- разбираться в общих проблемах естественнонаучного, социально-экономического и гуманитарного знания.

Владеть навыками:

- основ методологии, методов и методики философскомировоззренческой оценки объективной действительности;
- всеобщих универсальных философских и естественнонаучных методов познания;
 - общенаучных методов познания и преобразования действительности;
 - элементов методологической рефлексии.
- глубокого понимания философских концепций науки и владения основами методологии научного познания при изучении различных уровней организации материи, пространства и времени.

2. Содержание дисциплины

Философия, круг еецпроблем и роль в обществе. Единство и многообразие историко-философского процесса. Религия и философия: происхождение, генезис и сущность. Картина материального единства мира. Проблема сознания в философии, подходы к ее сущности. Познание как продукт философского анализа. Диалектико – философское учение о развитие. Научное познание. Место и роль науки в жизни общества. Общество как саморазвивающаяся система. Философские проблемы политики. Проблема человека и личности в философии. Культура как социальный феномен, как мера развития человека. Философия в системе культуры. Единство многообразие историко-философского процесса. Место и роль религии в Картина материального единства мира. (коллоквиум). системе культуры. Проблема сознания в философии. Познание: общие понятия, сущность, структура, принципы, виды. Диалектика как учение о развитии. Наука как социально-исторический феномен. Общество: понятие, сущность, типология, Политика как вид социальных отношений, структура. сущность, общественного Человек: сознания. понятие, проблемы перспективы его существования. Культура как социальный феномен, как мера развития человека.

ХИМИЯ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Химия» является формирование и развитие у студента химического мышления, способности применять химический инструментарий при изучении профессиональных дисциплин.

Задачами изучения дисциплины «Химия» является систематизация, закрепление, углубление теоретических знаний по химии; приобретение умений использовать при изучении дисциплин, в своей производственной деятельности достижения химии, методы химического исследования; овладение практическими навыками химического эксперимента для решения профессиональных задач; овладение навыками химических расчетов применительно к задачам профессиональной деятельности, развитие навыков самостоятельной работы.

В результате освоения дисциплины обучающийся должен:

<u>Знать</u>: химические положения и законы; периодическую систему элементов в свете строения атома; реакционную способность веществ; кислотно-основные и окислительно-восстановительные свойства веществ; химическую связь, комплементарность; химические системы; химическую термодинамику и кинетику; теорию строения органических соединений, классификацию реагентов и реакций в органической химии; свойства полимеров и олигомеров и способы их получения; химическую идентификацию веществ.

<u>Уметь:</u> количественно описывать реакции превращения; рассчитывать количественное содержание растворенного вещества, осмотического давления растворов, скорость химических реакций и их направленность, определять термодинамические характеристики химических реакций и равновесные концентрации, определять основные физические и химические характеристики органических веществ.

<u>Владеть:</u> методами работы в химической лаборатории; проведения основных операций химического анализа и определения химических показателей.

2. Содержание дисциплины

Основные понятия и законы стехиометрии

учебная Химия как наука, как дисциплина, как отрасль промышленности, как основа научно-технического прогресса. Химическая символика. Важнейшие классы и номенклатура неорганических соединений. Атомно-молекулярное учение. Закон постоянства состава, закон кратных отношений, закон объемных отношений. Эквивалент. Закон эквивалентов. Закон Авогадро. Атомные и молекулярные массы. Количество вещества. Молярная масса и молярный объем. Определение молярных масс веществ, находящихся в газообразном состоянии.

Строение вещества

Модели строения атома. Понятия о квантовой механике. Квантовомеханическая модель атома. Квантовые числа. Распределение электронов в многоэлектронных атомах. Принцип наименьшей энергии. Правила Клечковского. Принцип Паули. Правило Хунда. Электронные конфигурации атомов и ионов элементов, способы записи.

Вопросы для самостоятельного изучения: периодическая система элементов; структура периодической таблицы; причина периодичности свойств химических элементов; атомные и ионные радиусы; реакционная способность веществ; кислотно-основные и окислительновосстановительные свойства веществ, атомное ядро; изотопы и изобары.

Теория химического строения. Образование химической связи. Виды химической связи. Ковалентная связь. Валентность, ковалентность. Гибридизация. Полярность молекул. Дипольный момент. Электроотрицательность.

Ионная связь. Поляризация ионов. Делокализованная химическая связь. Металлическая связь. Водородная связь. Силы Ван-дер-Ваальса. Вычисление длины диполя в молекуле. Расчет энергии и длины связи. Определение вида гибридизации электронных облаков и пространственной структуры молекулы. Описание молекулы сложного вещества с помощью метода молекулярных орбиталей. Комплементарность.

Общие закономерности химических процессов

Внутренняя энергия. Энтропия. Энергетические эффекты химических реакций. Термохимия. Термохимические расчеты.

Энтропия и ее изменение при химических реакциях. Энергия Гиббса. Стандартные термодинамические величины. Химико-термодинамические расчеты.

Скорость химической реакции в гомогенных и гетерогенных системах. Факторы, влияющие на скорость реакции. Методы регулирования скорости химической реакции. Закон действия масс. Температурный коэффициент реакции. Энергия активации. Катализаторы и каталитические системы.

Необратимые и обратимые реакции. Колебательные реакции. Химическое равновесие. Смещение химического равновесия. Принцип ЛеШателье.

Растворы

Характеристика растворов. Процесс растворения. Способы выражения Кристаллы И кристаллогидраты. Растворимость. состава раствора. Пересыщенные растворы. Дисперсные системы. Водные растворы Электролитическая диссоциация. электролитов. Степень диссоциации. Закон разбавления Оствальда. Смещение ионных равновесий. Понятие о водородном показателе среды. Гидролиз.

Окислительно-восстановительные и электрохимические процессы

Окислительно-восстановительные реакции. Электрохимические процессы. Электродный потенциал. Гальванический элемент. Электролиз растворов и расплавов электролитов. Применение электролиза. Определение

и классификация коррозионных процессов. Химическая коррозия. Электрохимическая коррозия. Защита металлов от коррозии.

Основы органической химии

Теория строения органических соединений, классификация реагентов и реакций в органической химии. Углеводороды и их производные. Состав, свойства и переработка органического топлива. Строение и свойства полимеров. Олигомеры. Способы их получения, физические характеристики органических веществ. Материалы, получаемые на основе полимеров.

Химическая идентификация и анализ вещества

Изучение качественных реакций основных катионов Ознакомление с дробным анализом катионов и анионов. Аналитические Реагенты и реактивы. Групповые реагенты. Специфические реакции. Качественный анализ, систематический и дробный Количественный Методы количественного анализ веществ. анализа. Гравиметрический и титриметрический анализ. Инструментальные методы анализа. Определение жесткости воды титриметрическим методом.

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ

1. Цели и задачи дисциплины

Цель изучения дисциплины: теоретическое и практическое освоение методов и средств цифровой обработки сигналов (ЦОС), позволяющее выпускнику успешно вести научно-исследовательскую деятельность, направленную на создание и обеспечение функционирования систем различного назначения.

Задачи изучения дисциплины: изучение в требуемом объеме соответствующего математического аппарата цифровой обработки сигналов; изучение способов реализации эффективных методов и алгоритмов цифрового анализа информационных данных на современных персональных компьютерах.

В результате освоения дисциплины обучающийся должен:

знать: прикладные компьютерные программы для разработки технологических схем обработки информации и для оформления моделей данных; технологии синхронизации информации в различных базах данных; знает язык структурированных запросов систем управления базами данных;

уметь: использовать прикладные компьютерные программы для разработки технологических схем обработки информации и оформления моделей данных АСУП; использовать прикладные программы управления проектами для разработки планов информационного обеспечения АСУП;

владеть: навыками разработки технологических схем обработки информации и оформления моделей данных АСУП; навыками разработки планов информационного обеспечения АСУП.

2. Содержание дисциплины

Общая схема ЦОС. Типы сигналов и способы их описания. Типовые дискретные сигналы и их аналоги. Основная полоса частот. Ряд Фурье. Интегральное преобразование Фурье. Обратное преобразование Фурье. Свойства преобразования Фурье. Понятие спектра. Дискретное преобразование Фурье. Обратное дискретное преобразование Фурье. Свойства ДПФ. БПФ с прореживанием по времени, по частоте. Преобразование Лапласа и Z-преобразование. Соответствие р- и z- областей. Свойства Z-преобразования. Таблица соответствий. Обратное Z-преобразование. Вычисление обратного Z-преобразования методом разложения в степенной ряд. Вычисление обратного Z-преобразования методом разложения на простые дроби. Вычисление обратного Z-преобразования с использованием теоремы Коши о вычетах. Понятие ЛДС. Описание

Операции ЦОС. Линейная свертка и круговая свертка. Свойства свертки. Корреляция. Построение ВКФ и АКФ. Свойства корреляции. Области применения корреляции. Оценка спектральной плотности мощности методом БПФ. Метод периодограмм. Оконные функции и их характеристики. Спектр сигнала, ограниченного по времени. Спектр дискретного сигнала. Изучение эффекта подмены частот. Метод Бартлетта-Уэлча. Метод Юла-Уокера. Использование sptool. Фильтр. Виды фильтров. Частотная характеристика фильтров. Методы синтеза фильтров. КИХ-фильтров. Функции для синтеза КИХ-фильтров в МАТLAB. FDATool. Анализ фильтра.

ЭКОНОМИКА И ОРГАНИЗАЦИЯ ПРОИЗВОДСТВА

1. Цель и задачи дисциплины

Целью изучения дисциплины «Экономика и организация производства» является формирование у обучающихся комплексного и научного представления об основах, закономерностях и современных тенденциях организации производства и управления производственными системами, получение практических навыков для анализа и обоснования решений в области экономики производства.

Задачи дисциплины:

- изучение действия экономических законов и форм их проявления в промышленном производстве;
- -формирование системного подхода к организации промышленного производства и управления им;
- -выявление основных сфер деятельности, связанных с организацией и планированием производства;
- -углубление теоретических и практических знаний по организации в производства применительно к конкретным производственным системам;
- —подготовка будущих специалистов к принятию решений в области управления производственными предприятиями на основе экономических знаний;
- —получение сведений о новейших достижениях в области управления ресурсным потенциалом (основных фондов, оборотных средств, трудовых ресурсов) предприятия;
- -овладение существующими методиками расчета основных экономиче-ских показателей различных направлений деятельности предприятия;
- -использование самостоятельно и творчески теоретические знания в практической деятельности.
 - В результате освоения дисциплины обучающийся должен Знать:
- теоретические основы «Экономики и организации производства», основные методы экономического анализа, специфику развития предприятий в современных условиях
- экономические характеристики структуры предприятия, основные показатели их эффективного использования, общие вопросы организации производственной и коммерческой деятельности предприятия;
- направления инвестиционной и инновационной деятельности предприятия, тенденции развития предприятия;
- -основы нормирования и определения потребностей в материальных ресурсах;
 - -основы организации оплаты труда на предприятии;
- -основы системы планирования на предприятии; виды затрат на производство и реализацию и основы формирования себестоимости продукции, работ, услуг;

 – основные финансово-экономические результаты деятельности предприятия и их показатели.

Уметь:

- производить статистическую выборку и использовать статистические показатели в анализе деятельности предприятия;
 - составлять элементарные балансы предприятия;
- давать оценку уровня социально экономического развития предприятия;
- анализировать современное социальное и экономической состояние предприятия, проводить сравнительный анализ:
- -давать общую характеристику производственного процесса на предприятии, как основного, так и вспомогательного.

Владеть:

- навыками экономического мышления, сочетающего государственные и производственные интересы; оценки состояния экономического развития предприятия;
- выявлять основные направления и мероприятий по повышению эффективности использования ресурсного потенциала в производстве, а также в деятельности предприятия в целом и отдельным еецнаправлениям.

2. Содержание дисциплины

Основные принципы, правила и прогрессивные приемы организации экономической деятельности на предприятиях.

Производственная структура предприятия. Основы организации и предприятием. Организационные управления ТИПЫ производства. эффективность Совершенствование техники И экономическая использования. Организация основного производственного использование сырья, оборудования. Научная организация труда. Основы труда; нормирования. Оплата технико-экономические технического показатели по труду и заработной плате. План технического развития и эффективности производства. Планирование показателей повышения предприятия. Понятие финансовой деятельности стратегическом планировании. Основные элементы бизнес- плана и плана маркетинга Формыпроизводственной предприятия. отчетности и составления.

ЭЛЕКТИВНЫЕ КУРСЫ ПО ФИЗИЧЕСКОЙ КУЛЬТУРЕ

1. Цель и задачи дисциплины

Целью освоения дисциплины «Элективные курсы по физической культуре» является

формирование физической культуры личности и способности направленного использования разнообразных средств физической культуры, спорта и туризма для сохранения и укрепления здоровья, психофизической подготовки и самоподготовки к будущей жизни и профессиональной деятельности.

Задачами изучения дисциплины является

- понимание социальной значимости физической культуры и еецроли в развитии личности и подготовке к профессиональной деятельности;
 - знание биологических, психолого-педагогических и практических основ физической культуры и здорового образа жизни;
- формирование мотивационно ценностного отношения к физической культуре, установки на здоровый стиль жизни, физическое совершенствование и самовоспитание привычки к регулярным занятиям физическими упражнениями и спортом;
- овладение системой практических умений и навыков, обеспечивающих сохранение и укрепление здоровья, психическое благополучие, развитие и совершенствование психофизических способностей, качеств и свойств личности, самоопределение в физической культуре и спорте;
- приобретение личного опыта повышения двигательных и функциональных возможностей, обеспечение общей и профессионально-прикладной физической подготовленности к будущей профессии и быту;
- создание основы для творческого и методически обоснованного использования физкультурно-спортивной деятельности в целях последующих жизненных и профессиональных достижений.

В результате освоения дисциплины обучающийся должен

знать:

- основы общей физической подготовки,
- основы здорового образа жизни,
- основные методики самоконтроля и системы физических упражнений, необходимых и применяемых в профессиональной деятельности.

уметь:

- использовать средства физической культуры, поддерживать физические свойства организма для оптимизации труда и повышения работоспособности.

владеть:

- навыками общей физической культуры,
- навыками использования методик и комплексов физических упражнений для избежание перегрузок организма;

- навыками закаливания, навыками самоконтроля за состоянием своего организма.

2. Содержание дисциплины

- 1) Общеразвивающие упражнения: упражнения для рук и плечевого пояса, для туловища и шеи, для ног, упражнения для развития силы, быстроты, координации движений, подвижности в суставах (гибкости), упражнения для устранения дефектов телосложения и формирования правильной осанки, упражнения на расслабление, упражнения на гимнастической скамейке, на земле, поднимание и опускание туловища.
- 2) Легкая атлетика Техника бега: высокий старт, низкий старт, стартовое ускорение, бег по дистанции, финиширование. Специальные упражнения бегуна. Тренировка в беге на короткие дистанции: повторный бег на отрезках от 60 до 150 м, переменный бег на отрезках от 100 до 300 м, эстафетный бег, контрольные пробежки 100 м в условиях соревнований. Бег на длинные дистанции 3000 м (мужчины) и 2000 м (женщины). Кроссовый бег на время от 20 до 50 минут. Контрольный бег в условиях соревнований.
- 3) Атлетическая гимнастика Основы техники упражнений. Изучение техники упражнений с отягощениями (гантели, гири, штанга) и на тренажерах. Комплексы упражнений для различных групп мышц.
- 4) Спортивные игры.Волейбол, баскетбол, мини-футбол, настольный теннис. Обучение, закрепление и совершенствование техники игры в нападении, техники перемещений, техники атаки, техники игры в защите.

ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА

1. Цель и задачи дисциплины

Целью освоения дисциплины «Электротехника и электроника» является изучение студентами основных закономерностей процессов протекающих в электронных методы электромагнитных цепях определения И И электрических величин, характеризующие эти процессы, приобретение теоретических и практических знаний по основам электротехники и необходимые электроники, ДЛЯ успешного освоения последующих дисциплин специальности.

Задачами изучения дисциплины «Электротехника и электроника» является изучение электромагнитного поля и его проявлений в различных технических устройствах, усвоение современных методов анализа и расчета электрических цепей, электрических и магнитных полей, знание которых необходимо для успешной профессиональной деятельности.

В результате освоения дисциплины обучающийся должен Знать

- фундаментальные законы, понятия и положения электротехники и электроники;
- важнейшие свойства и характеристики электрических и электронных цепей; основные методы их расчета;
- основные типы современных аналоговых и цифровых интегральных микросхем, принципы их построения и функционирования;
 - основные технические параметры и характеристики ИМС;

инженерные методики работы и проектирования электронных устройств различного назначения; основные цели и задачи стандартизации в области электроники;

Уметь

- использовать основные законы электротехники, методы анализа электрических цепей;
- указать оптимальный метод расчета, определять основные характеристики цепи и дать качественную физическую трактовку полученным результатам;
- рассчитывать и проектировать электронные устройства для решения конкретных задач;
- проводить синтез, анализ и оптимизацию параметров электронных устройств с применением САПР;

*Владеть*навыками

- эксплуатации электроизмерительных приборов соблюдением ТБ;
- сборки электрических схем.

2. Содержание дисциплины

Введение. Задачи дисциплины. Электрическая цепь и схемы цепи.

Активные элементы электрической схемы. Законы Кирхгофа.

Основные топологические понятия. Матричная форма записи уравнений по законам Кирхгофа.

Понятие о нелинейных, линейных и резистивных схемах.

Расчет схем по законам Кирхгофа и Ома.

Метод узловых потенциалов. Матричная форма записи уравнений.

Принципы анализа линейных резистивных схем. Передаточные коэффициенты.

Получение переменных ЭДС. Однофазные цепи и их анализ. Графическое изображение синусоидальных величин. Резонансные режимы.

Понятие установившегося процесса при периодически меняющихся токах и напряжениях. Комплексный метод расчета схем гармонического тока.

Законы Ома и Кирхгофа в комплексной форме. Элементы линейных схем замещения цепей.

Комплексное сопротивление и комплексная проводимость пассивного двухполюсника. Аналогия с анализом линейных резистивных схем.

Явление взаимной индукции. Применение комплексного метода к расчету схем с взаимоиндукцией. Трансформатор в линейном режиме. Резонансные явления в реактивных двухполюсниках.

Изображение несинусоидальных токов и напряжений с помощью рядов Фурье. Резонансные явления при несинусоидальных токах.

Причины возникновения переходных процессов. Сущность классического метода анализа переходных процессов.

Методы определения корней характеристического уравнения. Методы входного сопротивления. Метод входной проводимости и метод главного определителя.

Использование схем для определения принужденных (установившихся) составляющих при постоянных или гармонических ЭДС и токах источников.

Принципы работы полупроводникового диода, схемы замещения, параметры, характеристики. Принципы работы различных транзисторов.

Полупроводниковые фотоприемные устройства и светоизлучающие приборы. Светодиоды.

Усилительный каскад с общим эммитером.

Усилительный каскад с общим коллектором и общей базой.

Методы построения усилительных каскадов на полупроводниковых элементах.

Положительная и отрицательная обратная связь в усилительных устройствах.

Частотные и переходные характеристики усилительных устройств.

Влияние обратной связи на характеристики усилительных устройств.

Операционные усилители, компараторы.

Параметры и характеристики ОУ.

Коэффициент ослабления синфазного сигнала напряжения шумов. Основные применения ОУ.

Ключи на различных видах транзисторов.

Логические элементы, их характеристики и параметры.

Серии логических схем.

Стабилизаторы напряжения. Трансформаторные источники вторичного питания.

Безтрансформаторные источники вторичного питания.

Генераторы тока. Методы схемотехнического проектирования электронных схем при помощи пакета программ Electronicwordbunch и MatlabSimulatePowerSystems.

ОСНОВЫ РОССИЙСКОЙ ГОСУДАРСТВЕННОСТИ

1. Цель и задачи дисциплины

Основной *целью* преподавания дисциплины «Основы российской государственности» является формирование у обучающихся системы знаний, навыков и компетенций, а также ценностей, правил и норм поведения, связанных с осознанием принадлежности к российскому обществу, развитием и гражданственности, патриотизма формированием нравственного и культурного фундамента развитой и цельной личности, особенности исторического пути российского государства, осознающей самобытность его политической организации и сопряжение индивидуального и успеха с общественным достоинства прогрессом и политической стабильностью своей Родины.

Реализация курса предполагает последовательное освоение студентами представлений, научных концепций, знаний, a также исторических, социологических культурологических, И иных связанных данных, проблематикой развития российской цивилизации и её государственности в исторической ретроспективе и в условиях актуальных вызовов политической, экономической, техногенной и иной природы. Исходя из поставленной цели, для её достижения в рамках дисциплины можно выделить следующие задачи:

- представить историю России в её непрерывном цивилизационном измерении, отразить её наиболее значимые особенности, принципы и актуальные ориентиры;
- раскрыть ценностно-поведенческое содержание чувства гражданственности и патриотизма, неотделимого от развитого критического мышления, свободного развития личности и способности независимого суждения об актуальном политико-культурном контексте;
- рассмотреть фундаментальные достижения, изобретения, открытия и свершения, связанные с развитием русской земли и российской цивилизации, представить их в актуальной и значимой перспективе, воспитывающей в гражданине гордость и сопричастность своей культуре и своему народу;
- представить ключевые смыслы, этические и мировоззренческие доктрины, сложившиеся внутри российской цивилизации и отражающие её многонациональный, многоконфессиональный и солидарный (общинный) характер;
- рассмотреть особенности современной политической организации российского общества, каузальную природу и специфику его актуальной трансформации, ценностное обеспечение традиционных институциональных решений и особую поливариантность взаимоотношений российского государства и общества в федеративном измерении;
 - исследовать наиболее вероятные внешние и внутренние вызовы,

стоящие перед лицом российской цивилизации и её государственностью в настоящий момент, обозначить ключевые сценарии её перспективного развития;

- обозначить фундаментальные ценностные принципы (константы) российской цивилизации (единство многообразия, суверенитет (сила и доверие), согласие и сотрудничество, любовь и ответственность, созидание и развитие), а также связанные между собой ценностные ориентиры российского цивилизационного развития (такие как стабильность, миссия, ответственность и справедливость).

В результате освоения дисциплины обучающийся должен:

- осознавать современную российскую государственность и актуальное политическое устройство страны в широком культурно-ценностном и историческом контексте, воспринимать непрерывный характер отечественной истории и многонациональный, цивилизационный вектор её развития;
- воспринимать и разделять зрелое чувство гражданственности и патриотизма, чувствовать свою принадлежность к российской цивилизации и российскому обществу, воспринимать свое личностное развитие сквозь призму общественного блага и релевантных для человека моральнонравственных ориентиров;
- участвовать в формировании и совершенствовании политического уклада своей Родины, принимать и разделять ответственность за происходящее в стране, осознавать значимость своего гражданского участия и перспективы своей самореализации в общественно-политической жизни;
- развить в себе навык критического мышления и независимого суждения, позволяющего совершенствовать свои академические и исследовательские компетенции даже в соотнесении с резонансными и суггестивными проблемами и вызовами;
- сформировать у себя способность к внимательному, объективному и цельному анализу поступающей общественно-политической информации, умение проверять различные мнения, позиции и высказывания на достоверность, непротиворечивость и конвенциональность;
- усовершенствовать свои навыки личной и массовой коммуникации, развить в себе способность к компромиссу и диалогу, уважительному принятию национальных, религиозных, культурных и мировоззренческих особенностей различных народов и сообществ;

- уверенно владеть ключевой информацией о политическом устройстве своей страны, своего региона и своей местности, сформировать компетенции осознанного исторического восприятия и политического анализа;
- сформировать у себя способность к агрегированию и артикуляции активной гражданской и политической позиции, выработать ценностно значимый навык вовлеченности в общественную жизнь и неравнодушной сопричастности (эмпатии) ключевым проблемам своего сообщества и своей Родины

2. Содержание дисциплины

Страна в её пространственном, человеческом, ресурсном, идейно-символическом и нормативно-политическом измерении.

Исторические, географические, институциональные основания формирования российской цивилизации. Концептуализация понятия «цивилизация» (вне идей стадиального детерминизма).

Мировоззрение и его значение для человека, общества, государства.

Объективное представление российских государственных и общественных институтов, их истории и ключевых причинно-следственных связей последних лет социальной трансформации.

Сценарии перспективного развития страны и роль гражданина в этих сценариях.

ПРАВОВЫЕ ОСНОВЫ ПРОТИВОДЕЙСТВИЯ ЭКСТРЕМИЗМУ, ТЕРРОРИЗМУ, КОРРУПЦИОННОМУ ПОВЕДЕНИЮ

1 Цели и задачи учебной дисциплины

Цель освоения учебной дисциплины «Правовые основы противодействия экстремизму, терроризму, коррупционному поведению» заключается в получении обучающимися необходимых теоретических знаний о понятиях экстремизм, терроризм и коррупция, закономерностях развития данных явлений, а также формирование активной гражданской позиции посредством правильного понимания и умения теоретически различать виды терроризма и экстремизма.

Основные задачи курса:

- ознакомление с важнейшими принципами правового регулирования, определяющими содержание норм антикоррупционного законодательства;
- характеристика и анализ основных правовых мер системы борьбы с коррупционными проявлениями;
 - понимание основных форм социально-политического насилия;
- знание содержания основных документов и нормативно-правовых актов противодействия терроризму в Российской Федерации, а также приоритетных задач государства в борьбе с терроризмом;
- создание представления о процессе ведения «информационных» войн и влиянии этого процесса на дестабилизацию социально-политической и экономической обстановки в регионах Российской Федерации;
- воспитание уважительного отношения к различным этнокультурам и религиям;
- знание основных рисков и угроз национальной безопасности России.

2 Содержание дисциплины

Природа экстремизма, терроризма и коррупционного поведения как социального явления. Историко-правовой анализ борьбы с экстремизмом, терроризмом и коррупцией. Противодействие экстремизму, терроризму и коррупции в истории Российского государства. Нормативно-правовые акты, регулирующие противодействие экстремизму, терроризму и коррупции в РФ.

Характеристика правонарушений экстремистской, террористической и направленности. Способы коррупционной предотвращения экстремизма, терроризма и коррупционного поведения. Политические и экономические способы противодействия им. Взаимосвязь коррупционные явления, И экстремизма, терроризма и коррупции. Международное сотрудничество в сфере противодействия экстремизму, терроризму и коррупции.